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Abstract. As a renewable energy source, the establishment of photovoltaic 

(PV) system has essentially expanded. In any case, due to the maturing impacts 

and external conditions, during operation, PV systems can incur failures. These 

failures may affect many system components, including converters, PV mod-

ules, and connecting lines, which could decrease system effectiveness and per-

formance or even cause the system breakdown.  Thus, the fault detection and 

diagnosis (FDD) is an important aspect in high-efficiency grid-connected PV 

systems. Deep learning (DL) is used in the most well-known data-driven meth-

odologies. The main benefit of DL algorithms for diagnosis is that they create a 

high-order, non-linear, and adaptive effort to memorize high-level highlights 

from PV data, the fault is then classified.  Therefore, a comparison of FDD-

based DL approaches is presented in this article.  These methods include Long-

Short Term Memory (LTM), Convolutional Neural Networks (CNN), and Neu-

ral Networks (NN). The implementation of the DL techniques-based fault diag-

nosis is done using an emulated Grid-Connected PV (GCPV) system.  

To evaluate the effectiveness of the proposed approaches, we utilize data ob-

tained from a healthy case, which are then injected with several fault scenarios 

in the DC side and AC side:  one fault in the PV sensor, two faults in the PV ar-

ray level, this is about the DC side and in the other side there are the three-

phase inverter fault and the grid external connection fault. 

The proposed techniques achieved accuracy from 61.24% to 95.51%, and the 

models' performance is evaluated. 

Keywords: Grid Connected Photovoltaic System (GCPV), Fault Detection and 

diagnosis (FDD), Deep Learning (DL). 

1 Introduction 

The majority of energy sources being used today are traditional types like fuels and 

uranium. These sources are limited in nature and quantity. Additionally, they are con-

tinuously diminishing as global energy consumption increases as a result of popula-

tion growth and industrial expansion. Additionally, it is believed that the main causes 

of climate change and global warming are fuels like coal, oil, and gas. In order to 

meet the world's energy needs and reduce the dangerous gases that are released from 
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manufacturing facilities and cars that run on refined fossil fuels, the worldwide is 

turning to clean and renewable energy sources. 

Renewable energy sources including hydro, wind, and solar energy are hopeful con-

tenders to take the place of conventional sources in the coming generations.  The In-

ternational Energy Agency (IEA) claims that wind and solar photovoltaic systems 

have been the primary drivers of the growth in electricity generation from energy 

sustainability (PV). With the fast-global expansion and installation of PV systems, 

fault diagnosis in photovoltaic (PV) systems is becoming continuously more essential 

with a view to ensure efficient energy collecting, elevated dependability, and little 

supports costs [1]. Generally speaking, PV systems handle in challenging external 

requirements, which causes a number of failures in the various PV elements (PV sub-

jects, circuit, power electronics interface, etc.). To overcome these difficulties, it is 

crucial to develop effective and extensive fault diagnosis solutions [2, 3]. 

The Model-Based and Data-Driven techniques are the two basic FDD methodologies 

that are employed in PV systems [4]. In order to determine the relationships between 

a PV system's variables, including its parameters, model-based techniques use a logi-

cal model of the PV system [5].  The computation of residuals, which is used to assess 

the consistency of evaluated and assessed behaviors, forms the basis of model-based 

fault detection. These techniques have the primary advantage of requiring less hard-

ware and working with different PV systems. Furthermore, these strategies be de-

pendent on the mathematical model's ability to accurately describe the PV system's 

behaviors, in which more sense equipment is essential [6]. 

Therefore, fault classification, which works to categorize faults, is still quite diffi-

cult, specifically in large-scale PV systems [4, 7]. Numerous studies employing ma-

chine learning (ML) methods, that are data-driven methodologies  founded on historic 

data gathered throughout PV system process, have focused on the FDD in PV systems 

[8,9].  ML is at the center of the artificial intelligence [10]. ML often involves memo-

rizing rules from a vast amount of historical data using similar algorithms, making 

judgments or predictions based on new samples of data, and subsequently learning 

similarly to humans. Numerous machine learning methods have been used to identify 

and diagnose PV system faults [11, 12]. Artificial neural networks (ANNs) are one of 

the ML techniques, which are widely researched and used for fault diagnosis prob-

lems [13, 14]. The ANN approach offers an adaptable framework for education and 

identifying system faults by reason of the non-linear issues. Using a range of struc-

tures, the goal is to identify the relationship between the variable's input and output. 

ANNs have become effectively used in fault detection of PV system and system mod-

eling [15]-[18]. On the other hand, The ANN and other ML methods, rely on manual-

ly extracting features, which necessitates for diagnosis ability and a complete com-

prehension of database data. Additionally, manual feature extraction is also costly and 

time-consuming. 

In order to diagnose a PV system, we advise employing Deep Learning (DL) algo-

rithms, which can automatically extract features from raw data to overcome the issue 

of manual feature extraction. One of the most well-known applications of machine 

learning is deep learning (DL), which is used in many different fields [19]. It takes 

inspiration from initiatives to build and reproduce the neural network of the human 
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mind to aid in analysis and training. The primary benefit of DL is its capacity for 

feature learning, which can suddenly identify complex structures and discover rele-

vant features from layers of raw data. Convolutional Neural Network (CNN), Recur-

rent Neural Network (RNN), and Long-Short-Term Memory (LSTM) are currently 

employed for fault diagnosis with the aim of extracting the desired features. These 

methods try to extract features using, respectively, CNN, and LSTM networks. A 

softmax classifier is then used to classify faults using the features. When compared to 

more established shadow machine learning techniques, DL has produced good results, 

although its use in problem diagnosis is still in its early stages. In order to detect faults 

in an emulated Grid-Connected PV (GCPV) system, this paper offers FDD-based 

deep learning (DL) algorithms. 

The rest of this paper is orderly as follows: Section 2 provides a brief description 

of the proposed DL techniques including ANN, CNN, and LSTM. Section 3 includes 

a description of the experimental materials, where the primary results are shown in 

this section, along with an explanation of the system and the data gathered during the 

examination.  In section 4, the paper is concluded. 

2 Deep Learning Techniques for Fault 

Diagnosis 

This study deals with fault diagnosis of real GCPV system under various operating 

modes using deep learning techniques including: artificial neural network, convolu-

tional neural network and long short term memory, which are discussed in details in 

the following subsections. The overall working principle of the proposed approach is 

illustrated in Fig. 1. 

 

Fig. 1. Flowchart of deep learning approaches for GCPV fault diagnosis 
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2.1 Artificial Neural Networks (ANN) 

ANN appeared effectively connected for both fault detection and system modeling 

[17]. The non-linear issues of the ANN approach provide an adaptable component for 

learning and identifying system faults. We have the fundamental Neuron Model and 

feed-forward architectures, which are utilized to determine the relationship between 

the parameters for both input and output.  Fig. 2 shows a typical architecture, which 

also shows connections between neurons. Each link has a weight assigned to it, which 

is a number. In the hidden layer, the output of ith neuron is hi [20]. 

 

 ℎ𝑖 = 𝜎(∑ 𝑊𝑖𝑗𝑥𝑗 + 𝑇𝑖
ℎ𝑖𝑑𝑁

𝑗=1 ) (1) 

 

 

Fig. 2.  Architecture of artificial neural network model. 

2.2 Convolutional Neural Network (CNN) 

The CNN is a supervised deep learning algorithm. It belongs to a type of deep 

learning networks (DNN) that are frequently used in computer vision and automatic 

language processing. It contrasts from convolutional neural networks in that its em-

ployments convolution in layers the matrix multiplication used in the classical meth-

od. It has topology like ANN with three layers specifically input layer, hidden layers 

and output layers. The hidden layers are an important part of CNN which consists of 

numerous hidden layers, and incorporates several convolution layers and pooling 

layers. The fundamental structure of the convolutional neural network is shown in 

Fig. 3. It is composed of two parts: Feature extraction part and classification part [21].  
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Fig. 3. Architecture of convolutional neural network 

The first part works as a feature extractor for data. It contains input layer, convolu-

tional layers (CLs), and pooling layers (PLs), which are stacked layer by layer in the 

network. The input data matrix is passed through a progression of filters, creating new 

feature called feature maps. Then, the convolution maps are flattened and concatenat-

ed into a feature vector, called CNN code. This CNN code at the output of the convo-

lutional part is then connected to the input of a second part, made of fully connected 

layers (multilayer perceptron). The classifier part dedicated for fault classification and 

composed of a fully connected layer (FC) and an output layer. The FC layers receive 

the features get the highlights gotten by the last pooling layer as the input. The output 

is a last layer with one neuron per category. The numerical values obtained are as a 

rule normalized between 0 and 1, sum 1, to deliver a likelihood distribution over the 

categories. 

2.3 Long Short Term Memory (LSTM) 

LSTM is an improved extension from recurrent neural network (RNN) [22].  The 

primary distinction between LSTM and RNN is that LSTM can handle long-term 

dependence issues and successfully handle energetic information by utilizing a novel 

architecture cell that allows neural networks to filter information, leaving only useful 

information, and rejecting unnecessary information [23]. Although it has been used 

significantly to identify various dynamic systems, relatively little of it has been used 

to diagnose faults. 

The LSTM contains many gate layers with the aim of forgetting information from 

memory. Instead of using one neural node with a nonlinear function such as in the 

case of RNN, new information is saved in memory and outputted as it advances 

through time. For each repeating module of the LSTM, there are four components: an 

output (ot), an input gate (it), a forget gate (ft), and a memory cell (ct). The basic 

architecture of LSTM is shown in Fig. 4. 
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Fig. 5. Architecture of long short term memory cell. 

 𝑖𝑡 =  𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝑓𝑡 =  𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3) 

 𝑐𝑡
′ =  𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (4) 

 𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡
′ (5) 

 ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (6) 

Where all, W and b denote the weight matrices and bias terms. And the operator ⊙ 

indicates the element-wise vector multiplication. 

First, the new input xt and previous hidden state ht-1 are used to obtain the forget 

gate ft at time step t. Information from the last memory cell ct-1 shall be kept and vice 

versa if the value of the forget gate is less than 1. Second, an input gate formed from 

the new input and previous hidden state will be inserted into a memory cell so that it 

becomes ct. Lastly, what should be taken from memory cells to create the new hidden 

state will be decided by the output gate. 

3 Simulation results 

3.1 PV implementation and data collection 

We used the PV data and associated parameters from the earlier work in the current 

study [24]. Fig. 5 represents the synoptic of the GCPV system under study, wherever 

data collection and validation were carried out using a PV array and a Grid emulator 

[24].  Experimental faults discovered using the GCPV system simulator are those that 

are taken into consideration in this work. The Experiment was conducted by changing 

and injecting faults in various components to disable the normal operation of each 

part that construct the circuit. To ensure a comprehensive examination and study, 

these faults are injected at several levels (sensor, actuator, grid connection, PV panels, 

etc.) and locations (internal, external). After a brief period of normal operation, the 

faults are injected, and the predicted fault injection time is recorded for each fault so 

that the detection delay can be calculated. Depending on the type of faults and how 
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frequently they occur, the recording time can be anywhere between 5 and 15 seconds. 

The sample period is 100µs. These faults are summarized in Table 1. 

 

Fig. 5. Grid-Connected Photovoltaic system block diagram 

Table 1. Description and characteristic of the different labeled Faults injected in the system. 

Fault side  Fault type Fault label Fault description 

 

 

 

DC side 

 

PV Sensor Fault 

 

Fault 2 

Damage, malfunction or poor connection 

of the current sensor at the PV output. 

 

PV array level Fault 

Fault 4 Permanent partial shading of 10% to 

20%. 

Fault 5 Critical external fault due to loss of con-

nection. 

 

 

 

AC side 

Three-Phase Invert-

er Fault 

Fault 1   Damage of one IGBT at a time among the 

total of 6 IGBTs inside the three-phase 

inverter. 

 

Grid External Con-

nection Fault 

 

Fault 3 

Critical external fault at the grid output 

level. This can be caused by loss or poor 

grid connection, sudden grid disconnec-

tion. The system will switch to a load for 

protection reasons. 

 
In Table 2, the functioning of the investigated GCPV system is shown for one healthy 

case (marked for class C0) and five different faulty operating modes (designated for 

classes C1 to C5). 

Table 2. Construction of database for fault diagnosis system 

Class State Training samples Testing samples 

C0 

C1 

C2 

C3 

C4 

C5 

Healthy 

F1 

F2 

F3 

F4 

F5 

7000 

7000 

7000 

7000 

7000 

7000 

2000 

2000 

2000 

2000 

2000 

2000 



8 

3.2 Fault classification results 

In order to assess the effectiveness of DL algorithms, the data collection collected out 

of the PV system was first divide into three groups namely, the training, validation, 

and testing datasets. According to the partition ratio of 0.7 used in the process, the 

dataset is divided into training data with 70%, validation data with 10%, and testing 

data with 20%. 

In this paper, many classifiers are tested.  For the classification of faults with different 

nature, all techniques have good accuracy, in fact the NN gives accuracy over the 

testing phase of 94.55% with processing time of 1.5(s), the LSTM model was deter-

mined 95.12% in the testing data set with 2.84 (s), the last method is CNN where the 

accuracy in the testing phase is reached about 61.24%, respectively, with a computa-

tion time about 26.89(s). Actually, as reported in [25], the accuracy of CNN applied 

to fault diagnosis is not very high. A summary of the performance during the testing 

phase is shown in Table 3 based on accuracy and computation time (CT). 

Table 3. Fault classification performance of proposed methods 

Methods Accuracy (%) Processing time (s) 

ANN 94.55 1.5 

LSTM 95.12 1.65 

CNN 61.24 26.89 

 
The confusion matrices (CM) are indicated in Tables 4, 5 and 6. They’re used to fur-

ther assess the proposed approach effectiveness.  For healthy class and faulty ones, 

the CM show the correct and misclassification of samples. The x- and y-axes are used 

to calculate predicted process statuses and true classes, respectively. For example, the 

NN technique (see Table 4) identifies 1761 samples out of 2000 (true positive) for the 

healthy case, which is assigned to class C0. Of these, 1761 samples are considered to 

be faulty, while 4 observations are assigned to class C1 and 235 measurements are 

assigned to class C3. The NN classifier recognizes, among 2000 samples, 1983, 1964, 

1822, 1997, and 1819, respectively, for the faulty cases (C1 to C5). 

Table 4. Confusion matrix of ANN in testing phase 

True classes Predicted classes Recall (%) 

C0 C1 C2 C3 C4 C5  

C0 1761 4 235 0 0 0 88.05 

C1 3 1983 1 0 0 13 99.15 

C2 0 0 1964 0 0 36 98.20 

C3 167 9 1 1822 1 0 91.10 

C4 0 1 0 1 1997 1 99.95 

C5 0 99 82 0 0 1819 90.95 

Precision (%) 91.20 94.61 86.03 99.95 99.95 97.32 94.56 
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Table 5. Confusion matrix of LSTM in testing phase 

True classes Predicted classes Recall (%) 

C0 C1 C2 C3 C4 C5  

C0 1720 7 0 273 0 0 86.00 

C1 2 1984 2 0 0 12 99.20 

C2 0 0 1974 0 3 23 98.70 

C3 107 13 1 1879 0 0 93.95 

C4 0 1 0 5 1993 1 99.65 

C5 0 98 44 0 3 1864 93.20 

Precision (%) 94.04 94.75 97.67 87.11 99.70 98.11 95.12 

Table 6. Confusion matrix of CNN in testing phase 

True classes Predicted classes Recall (%) 

C0 C1 C2 C3 C4 C5  

C0 975 1025 0 0 0 0 48.75 

C1 859 1141 0 0 0 0 57.05 

C2 0 0 1333 631 36 0 66.65 

C3 167 9 0 1900 100 0 95.00 

C4 0 0 0 1256 120 624 06.00 

C5 0 0 0 1 78 1921 96.05 

Precision (%) 53.16 52.68 86.03 100.0 35.93 75.48 61.58 

4 Conclusions 

The issue of fault detection and diagnosis (FDD) for grid-connected PV (GCPV) sys-

tems is taken into consideration in this work. The methods that have been created are 

based on deep learning, using Experimental GCPV data representing various operat-

ing conditions. In the current study, we have classified DL based FDD into four cate-

gories: FDD based on Neural Network (NN), FDD based on Convolutional Neural 

Network (CNN), FDD based on Long Short Term Memory  (LSTM). These methods 

have been tested and examined. The developed techniques generally demonstrated 

good monitoring and higher classification in terms of accuracy, recall, precision, and 

computation time. Moreover, the simulation results using a grid-connected PV system 

under both healthy and faulty situations demonstrated the effectiveness and robust-

ness of the suggested FDD techniques. 
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