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Abstract. Distributed Denial of Service (DDoS) attacks are one of the
main threats facing the Internet today, and a considerable number of
them originate from attacks using spoofed source addresses. The Source
Address Verification Architecture (SAVA) technology can effectively mit-
igate such attacks by verifying the legitimacy of the source address. How-
ever, the deployment of SAVA faces some practical challenges, including
the complexity of real network topologies, high deployment costs, and
the impracticality of full deployment. To address these issues, this paper
describes the SAVA deployment model in detail and proposes an incre-
mental deployment approximation algorithm. The algorithm can identify
a set of approximately optimal SAVA deployment points in any network
topology, aiming to maximize the filtering of attack traffic. Experimental
results show that compared with conventional deployment methods, the
deployment algorithm shows superior performance in handling spoofed
source attacks while maintaining a low false negative probability.
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1 Introduction

With the continuous expansion of the network scale and the diversification of
attack methods, network security has become a crucial issue for the Internet
today. Distributed denial-of-service (DDoS) attacks, in particular, represent one
of the main threats to the Internet [1]. Spoofed source attacks are a common form
of DDoS attack, which mainly hides the true identity of the attacker by forging
the source IP address. This attack method makes it difficult for the victim to
track the source of the attack, thus increasing the difficulty of defense.

Spoofed source attacks mainly include two forms: Spoofed source flooding and
reflection amplification. Spoofed source flooding attack is an attack method that
floods the target server by sending a large number of SYN requests with spoofed
source IP addresses. In this attack, the attacker replaces the source IP address in
the data packet with a spoofed address, causing the target server to try to send
a response to these spoofed IP addresses after receiving the SYN request. Since
these spoofed IP addresses may not exist, the resources of the target server will
be exhausted, making it unable to process requests from legitimate users. The
typical characteristics of this attack are high concurrent connection requests and
a large number of half-open connection states.Reflection amplification attacks
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amplify initial traffic by exploiting vulnerabilities in network services, causing
bandwidth consumption, resource exhaustion, and potentially leading to service
interruptions, security risks, reputation loss, and financial losses [2,3]. Reflection
amplification attacks in spurious sources pose unique challenges: they generate
massive traffic capable of crippling a victim’s server in a short time, obscure
the source by using spoofed IP addresses, and are difficult to defend against
as reflection servers are legitimate Internet services, making simple IP blocking
an ineffective measure [4]. Given these characteristics,Spoofed source flooding
and reflection amplification attacks pose a serious threat to Internet security
today, highlighting the urgent need for effective countermeasures. The Source
Address Validation Architecture (SAVA) [5] offers a promising solution to miti-
gate spoofed source attacks by verifying the legitimacy of source addresses. The
next paragraph provides a brief overview of SAVA technology.

SAVA is a multi-layer IP source address validation technology designed to
prevent malicious attacks based on spoofed source addresses, thereby enhancing
Internet security. It enables source address validation at multiple points—within
access networks, inside autonomous systems, and between autonomous systems
ensuring the authenticity of source addresses. At the subnet level, SAVA dy-
namically binds router ports to valid source IP addresses, ensuring that network
devices can only use legitimate source IP addresses. Within autonomous sys-
tems, SAVA establishes filtering tables in routers that associate each incoming
interface with a valid set of source address blocks, thereby filtering out pack-
ets with spoofed source addresses. Across autonomous systems, SAVA performs
route-based validation to confirm the authenticity of source addresses, ensur-
ing that traffic between systems is traceable and legitimate [5,6]. This layered,
multi-level protection mechanism verifies the legitimacy of each packet’s source
address throughout its transmission, effectively preventing DDoS attacks based
on spoofed source address.

Despite its effectiveness in preventing attacks based on spoofed source ad-
dresses, deploying SAVA in practical faces several challenges. SAVA requires a
certain deployment scale to achieve optimal effectiveness. Given the complex-
ity of real-world Internet topologies and the multitude of potential deployment
nodes, full deployment is impractical, and conventional deployment approaches
often fail to yield satisfactory results [7]. Based on the above analysis, this paper
mainly solves the deployment problem of SAVA. Our contributions are summa-
rized as follows:

– We present a rigorous mathematical model for the SAVA deployment prob-
lem and prove that the deployment benefit function is submodular.

– We propose the Submodularity-based Dynamic Greedy (SDG) algorithm,
and demonstrate that the SDG algorithm achieves a constant-factor approx-
imation to the optimal solution under resource constraints.

– We analyze of the limitations with conventional deployment approaches, in-
cluding near-source and near-destination deployment tactics. We compare
the performance of the SDG deployment algorithm against these conven-
tional approaches.
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The remainder of this paper is structured as follows. Section 2 of this pa-
per summarizes the relevant background and related literature. Section 3 in-
troduces the system architecture, gives the specific modeling process, describes
the algorithmic flow and gives a detailed proof of the approximation ratio of
the algorithm. Section 4 presents the SDG deployment results and experimental
comparisons. Finally, we conclude this paper in Section 5.

2 Related Work

Source Address Validation (SAV) mechanisms are crucial for preventing IP ad-
dress spoofing, a common tactic in various network attacks. The Source Address
Validation Architecture (SAVA) was introduced to ensure that every packet’s
source address is verifiable throughout its transmission path. Wu et al. [5] pro-
posed SAVA as a multilayer framework capable of enforcing source address vali-
dation at access networks, within autonomous systems, and across inter-domain
traffic.

Building upon SAVA, the Source Address Validation Improvement (SAVI)
framework was developed to provide finer-grained, standardized IP source ad-
dress validation at the level of individual IP addresses. Bi et al. [8]described the
design and motivation behind SAVI methods, which prevent nodes on the same
IP link from spoofing each other’s IP addresses, thereby complementing ingress
filtering.

SAVA and SAVI are effective in theory, their deployment in real-world net-
works presents challenges.An early framework by Bremler-Barr and Levy [9] dis-
cussed incremental deployment strategies for router-assisted services, emphasiz-
ing the importance of strategic placement to enhance network performance. Ko-
rczyński and Nosyk [10] conducted an Internet-wide active measurement study
to assess the deployment of SAV mechanisms, revealing that a significant num-
ber of networks remain vulnerable to IP spoofing due to the lack of proper SAV
implementation.

In terms of deployment,the integration of submodular optimization in deploy-
ment strategies has been investigated. Wilder [11] examined equilibrium compu-
tation and robust optimization in zero-sum games with submodular structure,
providing insights relevant to security resource allocation in adversarial settings.

Despite these advancements, challenges remain in applying submodular op-
timization techniques to deployment in real-world network scenarios. This paper
address these challenges by developing a submodularity-based deployment algo-
rithm tailored for spoofed source attacks.

3 System Model

3.1 SAVA Deployment Architecture

The SAVA deployment architecture for preventing spoofed source attacks is il-
lustrated in Figure 1. Attacker can control zombie hosts in botnets to spoof IP
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addresses of other hosts to attack victims. We can deploy SAVA devices in place
of conventional routers to prevent traffic with spoofed source addresses from
passing through. Deploying SAVA devices can mitigate the impact of spoofed
source attacks on victims, thereby enhancing network security and stability. The
main deployment challenge lies in selecting optimal deployment points within a
real network topology to maximize attack traffic filtration within resource con-
straints, achieving a strong defensive effect [12].

Fig. 1. Deployment Architecture

In real-world network environments, hardware and device costs vary depend-
ing on node performance requirements; high-traffic nodes often require higher-
performance servers and network devices, leading to different deployment costs
across nodes. Geographic location also affects costs, as remote nodes far from
central infrastructure may require more resources for connection and mainte-
nance. Additionally, nodes with high bandwidth and traffic demands necessitate
more network resources, resulting in higher operational costs. Maintenance and
management costs also vary, as complex network environments require more
resources for node management, necessitating an effective deployment strategy.

3.2 Problem Modeling

The existing SAVA deployment problem is restated, the corresponding mathe-
matical model is established, a SAVA device balanced deployment strategy based
on reliability evaluation is proposed, and relevant indicators are defined and ex-
plained.The relevant symbol definitions are shown in Table 1.
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Table 1. Symbol Definition

symbol implication
V The set of network nodes
E The set of network edges (adjacencies)
G The inter-domain topology of the network
S The set of nodes that have deployed SAVA devices
N The set of nodes that have not yet deployed SAVA, N = V − S
n Node, n ∈ V
σn Boolean value, 0 or 1, indicating whether node n is a deployment point
Tn Attack traffic passing through node n
xn The cost of deploying at location n
W Attack traffic dataset

We focus on reducing the amount of attack packets. According to the ex-
pected linear property, the expected difference is equal to the expected differ-
ence, when the deployed set is S, the number of additional packets that can be
filtered by the deployment point n is:

reduce(S, n) = E[benefitS∪{n}]− E[benefitS ] (1)

We use reduceS to represent the number of attack packets that can be re-
duced when the deployment set is S.From the definition of deployment benefit
above, it can be seen that the benefit of deploying SAVA device is related to the
deployed set S,that currently deploy the method and current deployment node
n .

After n deploys SAVA, over a period of time, the set of legal packets identified
by n is legn, the set of illegal packets is ilegn, and the set of packets that are
judged as spoofed and discarded by n is disn. Then the set of false negative
packets is:

risk(S, n) = |legn ∩ ilegn| (2)

An attack packet is defined as follows: a : (s, d), where a is the attacker, i.e.,
the sender of the packet, s is the source address of the spoofed packet, and d is
the target of the attack[13].The filtering method is based on the principle of path
filtering. The path-based method identifies whether an packet is a spoofed packet
by verifying the forwarding path of a packet. Although the attacker can write a
spoofed source address in the packet, it cannot control the forwarding path of
the packet because it cannot control the entire routing system. Specifically, for
a packet (s, d), when the packet is sent from different locations on the network,
its forwarding path should also be different.

In Figure 2, the forwarding paths of x : (s, d) and s : (s, d) are different. From
d’s point of view, the legitimate packet s : (s, d) should be forwarded from d’s
upstream node y, not x.

Formally define the filter function after deploying the SAVA devices. A filter
function completes the following work: given a topology with routing informa-
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Fig. 2. Filter Method

tion, deployment nodes and an packet a : (s, d) as input, given a deployment
node n and assuming that n has deployed SAVA devices, if packet a : (s, d) passes
through n when forwarding, n can determine whether the data packet is spoofed.
Its form is filter(S, n, a : (s, d)), and returns 1 if it is spoofed; otherwise, returns
0.

Given the filter function, the calculation method of the discard function is
as follows:

discard(S, a : (s, d)) = sgn(
∑
n∈S

∑
a:(s,d)∈W

filter(S, n, a : (s, d))) (3)

sgn()1 is a symbolic function. Its form is as follows.

sgn(x) =

{
0, x = 0

1, x > 0
(4)

If only consider the number of filtered packets, we need to subtract false
negative packets:

reduce(S, n) =
∑

a:(s,d)∈W

(
discard(S ∪ {n}, a : (s, d))

− discard(S, a : (s, d))− risk(S, n)
) (5)

We can calculate the ratio of filtered packets to total attack packets. The
set of legal packets identified by n is legn, the set of illegal packets is ilegn, and
the set of packets judged as spoofed and discarded by n is disn, we use γ to
represent the filtering percentage:

1 Regarding the definition, when x<0, sgn will be -1, but in formula (3), the value in
() will only be >=0. If >0, the value of the discard function is 1, indicating that
the message is discarded. Similarly, if =0, the value of the discard function is 0,
indicating that the message is retained.
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γ = |disn|/|ilegn| (6)

In real-world network deployment, deployable resources are limited. By set-
ting budget constraints, we can ensure that the optimal deployment solution
can be achieved under limited resource conditions.The upgrade budget is the
total cost of upgrading SAVA devices and does not exceed M > 0. We have the
following constraints: ∑

i∈N

xi ∗ σi ≤ M (7)

Our goal is to update the deployment set S to SAVA devices to maximize
the deployment benefits, so our objective function is as follows:

max benefit(SG) (8)

SG is the set of SAVA deployments that satisfy condition (7). The target of
filtering percentage can be set to 0 < P < 1. The percentage of traffic to be
filtered may not always meet the filtering requirements if the deployment cost M
is too small in actual situations. Our goal is to maximize the deployment benefit,
i.e., to calculate (8).

The problem of solving (7) under the condition of (8) is NP, which means that
in the worst case, the time complexity of finding the best deployment solution
will increase rapidly with the increase of network size.

3.3 Proof of Submodular Function

In order to optimize the deployment of SAVA devices, we use the total benefit
function to represent the total traffic size that can be filtered by deploying SAVA
devices on a set of nodes. Proving that benefit is a submodular function is
important because submodular functions have specific mathematical properties
that can be used to develop efficient greedy algorithms, thereby ensuring that
the algorithm strikes a good balance between computational complexity and
defensive effectiveness. Submodularity ensures effectiveness in algorithm design,
especially in optimization problems. Specifically, as the set grows, the additional
benefit of adding nodes to the set decreases.

We can prove that the function benefit is a submodular function.
For a collection function benefit : 2N → S,Assume that A ⊆ N is a set,

B ⊆ N is a set, and A ⊆ B is a set, ∃i ∈ N \B
2N represents the power set of set N, i.e., the set of all subsets of N

benefit({n} ∪B)− benefit(B) ≤ benefit({n} ∪A)− benefit(A) (9)

The formula points out that as the set becomes larger, the value of n will
become smaller, which is the characteristic of diminishing marginal benefits.
When A ⊆ B, f(A) ≤ f(B) , this submodular function is monotonic.
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Proof. Select any two sets A ⊆ B ⊆ N , and any element n ∈ N \ B. N is the
set of nodes in the network topology; we need to prove that inequality (9) holds

For a smaller set A, the addition of element n will bring more significant
marginal benefits, because the traffic Tn carried by n is not shared or filtered
by other nodes in the smaller set. For the larger set B, since it already contains
more nodes, there may be redundant nodes. The traffic that these nodes can filter
cannot be filtered by the nodes in the set A. Compared with the total traffic,
it can The incremental number is small, and the incremental effect brought by
the addition of element n is relatively small, because the nodes in set B have
already taken on more traffic filtering tasks. Therefore, for any A ⊆ B ⊆ V and
n ∈ V \B :

benefit({n} ∪A)− benefit(A) ≥ benefit({n} ∪B)− benefit(B) (10)

benefit({n} ∪A) ≥ benefit({n} ∪B) (11)

We have thus proved that the function benefit is a submodular function. ⊓⊔

Therefore, we have proved that under the given algorithm steps and benefit
function definition, the function benefit is a submodular function. This means
that when selecting nodes, the marginal benefit of each new node is decreasing,
which is of great significance for solving optimization problems.

3.4 Algorithm Design

The pseudocode of the Algorithm 1. is as follows:
Proof of approximation ratio can provide theoretical guarantee for the per-

formance of the algorithm, ensuring that the gap between the solution and the
optimal solution is within an acceptable range. It shows the effectiveness and
reliability of the algorithm in practical applications. The proof process of ap-
proximation ratio solved by SDG algorithm is as follows:

Proof. Si is the deployment set after the ith iteration. The deployment cost of
the deployment point selected by the algorithm in the ith iteration is c(xi), and
S∗ is the deployment solution with the largest total deployment benefit. The
recursive inequality can be derived from the submodularity:

benefit(S∗) ≤ benefit(Si−1) + benefit(S∗\Si−1)

≤ benefit(Si−1) +
benefit(Si)− benefit(Si−1)

c(xi)
·

∑
x∈S∗\Si−1

c(x)

≤ benefit(Si−1) +
M

c(xi)
· (benefit(Si)− benefit(Si−1))

(12)
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Algorithm 1 SDG
1: Step 1:
2: S = ∅ , F = 0
3: Step 2:
4: while N ̸= ∅ do
5: Compute the benefit benefit(xi) for each node i

6: Compute the unit cost-benefit ratio benefit(xi)
xi

for each node
7: Step 3:
8: select the node x∗ with the highest unit cost-benefit ratio and add it to set S
9: Update the state of node x∗ to σ = 1

10: if γ < P and
∑

i∈S xi · σi ≤M then
11: S ← S ∪ {x∗}
12: F = F + benefit(x∗)
13: N ← N \ {x∗}
14: else
15: Return to Step 2
16: end if
17: end while
18: Step 4:
19: Output the deployment set S and total benefit F

The first inequality in Eq. (12) uses Corollary 5 from the middle literature
[14], and the second inequality utilizes the greedy nature of the algorithm, i.e.,
benefit(Si)−benefit(Si−1)

c(xi)
is the highest current profit per unit. The last inequality

states that S∗\Si−1 the cost of all items never exceeds the total cost space M
[15].

Subtracting M
c(xi)

on both sides and reordering the terms:

benefit(Si) ≥ benefit(S∗) +

(
1− c(xi)

M

)
· (benefit(Si−1)− benefit(S∗))

(13)
By recursively applying the inequality and introducing the ratio of the cost

of each step to the total cost, we get:

benefit(Si) ≥

(
1−

i∏
k=1

(
1− c(xk)

M

))
· benefit(S∗) (14)

Use the inequality 1− x ≤ e−x to replace the accumulated terms:

benefit(Si) ≥

(
1− exp

(
−

i∑
k=1

c(xk)

M

))
· benefit(S∗) (15)

C(x∗) is the current highest unit profit. The last inequality depends on the
cost of all items never exceeding the total deployment cost M . When c(S) +
c(x∗) > M , replace Si with S ∪ x∗, we have:
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benefit(S ∪ x∗) ≥ (1− exp

(
−c(S) + c(x∗)

M

)
) · benefit(S∗) (16)

That is to say, benefit(S ∪ x∗) ≥ (1− 1
e ) · benefit(S

∗)
When the maximum deployment cost is reached, i.e., c(S) + c(x∗) > M
benefit(S ∪ x∗) ≥ (1− e−1) · benefit(S∗) holds ⊓⊔

The proof shows the approximation guarantee of the greedy selection algo-
rithm for submodular functions under the cost constraints, where the algorithm
tries to maximize the ratio of marginal benefit to cost at each iteration. It is
proved that the algorithm can maintain a good approximation to the optimal
solution when the cumulative cost is close to the cost constraints.

4 Experiments

4.1 Conventional Deployment Approaches

Conventional deployment approaches include near-source deployment and near-
destination deployment. When dealing with spoofed source attacks, near-source
and near-destination deployment strategies have their own advantages and dis-
advantages, and are applicable to different network environments and require-
ments. Near-source deployment deploys defense devices (SAVA devices) close to
the source of the attack, with the goal of detecting and filtering malicious traffic
as early as possible to mitigate the impact of the attack on the downstream
network. The advantage of this approach lies in the ability to detect and fil-
ter early and reduce the amount of malicious traffic entering the network core,
thereby reducing network bandwidth consumption and reducing the pressure
on subsequent nodes. However, this strategy also suffers from high deployment
costs, complex management, and difficulty in locating the source of the attack,
especially when the source of the attack is constantly changing or dispersed, the
effectiveness may be limited.

Near-destination deployment deploys defense appliances close to the target
server or network node, i.e. near victims, aiming to protect the target from
attacks by intercepting and filtering the attack traffic before it reaches the tar-
get. Advantages of near-destination deployment include centralized defense, cost-
effectiveness, and relatively simple management. However, this strategy also faces
some challenges such as high network bandwidth pressure, concentrated attack
pressure and potential latency issues. Malicious traffic can still consume a large
amount of network bandwidth before reaching its destination, which may lead to
network congestion and performance degradation, and defense devices need to
handle large-scale attack traffic, placing higher demands on device performance
and stability.

Combining the above, the selected deployment strategy needs to consider the
network structure and attack characteristics. If the attack sources are decentral-
ized and change frequently, near-destination deployment may be more effective;
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whereas, if the attack traffic is centralized and targeted, near-source deployment
may be more suitable. In addition, cost and management factors need to be
considered. Near-source deployment is suitable for network environments with
sufficient resources and strong management capabilities, while near-destination
deployment is suitable for scenarios with limited resources and the need for cen-
tralized management. In practice, a combination of the two deployment strategies
may be the best way to achieve the optimal defense effect in order to strike a
balance between cost, management and defense effect.

4.2 Experimental Results and Comparative Analysis

In this paper, we simulated the SAVA device filtering attack traffic using Python3.
The network topology was generated randomly using Python’s built-in random
module with a fixed seed to ensure reproducibility. This approach allowed us
to generate topologies that conform to the desired statistical properties. The
network consists of 287 routers, 85 hosts, and 1568 links. Among the hosts, 40
were designated as zombie hosts, 5 as victim hosts, and the source addresses
of the remaining 40 hosts were spoofed by the zombie hosts. The attack traffic
from the 40 zombie hosts to the 5 victim hosts ranged from 100 to 1000 Mbps,
and the unit deployment cost of each router node was set to 1. In this paper,
we compare the near-source deployment, near-destination deployment, and the
SDG deployment algorithm proposed above. The experimental parameters were
set with reference to similar studies [16], and care was taken to ensure that every
host maintained an active link connection.

The experimental results we obtained are as follows:

Fig. 3. Iterative Node Traffic Filtering Fig. 4. False negative probability

Figure 3 shows that the nodes selected by the SDG algorithm each time
meet the submodular function property, i.e., the marginal benefits of each se-
lected node are decreasing. This means that as nodes are continuously selected,
the additional filtered traffic brought by each new node is gradually reduced.
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The two deployment approaches of near source and near destination show large
fluctuations and instability in filtering traffic.

The false negative probability of different deployment approaches is shown
in Figure 4. The near-source deployment shows the lowest false negative proba-
bility because attack traffic is intercepted early, reducing the likelihood of same
path. In contrast, near-destination deployment shows the highest false negative
probability. Because the attack traffic has already spread widely in the network
before reaching the filtering node, the possibility that the zombie host and the
host whose source address is spoofed by it take the same path increases.

Fig. 5. Traffic Filtering Comparison

Figure 5 shows that the filtering efficiency of the deployment nodes selected
by the SDG algorithm is better than that of near source deployment and near
destination deployment. Although near source deployment can intercept attack
traffic before it enters the network core, reducing network bandwidth occupation
and subsequent node pressure, this strategy requires the deployment of defense
devices at multiple source locations. But the defense effect is unstable because the
attack source may change or disperse continuously. Near destination deployment
concentrates defense devices near the target server or key node, but malicious
traffic will still occupy a lot of bandwidth before reaching the target, resulting in
network congestion and performance degradation. The SDG algorithm selects the
optimal deployment node for dynamic adjustment to ensure that each new node
can maximize the overall defense benefits. The SDG algorithm can significantly
improve filtering efficiency at different deployment ratios2.

The SDG deployment algorithm, proposed in this paper, strikes a balance
between false negative probability and filtering efficiency.This ensures that each
selected node maximizes its marginal contribution to overall defense perfor-
mance. SDG achieves moderate false negative probabilities while significantly
outperforming near-source and near-destination approaches in terms of filter-

2 It is worth mentioning that when the deployment costs at different points differ too
much, the SDG algorithm is likely to fail. Considering that we deploy the same SAVA
devices, the actual deployment costs are similar, which can achieve good results.
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ing effectiveness. This demonstrates the SDG algorithm’s ability to adaptively
and incrementally optimize deployment strategies, making it more effective in
real-world network environments.

5 Conclusion and Future Work

This paper proposes a SAVA incremental deployment algorithm SDG for spoofed
source attacks. The algorithm dynamically selects the optimal deployment node
through a submodular optimization strategy, while taking into account false neg-
ative, to achieve good defense effects under limited resource conditions, and can
more flexibly adapt to changes in the network environment. The article gives de-
tailed proof of the design process and approximation ratio of the algorithm. And
through experimental simulation and comparison with near-source deployment
and near-destination deployment, the experimental results verify the effective-
ness of the algorithm in defending against spoofed source attacks. Subsequent
research can further test and optimize this algorithm in a more complex network
environment, and explore its potential for application in defense against other
types of DDoS network attacks.

Our study focused on the deployment of SAVA and did not make an in-depth
discussion on how SAVA devices filtering attack traffic, which is related to false
positive and is the focus of our future research.
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