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Abstract. The vehicle routing problem is an interesting and challenging
combinatorial problem, study for over more than fifty years since Dantzig
and Ramser. Several researches have been conducted on this problem
and its variants generating many approaches including the population-
based one. In this study, we present a Grasp Hybrid Genetic Algorithm
(GHGA) to solve the Capacitated Vehicle Routing Problem (CVRP).
Our approach combines the efficiency of the well-known Travel Sales-
man Problem crossovers with a proposed Partial Intensification Mecha-
nism (PIM), which is a combination of a modified 2-opt local movement
and the Split algorithm. Additionally, we present the Neighborhood Per-
turbation Mechanism (NEP). Inspired in the perturbation phase of the
Large Neighborhood Search, we inserted destroy-repair operators with
an adaptive use of degradation ratio. Experiments were conducted on
well-known Christofides et al. benchmark supporting that our approach
has interesting points and it is a promising approach.

Keywords: capacitated vehicle routing problem - metaheuristic - opti-
mization - hybrid genetic algorithm.

1 Introduction

The Vehicle Routing Problem (VRP) is a generalization of the Travel Salesman
Problem (TSP), where the goals is to find the optimal set of feasible routes to
be performed by a fleet of vehicles serving a set of customers. For more than
50 years, since Dantzig and Ramser [4] had introduced the problem in 1959,
researchers from many fields have studied the VRP [20, 2, 22, 6].

Real-life routing problems have several constraints and aspects, which may
increase the complexity, and usually have a high number of customers to be
served generating large instances of problems. Scenarios like supply chain [2], fuel
and battery consumption [22], emergency and disaster relief [6], have inspired
extensions for VRP as VRP with Time Window (VRPTW) [12, 20], Multi-Depot
VRP (MDVRP and MDVRPTW) [20] and others.

For those complex scenarios, variations, and large instances, a variety of
approaches using heuristics and metaheuristics were presented, especially with
the Genetic Algorithm (GA) being part of the approach [1,23,17,10, 20, 12].

As noticed, most VRP problems involve capacity and time window con-
straints and are still a challenge. In the CVRP, a single or a fleet of identical
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vehicles perform a tour through all customers, serving to their demands. The
vehicle/fleet departs from the depot and returns to it once the vehicle’s capacity
is reached or no more customers are available.

For those reasons, to solve the CVRP problem, this study presents a hy-
bridization of Genetic Algorithm with the following features: an initialization
with a Greedy Randomized Adaptive Search Procedure (GRASP) to start the
search process with good solutions; a Partial Intensification Mechanism (PIM),
which combine a new way of using the 2-opt local movement with the split al-
gorithm of Prins [16]; and a Neighborhood Perturbation Mechanism (NEP) in-
spired by the Large Neighborhood Search perturbation phase. The combination
of the exploratory characteristic of GA with the intensification of local search
operators and a mechanism to escape local optima shown to be very promising
according to the results of our experiments.

The remainder of this research is organized as follows: Section 2 presents
the notation and formally defines the problem. In the Section 3 a brief liter-
ature review is presented. The proposed GRASP Hybrid Genetic Algorithm
(GHGA), the chromosome representation, the initialization method, repair
method, crossovers, the Partial Intensification Mechanism (PIM), and Neigh-
borhood Perturbation Mechanism (NEP) are presented in Section 4. Section 5
and 6, describes how experiments were conducted and the conclusion respec-
tively.

2 Problem Definition

The CVRP is a classic problem among VRP problems. As mention before it is a
problem where a vehicle or a fleet of identical vehicles serves a set of customers.
This vehicle has a capacity @, which configures a capacity constraint, and per-
forms a tour visiting V' customers. Each customer has a demand w, thereby once
the vehicle’s capacity is fulfilled or reach the trip maximum length L it towards
the depot V where it departed.

Formally the CVRP can be modeled as follow: Let G = (V, A) a complete
graph in which V' ={0,1,...,n} represents the vertices. Let n be the number of
customers and Vj denoted by the depot. A represents the sets of arcs defined
as A = {(i,j) | i,j € V}. The ¢;; denotes the cost associated with each (4, j)
€ A. K = {1,2,...,1} represents a set of unlimited homogeneous vehicles, and
for each kK € K a @ capacity is associate. Also, for each customer a demand
w € W is associated too. The objective is to minimize the total cost performed
by all vehicles without exceeding each vehicle’s capacity and the maximum travel
distance L:

ok 1if arc (i,j) is taken by vehicle k
*J 0 otherwise

(1)

!
minz Z cijxfj (2)

k=1 (i,j)€A
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n

> wik<QVkeK (3)
i=1eW
> cijal, <L
CijTij; = (4)
(i,j)€A

Our model presents in (2) the objective function. Constraints (3) and (4)
assures that the route performed by vehicle k do not exceeds its capacity and
the maximum travel distance respectively.

3 Literature Review

A brief literature review of contributions for the CVRP, but not limited only to
CVRP, is provided in this section. The main goal of this review is to present the
most recently approaches especially those based on population.

Prins [16] proposed a Hybrid GA or Memetic algorithm. Furthermore, was
the first to use a giant TSP tour successfully. A giant TSP tour is a sequence
(permutation) of n customers without route delimiters. Besides, instead of us-
ing a mutation operator, he used a local search procedure with a linear ordered
crossover. In the local procedure, Prins used the split algorithm, detailed in
Section 4, combined with insertion, swap, 2-opt (intra-route), and 2-opt* (inter-
route) moves. Prins also presents a population management mechanism by re-
moving clones (chromosomes with the same fitness) and insert a new one from
his initialization method.

Nagata and Bréysy [12] presented an evolutionary algorithm using the edge
assembly crossover (EAX). The chromosome is a giant TSP tour, later converted
into sub-tours (routes). Once applied the EAX| infeasible offspring can be gen-
erated, then a modification mechanism is applied, which basically applies the
same two local movements: 2-opt and interchange, used on the local procedure.
After that, a local procedure is executed. As EAX can generate infeasible chil-
dren, they present a relaxation of the capacity constraint, which is used on the
modification mechanism.

Inspired by some ideas of Prins [16] and Nagata and Braysy [12], Vidal et
al. [20] proposed a Hybrid Genetic Search with an Adaptive Diversity Control
(HGSADC). The HGSADC follows the principle of using a giant TSP tour, and
a local procedure called Education. In the crossover phase, Vidal et al. use an
ordered crossover for most VRPs, and for the Periodic VRP (PVRP), they pro-
posed a new crossover called Periodic Crossover with Insertions (PIX). Further,
they use relaxation as shown in [12]. In the Education procedure, they use split
algorithm [16], and four local movements: swap, relocate, 2-opt, and 2-opt*.
The Adaptive Diversity Control used the fitness function, called biased fitness
function, which uses the Hamming distance and a penalty function (due to re-
laxation) to evaluate the chromosome. Further, promotes the survivor selection,
which determines which pop size chromosomes will go to the next generation.
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First, it removes the clones, which are chromosomes with the same fitness (bi-
ased fitness), then the worst chromosomes. Second, a diversification process,
which keep the best pop size/3 chromosomes, and introduce new 4 X pop size
chromosomes. Finally, the survivor selection is applied again.

Li et al. [10] presented a hybridization of GA (HGA-ALS) and an Adaptive
Local Search. After generate the initial population, parents are select by binary
tournament and then crossed by an improved ordered crossover. The mutation
operator was substituted by a Adaptive Large Neighborhood Search (ALNS),
which uses ten local movements, two destroy operators, and one repair operator
called greedy insertion based on probability assignment (GIPA). Their adaptive
mechanism, rather than partition the solution into different sub-solutions, se-
lects the best neighborhood method (local movements) to improve the current
solution.

Rabbouch et al. [17] proposed a GA with a recombination step for the MD-
VRPTW with heterogeneous fleet. Their GA is a typical GA, using a route-based
crossover (recombination) proposed by Potvin and Bengio [15], applying a repair
procedure right after, and then a swap as mutation operator. Although, their
GA’s results are not competitive, in some instances of the tested benchmarks it
achieved a GAP of 3.02% considering that Rabbouch et al. not used any local
search mechanism.

Abdallah and Ennigrou [1] proposed a hybrid solution, composed by a Par-
ticle Swarm Algorithm (PSO), a GA and a Memetic Algorithm (MA), to solve
the MDVRPTW with an heterogeneous fleet. In the GA they used the ordered
crossover and exchange mutation operator, and in the MA, in the local pro-
cedure, a A-exchange method inspired by [18]. To communicate between the
metaheuristics called agents, they used an acl message protocol, every time an
agent improves its best result.

Zhen et al.[23] presented two solutions, a PSO and a GA both hybridized
with a Local Search Variable Neighborhood Descent (LS-VND). A survival se-
lection is applied based on a biased fitness function. On the LS-VND, three local
movements are performed: reinsertion, exchange, and reverse.

This review shows that VRP is still a very interesting combinatorial problem,
a relevant research topic, and the good potential of population-based algorithms
to solve it. Moreover, there are still gaps to be researched on better escape
mechanisms from local optimal, generation of good starting solutions, adaptive
procedures, and the combination of local movements that further improve the
solution.

4 Proposed GRASP Hybrid Genetic Algorithm

The GRASP Hybrid Genetic Algorithm (GHGA) (Algorithm 1) follows the
structure of the genetic algorithm introduced by Holland [9]. Still, it presents
interesting characteristics concerning the improvement of offspring and the ex-
ploration of the search space.
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Algorithm 1: Hybrid GA

gen < 0;

Generate initial population Pgep;

Repair(Pgen );

Evaluate(Pyen);

while gen < gens or stop criteria is not reached do
Qgen + Tournament Selection(Pyen);

Qgen  Crossover(Qgen);

Qgen + Partial Intensification(Qgen );
Repair(Qgen);

Evaluate(Qgen);

Pyent1 + Elitism(Pyen, Qgen);

every 100 gen do Neighborhood Perturbation(Pyen);
gen < gen + 1;

end

return Best(Pyen)

According to Algorithm 1, our approach of GA follow the basic idea of a
generic GA. First, it generates a initial population, then each chromosome is
evaluated. Second, for n generations or until no further improvement can be
made, its selected (binary tournament selection) two parents, then its applied
crossover and mutation operators. Besides, a repair method is applied if a child is
infeasible. And finally, to avoid a straight elitism approach, its selected by elitism
10% of parents (Pyer) and 90% of the offspring (Qgen) for the next generation.

In the sections 4.1, 4.2, 4.3, the GA parts are explained in detail.

4.1 Representation, Initialization, and Repair

Representation Fig. 1 shows a giant TSP tour without delimiters as a chro-
mosome. Each allele in the chromosome is a customer. The first one to use
successfully this representation was Prins [16]. This kind of chromosome allows
taking advantage of several well-known TSP crossovers. However, it needs an al-
gorithm to find a segmentation of chromosome in routes retrieving the cost and
the solution. For this sake, we used the split algorithm from Prins [16], which is
explained in detail in Section 4.2.

ﬁ‘ 8 ‘50 ‘154‘201‘421‘ 18‘---

Fig. 1: Chromosome representation

chromosome
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Initialization To initialize the population of our GA, a random ratio of indi-
viduals was established. This ratio defines how many random individuals will be
generated randomly, the other part of population is generated by our Greedy
Randomized Adaptive Search Procedure (GRASP) algorithm as shown by Al-
gorithm 2.

Algorithm 2: GRASP algorithm to initialize a chromosome

while chromosome is empty do
C < available customers;
N < max number of vehicles;
n <+ 1;
while N > n and size of C > 0 do
trip < empty list;
while ncapacity > 0 do
if trip is empty then
| ¢+ Random Choice(C);
end
else
‘ ¢ + Closest Customer(trip, C);
end
Ncapacity — Ncapacity = Cdemand;
insert ¢ into RP;
remove ¢ from C;

end
n<+<n+1;
if trip is not empty then
‘ append trip into chromosome;
end

end

if chromosome is not feasible then
‘ chromosome <« empty_list;

end

end
return chromosome

Our GRASP generates only feasible solutions, randomizing the nearest cus-
tomers to the depot by an adaptive random factor (Equation 5), which is used
in the Random Choice() method, the rest of the chromosome is constructed by
a greedy approach.

random_factor = total_demand/vehicle_max _capacity (5)

According to Algorithm 2, a set of available customers (C) is created with
all not served customers and the maximum number (V) of available vehicles
is defined. While still have available customers and vehicles to serve them, is
verified if the selected vehicle still has capacity. To select the next customer to
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be added in the ¢rip, two methods were implemented (i) Random Choose(C)
and (ii) Closest Customer(trip, C). In the Random Choose method, sort the
available customers by distance. In addition, it applies some randomness (random
factor) into half of the sorted available customers to guarantee some diversity
to the initial population. The Closest Customer method prioritizes the distance
between the last customer added in the trip and the next one. Finally, the
algorithm stops when a feasible chromosome is created.

Repair Since some chromosomes might not be selected by the Partial Intensifi-
cation Mechanism (PIM) a repair method is needed. Our repair method consists
of removing customers that either violates the vehicle’s capacity or the maximum
travel distance constraint. Once, those customers are removed the best insertion
method is used to insert them in the best possible place. If the best insertion
method could not find a place for a customer, a new trip is created to place it.

Algorithm 3: Repair

S < split by capacity(chromosome);

foreach trip € S do

while trip violates L do

‘ r < remove customer();

end

end

foreach customer € r do

inserted < insert best place(S, customer);

if inserted is False then
new_trip < create new trip();
insert customer trip(new_trip, customer);
insert trip S(S, new_trip);

end

end

repaired_chromosome < concat(.S);
return repaired_chromosome

According to Algorithm 3, the chromosome is divided by vehicle’s capacity
Q@ into a set of trips S. For each trip is verified if it violates the maximum travel
distance L. If it violates, the customer with the highest cost is removed from the
trip and placed in a set of removed r. For each customer in r, it is tried to insert
it in the best place, if it is not possible a newtrip is created and the customer is
inserted on it. Finally, the set of trips in S is concatenated.
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4.2 Crossovers and Partial Intensification Mechanism (PIM)

Crossover The crossover operator plays a very important role in the GA. Fol-
lowing this principle, as TSP and VRP are related problems, many efficient TSP
crossovers can be used [7,5,13,19]. In our GA, five crossovers were selected:

— Partially Mapped [7]: it intends to pass some ordering and value infor-
mation to the offspring. First, a random sub-tour is copied from parent 1
to the offspring. This sub-tour is used to create a mapping of the alleles
of the sub-tour with the corresponding index in the parent 2. For example,
the sub-tour is composed by alleles 4, 5, and 6, the corresponding alleles in
the same index in the parent 2 are 1, 6, and 8. The mapping would be 4-1,
5-6, and 6-8. After that, it is copied the alleles of parent 2 into offspring in
the same index, and if the customer is already present in the offspring it is
replaced one in the mapping.

— Edge Recombination [21]: it is based on a list of neighbors of each allele in
both parents. The neighbor list is generate by recording each allele immediate
neighbors, including those that roll around the end of chromosome, for each
parent. These two neighbors list are merged by a union process ignoring the
duplicates. The rest of the process consisted of select randomly a allele ¢ of
any parent, append it to the offspring and remove it from the neighbor list. If
¢ has no more neighbors, then select a new random allele that not in offspring.
However, if ¢ still has neighbors, select the one with the fewest neighbors (or
a random choice between those with the same number of neighbors).

— Order [5]: it prioritizes the order of alleles. It builds an offspring by choosing
a sub-tour in parent 1 and preserving the relative order of alleles of parent
2, by copying the alleles that are not in the selected sub-tour, starting at the
last cut point position using the order of alleles of parent 2.

— Order based [19]: slightly different from order crossover of Davis [5], the
Order based crossover selects random several indexes. It searches in parent 2
for the alleles in these indexes, then searches in the parent 1 for those alleles
and replace them by the ordering of appearance in parent 2.

— Cycle [13]: each allele comes from one parent along with its index. For
example, start with the allele in the first index of parent 1, go to parent 2 in
the same index, and check the allele on it. Search in parent 1 for the allele
found in parent 2 and append it to offspring.

To select a crossover we use a fixed probability of 20% for each crossover.

PIM As shown in the literature review, section 3, many hybrid approaches use
local movements instead of mutation operators to intensify the search for better
solutions. And the combination of local movements proved to be very effective
to find good solutions [16, 12, 20].

Inspired by those works, we proposed the Partial Intensification Mechanism
(PIM), which is a combination of a 2-opt movement executed k times and the
split algorithm of Prins [16]. The split algorithm finds the delimiters for each
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route (shortest-path problem) through an auxiliary acyclic graph. It also can be
used with a heterogeneous fleet, limited or not.

The split algorithm [16], as mentioned before, aims to find the delimiters for
the route as a shortest path problem. Define an auxiliary graph S = (V, A4, C),
where V is the set of nodes with n + 1 elements indexed from 0 to n. A an
arc (i,7) with ¢ < j. Each arc represents a trip (r;+1,;) from depot Vp, visiting
customers V;;1 to V;, and returning to the depot V; with a d cost associated. If
a trip is feasible according to load (equation 6) and cost (equation 7) conditions,
the C;; is equal to the trip cost.

J
Vi) €A D g, <W, (6)
rx=1+1

J
V(i,j) €A:Ciy=Vorn + Y (dr, + Vi, o) +dp, + Voo < L. (7)
r=i+1

Figure 2 shows a sequence V = (a,b,¢,d,e) with W = 10 and L = oo, the
demand of each customer is in brackets (1). S (2) contains e.g. arcs (bold lines)
a— b with C, = 55 for the trip rq (0 —a —b—0), ¢ with C. = 60 for the trip
re (0—c—0), and d — e with Cg. = 90 for the trip r4. (0 —d — e — 0) with a
total cost of 205. The lower part (3) gives the VRP solution with three trips.

Fig. 2: Tllustration of the split algorithm process (extracted from Prins [16])

The other part of PIM is the 2-opt local movement. Inspired by
Lin—Kernighan heuristic [8], in its original version, which mention that k-opt
moves are restricted to movements that can be decomposed into a 2-opt or 3-opt
moves followed by a sequence of 2-opt moves. On the other hand, a k-opt move
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can expend a high computational time. Therefore, in the PIM, a k = 4 max-
imum number of times was applied for the execution of the 2-opt move. This
limitation not only produces improvement on the solution but also reduces the
computational time if compared to an exhaustive search with 2-opt, more details
in section 5.2.

As our chromosome it is a giant tour some movements performed by our 2-opt
approach resemble 2-opt (intra-route) and 2-opt™ (inter-route) without reversing
the ends of the chromosome.

4.3 Neighborhood Perturbation Mechanism (NEP)

Any approach the solve combinatorial problems, especially NP-hard problems as
VRP, often get stuck in local optimal. Local metaheuristics as Large Neighbor-
hood Search (LNS), Adaptive LNS (ALNS), and Variable Neighborhood Search
(VNS) use a perturbation procedure to change the neighborhood to explore the
search space and escape from local optimal.

Inspired by these local metaheuristics, we implemented the Neighborhood
Perturbation Mechanism (NEP). NEP sorted the population by fitness, selects
the 50% worst chromosomes (select worst(Pye,)), and applies a selected pair
of destroy-repair operators. Finally, the Repair function is called for infeasible
chromosomes.

Both selections methods, select destroy operator(chromosome) and select re-
pair operator(chromosome), used a fixed probability to select an operator. For
destroying operators a fixed 33% probability was adopted for each, and for each
repair operator the probability it is 50%. Inspired by some well-known ALNS
operators, we selected three destroy operators. All destroy operators have a
degradation ratio, which is based on a percentage of the total number of the
customers and defines how many customers will be removed from the chromo-
some. It starts with 5%, and after 100 generations without improvement, it is
increased by 0.5% every generation until 40%. Once an improvement is done the
degradation ratio returns to 5%.

— Related destroy: remove n customers from the chromosome based in some
similarity measure. This approach make the repair process easier and more
likely to succeed.

Our related destroy use a similarity metric based on Shaw similarity [14],
which was design to the PVP, therefore we had to modify it to the CVRP
as follow:

shaw = distance(customer,, customery) + |Weystomer, — Weustomers |

Thereby a randomly n customers are selected (shaw candidates), next is
picked up one customer from the shaw candidates list, and calculate the
shaw for each customer that not belongs to the shaw candidates and inserted
into the shaw sample. Next, the shaw sample is sorted by the shaw metric,
and a customer is pick-up randomly by:

mazimum(((size_of (shaw sample)/2) — 1) x random_number, 0)
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The random_number is a float number between 0 and 1.

— Worst destroy: remove n customers with the highest cost (distance) from
the chromosome. For each pair (4,74 1) customers is calculated the cost, and
the n highest are removed from the chromosome.

— Random destroy: remove n randomly selected customers from the chro-
mosome.

All destroy operators return the removed customers and the destroyed chro-
mosome, which are passed as parameters for the selected repair operator. And
for the repair process of a chromosome, two repair operator were selected:

— Greedy repair: inserts a customer in the least cost position in the chromo-
some (best insertion).

— Noise repair: inserts a customer in the least cost position in the chromo-
some given a noise parameter. In our approach, a noise factor is used as a
random ratio for the cost in the best insertion method as follow:

noise_factor = cost * (random_number — 0.5)

cost = cost + noise_factor

The use of a noise factor promotes the diversity in population.

5 Experiments

Sets of experiments to evaluate the GHGA were conducted. First, Section 5.1
explains the methodology adopted to set up the GA parameters. In Section
5.2 we evaluate the variation of the k& parameter in the Partial Intensification
Mechanism (PIM). Finally, in Section 5.3 are conducted comparisons of results
of our GHGA with state-of-the-art approaches and best-known (BKS) solutions.

The GHGA was implemented in Python 3.7 and Cython 0.29. The experi-
ments were run on an Intel Xeon CPU E5-2450 with a 2.10GHz clock and 47
GB RAM.

5.1 GHGA Configuration

To identify a good parameter set for the GHGA, we used the Iterated Race
(IRACE) [11]. The IRACE is a framework for automating the configuration of
algorithms, which consist of test new configurations according to a particular
data set, select the best configuration from the recently tested samples through
a race, and update the distribution of sample configurations aiming to guide
the search for best configurations. It also applies the Friedman non-parametric
statistical test.

The IRACE was configured to run a thousand experiments with the set of pa-
rameters and range values shown in Table 1, under three instances of Christofides
et al. benchmark [3]: CMT01, CMT03, and CMT05. Concerning a stop criterion,
we adopted only the number of generations limited to 5000 generations.
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Table 1: IRACE Results

Parameter Range IRACE Results Final Config.
The ratio of random chromosome generation

tx_pop-gen by a randomized method, the rest of [0.2, 0.9] 0.9 0.9
the population is generated by our GRASP

cx_pb Crossover probability [0.5, 0.9] [0.7, 0.9] 0.7

mut_pb PIM probability [0.4, 1.0] 0.9 0.9

pop-size  Size of population (10, 16, 20, 26] [20, 26] 20

5.2 PIM k Parameter Evaluation

Inspired by Helsgaun [8], which mentioned that high-quality solutions can be
founded even though a few k-changes are performed, and following his method-
ology we performed two tests in the k parameter of PIM, both varying 2 < k < 8.
First, was analyzed the impact of increasing k on the quality of the solutions.
Second, we analyze how the CPU time is affected. As shown in Figure 3a as
the value of k changes different quality solutions are founded. And, according
to Figure 3b we notice that CPU time also vary according k is increased. This
might indicate that k varies throughout the search process, suggesting that a
mechanism to control it would be interesting.

550.0 CPU time
2600
547.5

2400
545.0

542.5 @ 2200

m

Fitness
cpPut

4
s400 2000

537.5
1800

535.0

1600
5325

3 2 5 3 7 3 ) 5 6 7
K K

(a) Fitness according to k variation (b) CPU time according to k variation

Fig.3: The k evaluation in Christofides et al. [3] CMTO1 instance.

Therefore, the best value for k still is not cleared. However, Helsgaun pro-
posed the followed equation to evaluate k:

Time(k) x ((Length(k) — OPT)/OPT)

Where Time(k) is the time consumed to get the best solution (Length(k)),
and OPT is the BKS of the current data set. The smaller the result of this
equation, the better the k. Thus, using this equation, as shown in Figure 4, the
best choices for k are 4 and 7.
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Fig.4: Tradeoff between fitness and CPU time for k in Christofides et al. [3]

CMTO01 instance.

5.3 Solution Performance

Table 2: Comparison of Christofides et al. [3] benchmark with state-of-the-art

approaches.
. Nagata and Vidal
Prins [16] Briysy [12] et al. [20] GHGA
CcPU CcPU U AVG  Best VO PUgup
Instance n  Best . Best . Best . of 5 runs BKS
(mim) (mim) (mim) of 5 runs of 5 runs (min) %
CMTO01 50 524.61 0.01 524.61 0.07 524.61 0.43 537.26 524.93 25.54 0.06 524.61
CMTO02 75 835.26 0.77 835.26 0.37 835.26 0.96 872.15 860.57 53.28 3.03 835.26
CMTO03 100 826.14 0.46 826.14 0.29 826.14 1.27 867.24 845.36 86.32 2.33 826.14
CMT04 150 1030.46 5.50 1028.42 1.251028.42 2.87 1135.51 1108.75 178.82 7.81 1028.42
CMTO05 199 1296.39 19.10 1291.45 5.04 1291.45 5.94 1471.63 1445.61 285.69 11.94 1291.29
CMTO06 50 555.43 0.01 555.43 0.09 555.43 0.48 558.78 555.43 25.76 0.00 555.43
CMTO07 75 909.68 1.41 909.68 0.65 909.68 1.09 973.32 962.09 54.96 5.76 909.68
CMTO08 100 865.94 0.37 865.94 0.39 865.94 1.14 909.44 895.65 88.81 3.43 865.94
CMT09 150 1162.55 7.24 1162.55 2.26 1162.55 2.53 1300.46 1275.76 196.18 9.74 1162.55
CMT10 199 1402.75 26.83 1395.85 6.51 1395.85 8.22 1618.85 1586.03 302.69 13.62 1395.85
CMT11 120 1042.11  0.29 1042.11 0.351042.11 1.15 1091.60 1078.33 119.87 3.48 1042.11
CMT12 100 819.56 0.04 819.56 0.14 819.56 0.84 836.08 826.60 88.99 0.86 819.56
CMT13 120 1542.86 10.44 1541.14 1.78 1541.14 2.83 1622.78 1607.97 122.84 4.34 1541.14
CMT14 100 866.37 0.08 866.37 0.22 866.37 1.19 886.13 877.23 86.42 1.25 866.37
AVG GAP % 0.08 0.0 0.0 4.83
AVG CPU (s) 5.20 1.39 2.21 122.58

To compare our GHGA with BKS and some state-of-the-art approaches, we
adopted the classical Christofides et al. benchmark [3] with customers ranging
from 50 to 199, which is composed of 14 instances. The instances are divided
into random (1-10) and clustered (11-14). Moreover, instances 6-10, 13, and 14
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have duration restriction and time service. Instances 1-5, 11, and 12 do not have
these restrictions.

The results for the Christofides et al. benchmark are presented in Table 2.
The first two columns are the instance name and the number of customers. The
3, and 4 columns are best solutions and CPU time in minutes of Prins; 5, and
6 columns are best solutions and CPU time in minutes of Nagata and Braysy;
7, and 8 columns are best solutions and CPU time in minutes of Vidal et al.
Columns 9-12 are the average solution, best solution, average CPU time of 5 runs
in minutes, and the GAP (deviation from BKS in percentage) of our solution.
And the last column is the BKS. Lastly, we indicate in boldface the best result
among algorithms for each instance.

According to Table 2, it is clear that our performance (CPU time) needs to be
reviewed. Further investigations to optimize our implementation could improve
it, but a faster language can fulfill this gap as well. On the other hand, the AVG
GAP is low, and in some instances, it reaches the BKS (CMTO06) or got very
close to it, around 1% or less (CMTO01, CMT12, CMT14), which still supports
the potential of our approach.

6 Conclusion

In this research, we presented a new GRASP Hybrid Genetic Algorithm (GHGA)
for the classical CVRP. Furthermore, a modification in the GRASP to generating
good initial solutions, which combined with the Hybrid GA works as a guided
search. Moreover, we proposed two mechanisms: PIM and NEP. Both mech-
anisms proved to have the potential to intensify the search and escape from
local optimal respectively. Also, shows that there is still room for improvement
and new ways of addressing these two fundamental processes to achieve better
solutions.

Even the other approaches had better performance and solutions, the exper-
iments showed that our approach has the potential to reach the BKS in the 14
tested instances (Christofides et al. [3]), however needs some improvements be-
fore. Among these future improvements are an adaptive mechanism for crossover
operators, destroy-repair operators of the NEP, and the k parameter of the PIM.
In addition to this, combinations with other local movements along with our 2-
opt approach and split algorithm.

Concerning the performance, it is in our plans a migration from python to
C++ to enhance the performance. We also intend to extend the method for
other VRP problems.
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