
EasyChair Preprint
№ 10017

Good Night, and Good Luck: a Control Logic
Injection Attack on OpenPLC

Wael Alsabbagh, Chaerin Kim and Peter Langendörfer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 9, 2023



Good Night, and Good Luck: A Control Logic
Injection Attack on OpenPLC

Wael Alsabbagh1,2, Chaerin Kim1,2, and Peter Langendörfer1,2

1 IHP – Leibniz-Institut für innovative Mikroelektronik, Frankfurt (Oder), Germany
2 Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany

{Alsabbagh, Chaerin, Langendoerfer}@ihp-microelectronics.com

Abstract—Real hardware PLCs are quite pricey, and some-
times are unaffordable for scientists/engineers to build up small
testbeds, and conduct their experiments or academic researches.
For all that, the OpenPLC project introduces a reasonable
alternative option and offers flexibility in programming codes,
simulating physical processes and also the possibility of being
utilized with low-cost devices e.g., Raspberry Pi and Arduino
Uno. Unfortunately, the OpenPLC project was designed without
any security in mind i.e., it lacks protection mechanisms such as
encryption, authorization, anti-replay algorithms, etc. This allows
attackers to fully access the OpenPLC and makes unauthorized
changes e.g., start/stop the PLC, setting/updating passwords,
removing/altering the user-program, and others. In this paper we
conduct intensive investigations and disclose some vulnerabilities
existing in the OpenPLC project, showing that an attacker
without any prior knowledge neither to the user credentials, nor
to the physical process; can access critical information and ma-
liciously alter the user-program the OpenPLC executes. All our
experiments were conducted on the latest version of the OpenPLC
i.e., V3. Our experimental results proved that attackers can
confuse the physical process controlled by the infected OpenPLC.
Finally we suggest security recommendations for the OpenPLC
founder and engineers to close the disclosed vulnerabilities and
have more secure OpenPLC based environments.

Index Terms— OpenPLC; Cyber Attacks; Cyber security;
Control Logic Injection Attacks;

I. INTRODUCTION

OpenPLC is an open-source environment that supports soft-
ware simulation and hardware implementation on devices such
as Raspberry Pi, Arduino, ESP8266, etc. [1]. It has increas-
ingly gained fame in the engineering, academic and education
communities since it was first introduced by Thiago Alves in
2015. The OpenPLC project1 is comprised of Editor2, Run
Time3 and Human Machine Interface (HMI) Builder 4. The
development environment that is used to create programs is
called Editor. This Editor supports program-development us-
ing several programming languages identified by IEC 61131-
3 [2] e.g., Function Block Diagram (FBD), Ladder Diagram
(LD), Structured Text (ST), Instruction List (IL), and Se-
quential Function Chart (SFC). Based on IEC 61131-3, the
programs are saved as XML files. Once the program is created,
the built-in module in Editor compiles all programs into an
ST file. This ST file is then utilized in the OpenPLC Run

1https://openplcproject.com/
2https://openplcproject.github.io/plcopen-editor/
3https://openplcproject.github.io/runtime/
4https://openplcproject.github.io/reference/scadabr/

Time for the execution of control logics. The communication
protocols supported by OpenPLC are Modbus and Distributed
Network Protocol (DNP3) using the default ports 502 and
20,000 respectively. Figure 1 depicts the architecture of the
OpenPLC project. As any other real hardware PLC, the control
logic is processed cyclically. Meaning that, inputs are first
read in each execution cycle, and fed to the control logic that
processes the user-program. Afterwards, outputs are updated
accordingly and finally transferred to physical I/O using the
hardware layer provided by the software. ICS operators can
interact with the OpenPLC operations using the HMI Builder
supported by the project. However, for more technical details
about the hardware and software of the OpenPLC see [1].

Despite the fact that the OpenPLC project provides the
users with divers of benefits and can be opened in almost
all the web browsers, it was developed with no security in
mind. The project lacks fundamental security means e.g.,
encryption, authorization, anti-replay mechanisms, etc. that
are implemented in real hardware controllers e.g., SIMATIC
S7 PLCs. In this paper, we disclose some vulnerabilities and
security gaps in the design of this project. Based on our
findings, we launch a severe control logic injection attack
against an OpenPLC based environment that maliciously alters
the currently running user-program and confuses the physical
process controlled by the infected OpenPLC. This scenario is
conducted without knowing neither the user credentials, nor
the physical process the OpenPLC controls. Furthermore, our
investigations show that attackers can retrieve all the previous
programs that were uploaded to the OpenPLC in the past. In
our experiments, we managed also to keep our injection hidden
from the ICS operator, as well as, we proved that attackers
can fake the information displayed for the operator, and trick
him by showing what he is expecting to see. To validate our
results, we conducted all our experiments on the OpenPLC
V3 software as it is the last version developed by the project
founder in August 2021. Finally, we provided the OpenPLC
founder with some security recommendations to close those
vulnerabilities.

Please note that our attack tool5 as well as a proof-of-
concept6 of our attack scenario are publicly available.

5https://github.com/rnrn0909/A-Control-Logic-Injection-Attack-on-
OpenPLC.git

6https://www.youtube.com/watch?v=rEBeV982gWQ



Fig. 1: The structure of the OpenPLC project

The rest of the paper is structured as follows. Section II
discusses related works, while section III presents the attacker
model assumed in this paper. In section IV, we conduct secu-
rity investigations, and present our attack approach in Section
V. Afterwards, we suggest some security recommendations in
Section VI, and conclude the paper in section VII.

II. RELATED WORK

Alves et al. in [1] presented a Modbus command injec-
tion attack against PLCs from different vendors (Schneider,
Siemens, Omron and OpenPLC), and evaluated the behavior
of each device to such attacks. Their attack approach aims at
sending write messages to the Modbus holding register "0"
on the target PLC as fast as possible. The purpose of those
messages was to overwrite the internal count on the target
PLC with the value "99". Another research group conducted a
command injection attack against OpenPLC [3]. The authors
exploited a security gap in the "Hardware Layer Code Box" in
the OpenPLC Run Time, and managed successfully to execute
an arbitrary code via this box. After overwriting a specific
code in the vulnerable code box, he could establish a com-
munication between the attacker machine and the OpenPLC.
However, the founder of the OpenPLC project responded to
this attack by closing the "Hardware Layer Code Box" and
replacing it with a Python Sub Module (PSM) Code Box. A
research group in [4] introduced two attack scenarios against
the OpenPLC. In the first scenario, they placed the attacker
machine in Man-in-the-Middle (MitM) position between the
OpenPLC and the HMI Builder. Then, they launched a False
Data Injection (FDI) by injecting false data through the
Manufacturing Message Specification (MMS) messages in the
OpenPLC. In the second scenario, they impersonated the HMI
and injected false commands into the PLC. Alsabbagh et al.
[5] conducted a stealthy FDI attack scenario against a virtual

system using the OpenPLC and its HMI Builder. The authors
created a database containing real Modbus request-response
pairs (captured prior to the attack) between the OpenPLC
and HMI stations. Their attack approach generated two in-
dependent communication flows: one between the PLC and
the attacker, and the other between the attacker and the HMI.
In the opposite to all the aforementioned works, our paper is
the first work that hits the OpenPLC control logic, precisely it
maliciously alters the running user-program causing abnormal
behavior to the physical process controlled by the infected
OpenPLC. Furthermore, it fakes information displayed to the
operator, showing him always what he is expecting to see.

III. ATTACKER MODEL

Figure 2 illustrates the attacker model we assumed in this
paper. As can be seen, the attacker is placed in the control
center and has access to the same network where the OpenPLC
is located. All the attack scenarios presented in this work are
conducted with the help of MITRE ATT@CK knowledge base
of adversary tactics and techniques [6]. They are discussed as
follows under the given ICS context.

T1555 - Credentials from Password Stores. The attacker
can send a crafted request to read the cache containing the last
entered password.

T1040 - Network Sniffing. The attacker can sniff the
network traffic at the time of authentication and uploading
a project.

T1040 - Unauthorized Password Reset. The attacker sends
a crafted request to reset the password.

T1110.002 - Password Cracking. The attacker exploits
vulnerabilities to crack the password if he/she is able to sniff
the network traffic.

T830 - Man in the Middle (MitM). The attacker sits
between the machine running the engineering software and



Fig. 2: Attacker model

the PLC by poisoning the ARP cache of the two machines to
manipulate data.

T0831 - Manipulating the Control. The attacker can
change set points value, tags, or other parameters that will
manipulate physical process control.

T8021 - Modify Controller Tasking. The attacker modifies
the tasking of a PLC to allow for the execution of their own
programs. This can follow to manipulate the execution flow
and behavior of a PLC.

T0889 - Modify Program. The attacker alters or adds a
program on a PLC to affect how it interacts with the physical
process, peripheral devices and other hosts on the network.

T0843 - Program Upload. The attacker performs a program
upload to transfer a user-program to a PLC.

IV. INVESTIGATING THE SECURITY OF OPENPLC
A. Authentication Process

The OpenPLC Run Time is a utility that allows the user-
program to be compiled, uploaded and executed either virtu-
ally or in physical hardware devices. It is constantly running
on webserver, precisely on port 8080, and can be opened in
most of the web browsers. By opening a web browser and
typing "localhost:8080", the OpenPLC Run Time runs, and a
login web page is displayed to the operator who is required
to enter both the user name and password see figure 3. The
default username and password are "openplc". The operator
can change his credentials right after the first login.

By using a Wireshark7 tool and capturing the network
traffic, precisely the HTTP packets exchanged between the

7https://www.wireshark.org/

Fig. 3: Login web page to authenticate the operator

operator machine and OpenPLC during the authentication
process, we found that the operator credentials are sent in
plaintext without any encryption method implemented (see
figure 6). For all that, getting the user name and password
is feasible, and attackers can retrieve and even change the
operator credentials without too much effort. To do so, they
can perform a typical replay attack i.e., sending pre-recorded
HTTP packets from old sessions e.g., during setting a new
password, or changing an old password with a new one.

Our investigations to the OpenPLC showed also that critical
information, including the operator credentials, are stored
in a certain database called "openplc.db". Surprisingly, we
found that this database is unlocked and can be read by
attackers who can customize specific scripts for this purpose.
Thus, we can conclude that all the information displayed
on the OpenPLC for the operators are accessible and even
vulnerable to manipulation scenarios as shown in Section V.
What makes the situation worse is that the exposed database
contains, among many identifiers (IDs) and values, a very
interesting ID called user_id. This user_id is dedicated to
provide information (including the operator credentials) about
all the accounts registered in the OpenPLC. Each account is
identified by a unique user_id and has always the value "10"
if the operator uses the default account i.e., "openplc" as user
name, and "openplc" as password. Our analyzes showed that,
if an operator uses the default account for the first time and
then changes the user name and password to another values
on his will, the user_id value remains as "10". This value
is only changed in case the operator removes the default
account completely and registers another account. For all this,
if an attacker reveals the user_id value(s), he will be able to
have access to all the accounts registered in the OpenPLC.
This scenario is quite severe since attackers can exploit the
"openplc.db" database, and update the operator account(s)
credentials to different ones on their will, so the operator will
have no longer access to the OpenPLC.



B. Upload Process
Figure 4 depicts the fully upload-program process the

OpenPLC executes, showing the packets order as sent. The
operator sends first an "upload-program" packet informing the
OpenPLC that he wants to upload a new program in ST format.
Then, the OpenPLC responds with an "OK" packet having
a status code "200". Afterwards, an "upload-program-action"
packet is sent to the OpenPLC to generate a new prog_id, ST
file name and a new upload date. Then the OpenPLC responds
with an "OK" packet once all the aforementioned are stored
in the database "openplc.db".

Fig. 4: Upload program sequence diagram

Thereafter, a "compile-program" packet is sent to the Open-
PLC and the compilation process from "ST file" to "C file"
starts at this point. During the compilation process, many
"compilation-logs" packets are sent to the OpenPLC depending
on the complexity of the compiled program. Once the com-
pilation process is successfully accomplished, the OpenPLC
sends the last "OK" packet ended with a "compilation finished
successfully" message. In opposite to real PLCs, the OpenPLC
does not turn on a START mode automatically when the
upload process is done. Meaning that, it needs the operator
himself to start the OpenPLC and the new program is then
executed. If everything is alright and the OpenPLC is on
START mode, it sends an "OK" packet containing a status code
"302". If an error occurs during the upload-program process,
the OpenPLC sends an error message with a status code "500",
and terminates the upload process.

Our investigations on the upload-program process showed
that once the upload is done successfully, the OpenPLC gener-
ates a copy of the uploaded program and stores it automatically
in a specific folder in the OpenPLC project called webserver.
This webserver is merely a folder containing copies of all

the ST files that were uploaded to the OpenPLC, and each
copy is identified by a unique prog_id. Furthermore, those
copies are irremovable and remain in the webserver forever.
This is confirmed by attempting manually to remove the copies
from the webserver. Even if the operator removes programs
from the OpenPLC dashboard, their corresponding copies will
not be removed from the webserver folder. From the security
point of view, this is a critical security gap as adversaries
with appropriate attacking tools can access and read all the
programs uploaded to the OpenPLC, including the currently
running one. Knowing that, those copies are indeed ready-to-
execute ST files, so attackers need only to maliciously modify
a copy, and re-upload it again to the OpenPLC using his
patching tool, or replacing the currently running program with
any other copy of an old program stored in the webserver.
This attack scenario is extremely effective and not revealed
by traditional control logic detection methods e.g., [8]–[11].

V. ATTACK DESCRIPTION

Figure 5 depicts a high-level overview of our control logic
injection attack. It is comprised of two main phases. 1)
Breaking the Authentication, and 2) Patching the OpenPLC.
In the following, we elaborate each phase in more detail.

A. Breaking the Authentication
The OpenPLC Run Time is protected by requiring user

name and password from the operator. Therefore, the attacker
needs first to steal the correct credentials to be able to execute
any further operation in the OpenPLC, and makes malicious
changes afterwards. This can be achieved in two ways. Either
by conducting a typical replay attack, or by retrieving the
credentials from the openplc.db database.

1) Replay Attack:
Since the OpenPLC does not implement any encryption

method on the packets transferred over the HTTP protocol, an
attacker can easily capture the user credentials i.e., user name
and password exchanged during an authentication session. To
this end, we establish our Wireshark tool and capture the
"login" packet sent from the operator to the OpenPLC as
shown in figure 6.

Fig. 6: Login packet - user credentials are sent in plaintext

In our given example, the operator credentials are "helloplc"
as a username, and "att@ck!" as a password. After that, an
attacker can re-use the credentials to authenticate himself with
the OpenPLC and conduct further attacks.

This scenario has limitations. It is only valid if the operator
provides his credentials to the OpenPLC while the attacker has
already access and listens to the network. Meaning that, if the



Fig. 5: High-level overview of our attack approach

attacker starts listening to the network after the "login" packet
is sent, he would not be able to capture the user credentials
over any other HTTP packets. So he needs to wait until the
operator authenticates himself again.

2) Exploiting the openplc.db database:
The OpenPLC uses a database to store critical information

e.g., uploaded programs, settings, slave devices and user
credentials. This database is vulnerable and accessible as
explained in Section III. Therefore, we can overcome the
challenge of the former scenario V-A1 and extract the operator
credentials without the need to wait until a "login" packet is
captured. To this end, we wrote a python script that reads the
openplc.db, and managed successfully to retrieve, among other
information, the user credentials, see figure 7.

Fig. 7: Reading information from the "openplc.db" Database

From this point on, the attacker can authenticate himself and
conduct further malicious operation by sending first a crafted

HTTP "login" packet containing the correct user name and
password. Furthermore, the attacker can also prevent the legit-
imate operator from accessing the OpenPLC by manipulating
the user information stored in the openplc.db. Thus, when the
operator provides his credentials to access the OpenPLC, the
later will compare the given credentials with the ones stored
in the openplc.db, and there will be no match. This makes the
OpenPLC not authenticate the legitimate operator causing a
denial of access situation.

B. Patching the OpenPLC
To update the program running in the OpenPLC, the at-

tacker needs first to find out which program the OpenPLC
is executing currently. Then, he steals the program, modifies
it, and finally forces the OpenPLC to execute the malicious
program. In the following, we illustrate each step in detail.

1) Stealing the Currently Running Program:
Accessing the openplc.db database helps the attacker to get

critical information about all the programs uploaded to the
OpenPLC (see figure 7). However, the attacker still needs
to know which program exactly the OpenPLC is currently
executing. Our investigations showed that the attacker can
reveal the name of the running program by capturing specific
packets exchanged between the operator and the OpenPLC,
precisely the "compile-program" packet and "200 OK" re-
sponds to certain operations as shown in figure 8.



Fig. 10: OpenPLC Run Time - Programs List

Fig. 8: "OK" packet contains the running program name

By conducting further analyzes, we found that the OpenPLC
uses an index called "active-program" to indicate the currently
running program. This index has only a single value which is
the ST file name see figure 9. Therefore, an attacker can read
the value of this index to know the ST file name of the program
running on the OpenPLC.

Fig. 9: Reading the content of the active-program index

With the help of the openplc.db information, we can get
the prog_id, and thus recall the corresponding copy of this
program that is stored in the webserver folder, knowing that
the attacker can recall any copy from the webserver with only
knowing the ST file name and its corresponding prog_id. In
our example, the actual running program has the value "24"
as a prog_id, and "111227" as an ST file name (see figure 7).

2) Manipulating the User-Program:
The attacker has the original program the OpenPLC runs

in an ST format. This ST file is executable only on OpenPLC
Run Time. Meaning that, the attacker can not retrieve the high-
source code written in one of the IEC 61131-3 programming
languages. Therefore, he needs to modify the ST file in its
currently format either manually, or automatically as a part
of our attack by applying a based-rules modification approach
[7]. The modification includes overwriting the original pro-
gram by inserting/removing instructions, modifying set-points,

replacing operators in equations and changing inputs/outputs
statuses.

3) Updating the OpenPLC Program:
After we modify the user-program successfully, the next

step is to upload and execute the malicious program in the
OpenPLC. This can be done by conducting a completely new
upload-program process as depicted in figure 4. But using the
upload-process "as-is" will reveal our injection. The OpenPLC
will generate a new copy of the uploaded malicious program
with a new prog_id in the webserver folder. Furthermore, the
operator will easily notice that there is a new program added
to the "Programs List" with a new "ST file" name and date
as shown in figure 10. This holds true even if we re-upload
the same program to the OpenPLC i.e., each time there is an
upload-program process performed, the OpenPLC adds a new
program to the "Programs List" with different information.
For all this, patching our modified program using an upload-
program process is not an appropriate method since we aim
at making our attack as stealthy as possible.

Our attack approach is designed to steal a copy of the
actual program running in the OpenPLC (see figure 5). In fact,
this stolen program was already uploaded to the OpenPLC by
the legitimate operator. Meaning that, it has already a certain
prog_id, an ST file name, and a date of upload. For all this,
we just need to compile our modified program to get its "C
file" version, and then force the OpenPLC to turn on START
mode, executing the attacker program as depicted in figure 11.

This scenario is feasible due to two facts. First, the Open-
PLC generates a new prog_id, ST file name and date of upload
at the very beginning of the upload process and before the
compilation process starts, precisely over "upload-program"
and "upload-program-action" packets. Therefore, an attacker
can skip those packets since the program that he modified
was already registered in the OpenPLC and has a prog_id.
Secondly, compiling the program is processed anyway without
inspecting the arrival of prior packets to the OpenPLC. For all
this, compiling the modified program is sufficient to update
the OpenPLC program.



Fig. 11: Patching the OpenPLC sequence diagram

Our attack tool sends first a "reload-program" packet as
shown in figure 12. This packet allows us to have access to
the "Programs Information" on the OpenPLC, where we can
perform different operations e.g., launch, update, or remove the
currently running program from the OpenPLC. In our exam-
ple, we have three programs: "program_1", "program_2" and
"Original" using the prog_id values 22, 23 and 24 respectively
(see figure 7 and 10). To craft our "reload-packet", we just
need to use the prog_id (called also table_id) of the currently
running program which is in our example "24".

Fig. 12: Reload program packet

After selecting the program that the attacker wants to
change, next step is to compile the malicious program from
its "ST file" format to "C file". This is done by sending a
"compile-program" packet provided with the original ST file
name e.g., 111227.st in our example, see figure 13.

Fig. 13: Compile program packet

The compilation process starts by recalling the copy of
the "111227.st" file from the webserver. This copy was al-

ready modified by the attacker, and the OpenPLC compiles
it to an executable "C file". After the compilation process is
successfully done, the OpenPLC sends the last "OK" packet
containing a "compilation finished successfully" message.

The OpenPLC Run Time does not run automatically after
the compilation process is finished. Therefore, the attacker
needs to provoke the PLC to start operating after injection
his malicious program. Figure 14 shows a "start_plc" packet
that attacker sends in order to run the OpenPLC and executes
his malicious program.

Fig. 14: Start PLC packet

VI. VULNERABILITIES & SECURITY
RECOMMENDATIONS

Our experimental results showed that the OpenPLC project
is widely vulnerable and exposed to serious manipulations if
an attacker manages successfully to access the control center.
In the following, we summarize the disclosed vulnerability in
this work and suggest some security recommendations for the
founder to close those security gaps.

A. Replay Attack is feasible
Since the OpenPLC does not implement any integrity check

or anti-replay mechanisms to protect its control logic from
unauthorized manipulation, attackers are capable of repro-
ducing pre-recorded packets from old sessions to patch the
OpenPLC with their malicious programs. For this, we highly
recommend to improve the project by introducing encryption
algorithms e.g., Advanced Encryption Standard (AES), Rivest
Shamir Adleman (RSA), Triple Data Encryption Standard
(DES), etc.

B. Bypassing the Authentication is feasible
Our investigations showed that the operator credentials are

sent clear over HTTP "login" packets. Therefore, an attacker
can retrieve the required credentials by capturing the "lo-
gin" packets. Thus, we recommend to enhance the OpenPLC
project by encrypting the password using one of the common
encryption algorithms for this purpose e.g., XOR, Secure Hash
Algorithm (SHA), etc.

C. The openplc.db database is vulnerable
The attack approach presented in this paper was successful

due to the fact that the openplc.db is accessible and attackers
can read/write from/to this database. We showed that even
if the attacker missed the authentication session between the



Fig. 15: Programs List - attacker fakes the information of listed programs

legitimate operator and OpenPLC, he still can retrieve the
credentials by reading the content of the openplc.db. Based on
our findings, we recommend the founder to limit the access
to the openplc.db to none at all. This database has critical
information that helped us to read and manipulate many values
e.g., prog_id, ST file names, upload dates, user credentials,
etc. To highlight the sensitivity of the information stored in
the openplc.db, we manipulated values to trick the operator
by showing him false information related to the uploaded
programs see figure 15. We managed successfully to fake
the information displayed on the "Programs List" showing the
operator wrong ST file name as well as upload date. This is a
quite severe vulnerability and an immediate action is required.

D. The webserver is not Read/Write protected
Our experiments proved that seizing the webserver folder by

attackers could bring serious risks to the OpenPLC. This folder
contains ready-to-execute programs and is also accessible by
anyone, including attackers with unauthorized access to the
OpenPLC. Furthermore, the programs stored in the webserver
are irremovable, and stay in the folder forever even if the
operator removes programs from the OpenPLC i.e., from the
"Programs List". The main purpose of the webserver folder is
to recall copies and execute them in case the operator launches
or updates an already uploaded program to the OpenPLC.
But this also opens the door for attackers to exploit the
webserver, and then steal and modify the copies stored there.
For all this, we highly recommend the founder to protect the
webserver with some read-write protections e.g., password, or
implementing strict rules that prevent any kind of unauthorized
accesses. We believe that such methods will prevent our attack
scenario or similar control logic injection attacks.

VII. CONCLUSION

This work shows that the OpenPLC project is vulnerable and
has various security issues the founder needs to consider in the
near future. We conducted intensive investigations and proved
that attackers can break the authentication of the OpenPLC,

and change the user-program running with a malicious one.
Our attack approach is completely stealthy and the operator
will not record any abnormal changes neither on the OpenPLC
interface nor in the webserver or openplc.db database. We
finally suggest some security recommendations to the founder,
engineers, and security community hoping they can close
all the vulnerabilities reported in this paper to secure the
OpenPLC based environments.

REFERENCES

[1] T. Alves and T. Morris, "OpenPLC: An IEC 61131–3 compliant open
source industrial controller for cyber security research," Comput. Secur.,
vol. 78, pp. 364–379, Sep. 2018.

[2] M. Tiegelkamp, K. John, "IEC 61131-3: Programming industrial au-
tomation systems," Springer, 1995.

[3] https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-31630.
[4] M. M. Roomi, W. S. Ong, S. M. S. Hussain and D. Mashima, "IEC

61850 Compatible OpenPLC for Cyber Attack Case Studies on Smart
Substation Systems," in IEEE Access, vol. 10, pp. 9164-9173, 2022,
doi: 10.1109/ACCESS.2022.3144027.

[5] W. Alsabbagh, S. Amogbonjaye, D. Urrego and P. Langendörfer, "A
Stealthy False Command Injection Attack on Modbus based SCADA
Systems," 2023 IEEE 20th Consumer Communications & Network-
ing Conference (CCNC), Las Vegas, NV, USA, 2023, pp. 1-9, doi:
10.1109/CCNC51644.2023.10059804.

[6] "MITRE ATTCK," https://attack.mitre.org/, 2020.
[7] W. Alsabbagh, "Investigating Security Issues in Programmable Logic

Controllers and related Protocols," Dissertation submitted to the faculty
MINT - Mathematik, Informatik, Physik, Elektro und Informationstech-
nik of the Brandenburg University of Technology Cottbus-Senftenberg.

[8] S. McLaughlin, S. Zonouz, D. Pohly and P. McDaniel, "Trusted Safety
Verifier for Process Controller Code," In Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA, USA, 23–26
February 2014.

[9] S. Zonouz, J. Rrushi and S. McLaughlin, "Detecting Industrial Control
Malware Using Automated PLC Code Analytics," IEEE Secur.Priv.
2014, 12, 40–47.

[10] T. Chang, Q. Wei, W. Liu and Y. Geng, "Detecting plc Program Mali-
cious Behaviors Based on State Verification," Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2018;
Volume 11067, pp. 241–255.

[11] Y. Xie, R. Chang and L. Jiang, "A malware detection method using
satisfactorily modulo theory model checking for the programmable logic
controller system," Concurr. Comput. Pract. Exp. 2022, 34, e5724.


