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Abstract—Cross-project defect prediction (CPDP) models are used in new
software project prediction tasks to improve defect prediction rates. The
development of these CPDP models could be challenging in cases where there
is little or no historical data. For this reason, researchers may need to rely
on multiple sources and use transfer learning-based CPDP for building defect
prediction models. These data are typically taken from similar and related
projects, but their distributions can be different from the new software project
(target data). Although, transfer learning-based CPDP models are designed
to handle these distribution differences, but if not correctly handled by the
model, may lead to negative transfer. To this end, recent works have focused
on building transfer CPDP models, but little is known about how similar or
dissimilar sources should be to avoid negative transfer. This paper provides
the first empirical investigation to understand the effect of combining different
sources with different levels of similarities in transfer CPDP. We introduce the
use of the Population Stability Index (PSI) to interpret whether the distribution
of the combined or single-source data is similar to the target data. This was
validated using an adversarial approach. Experimental results on three public
datasets reveal that when the source and target distribution are very similar,
the probability of false alarm is improved by 3% to 7% and the recall indicator
is reduced from 1% to 8%. Interestingly, we also found that when dissimilar
source data are combined with different source datasets, the overall domain
divergence is lowered, and the performance is improved. The results highlight
the importance of using the right source to aid the learning process.

Index Terms—cross-project defect prediction, negative transfer, transfer
learning, data shift

I. INTRODUCTION

Transfer learning cross-project defect prediction (CPDP) tech-
niques are used commonly in new software projects to improve
software defect detection [1]. This CPDP approach aims to minimise
the distribution differences between the data of the two projects
(source and target). Most importantly, when multiple source projects
are used, researchers have shown that the performance of these CPDP
models can be improved [2]. Also, researchers in the field of transfer
learning have shown that data from other projects often yield better
models than using only local data [3]. However, using different data
sources more often results in data distribution differences, because the
software modules in the different projects generate different defects.
Although, previous work [4] has shown that by using a particular
dataset known as a ”bellwether”, that is similar to the project dataset,
a defect prediction model which performs better than using a CPDP
model can be achieved Krishna et al. [4] noted that this bellwether
dataset should be changed often as the performance deteriorate. This
deterioration is a result of the learning process of transferring negative
knowledge, which is known as negative transfer (NT). NT occurs
when the distribution differences between the bellwether dataset and
the project dataset become greater [5].

NT is a challenging problem in transfer CPDP and other transfer
learning based systems [6, 5]. The effectiveness of any transfer
learning system using external sources is dependent on three basic
assumptions [6]; 1) the learning task between the two domains
should be related, 2) the data distribution between the two domains

should narrow and, 3) a reliable model which can extract the right
information from both domains that can aid the learning process
should be used. A software defect system which does not abide by any
of these assumptions at any time may lead to NT. The first assumption
is easy to follow, as it is easy to identify related tasks. For assumption
3, many models have been proposed ([6]) that can extract the right
information from both domains. There is still no empirical study
done in transfer learning CPDP to fully understand the impact of
domain divergence in the learning process and to what extent domain
divergence can be harmful. In this work, we conduct experiments
on three publicly available software defect benchmark datasets to
understand the relationship between domain divergence and negative
transfer. We believe having such information could mitigate NT by
choosing the best combination of model and source datasets.

The main contributions of this paper are as follows:
‚ To the best of our knowledge, we present the first study on the

effect of domain divergence in CPDP
‚ We introduce a simple method for effectively measuring domain

divergence in a transfer learning CPDP task.
The rest of this paper is organized as follows. In Section II we
introduce related work in software defect prediction and negative
transfer. Section III introduces our study design and research ques-
tions. Section IV analyses the experimental results and summarises
the outcome. We next discuss our findings in Section V, before
outlining potential threats to the validity of our outcomes in Section
VI. Finally, we conclude this paper in Section VII.

II. RELATED WORK

Rosenstein et al. [7] was the first to discover the concept of NT.
They noted that if two tasks or domains are too dissimilar, bias
learned from the source tasks or domain will eventually affect the
target task performance. Similarly, Wang et al. [6] pointed out that
when the source and target domains are dissimilar and if learning is
forced, the performance in the target domain is negatively affected.
A recent survey on NT [8] shows that four main factors could lead to
NT. These factors are; 1) domain divergence, 2) inadequate learning
system, 3) source data quality and, 4) target data quality. Domain
divergence was seen to be the root cause of NT, and if this is not
taken into account at the feature, classifier, or target output level, then
NT is likely to occur. From the literature, various strategies have been
proposed to tackle the domain divergence between source and target
datasets. Secure or distance methods were seen to be used when there
is little or no similarity between the two tasks [9]. In cases where
the similarity measure is medium, Zhang et al. [8] reported that it is
best to handle the similarity with data, model or target transferability
enhancement strategies.



In the domain of CPDP, Briand et al. [10] conducted the first study
on such an approach with two Java systems. Their initial work did not
report a successful outcome, and they reported that a more complex
model was needed for a CPDP task. Zimmermann et al. [11] used a
decision tree to conduct defect prediction experiments on 622 pairs of
projects, and less than 3.4% of their experiments showed satisfactory
performance. This could be attributed to the domain similarities, but
their work did not investigate the root cause. Yu et al. [12] conducted
empirical research to understand the importance of feature selection,
where they discovered the importance of using the right source. Yu
et al. [13] investigated the problem of irrelevant source data that could
lead to negative transfer and proposed a data filtering method that is
based on a semi-supervised clustering approach [14] to filter out bad
source data. More recently, Zhao et al. [15] investigated the advantage
of using multi-source data over a single dataset in CPDP. From their
experimental results, it was seen that the number of times multi-
source was favourable over a single dataset was minimal. Based on
their outcome, they developed a method, that can resolve the problem
of data distribution differences when using multiple source datasets
at the same time.

The studies above all focus on either the importance of using
multiple sources, selecting the right features or using a robust model.
As using more source data could result in more redundant data, it
is important to know to what extent domain divergence can affect
the learning system. If this information is known beforehand, one
could decide which data should be removed, added or corrected by
the learning system. This issue is not yet investigated, so this paper
aims to understand the full effect of domain divergence on the overall
learning system.

III. STUDY DESIGN

The purpose of this paper is to investigate how domain divergence
could hurt the performance in CPDP. To guide our investigation, we
aim to answer the following research questions.

RQ1. What is the effect of combining multiple sources in CPDP?
Motivation: In CPDP, different methods [9, 6] have been proposed

to solve the source data distribution differences issue. If multiple
source are combined together, the distribution difference is likely to
increase. To date, there is no empirical study to understand the extent
of domain divergence that can cause harm to the learning process in
CPDP. The findings from this RQ could help improve CPDP system
by preventing negative transfer.

RQ2. Does combining multiple sources in CPDP decrease the
domain divergence?

Motivation: Though previous studies have pointed out the benefit
of using multiple source data [15], it is still unclear if combining
related sources can decrease the total domain divergence and improve
or hurt the overall learning performance of model. This question is
designed to understand to what extent we should rely on combining
different domains in CPDP.

A. Dataset

We selected three publicly available datasets (AEEEM, NASA
and Open-source Java systems datasets). The AEEEM dataset was
compiled by D’Ambros et al. [16] and has five open-source projects.
Each project is Java-based, and they all have the same 61 different
features, which include; 17 source code features, 5 previous-defect
features, 5 entropy-of-change features, 17 entropy-of-source-code
features, and 17 source code churn features. The NASA and Open-
source Java systems datasets are collected and compiled by Jureczko
and Madeyski [17] and are available in the PROMISE repository.

They have been used extensively in software defect prediction re-
search [18]. For general statistics of these datasets, please refer to
Supplementary Material 1 (Table S1).

B. Experimental Setup

We design 77 different experiments from three datasets (AEEEM,
NASA and Open-source Java systems). We choose to use a simple
model to avoid model complexity interference, so for this reason a
simple KNN classifier was used, as was used in the work of Zhao
et al. [15]. The experiment is in two folds; 1) single source and
2) multiple sources. For the single source experiment, we use each
project in all three datasets as the target data, then, the source dataset
was derived by alternating each project in the dataset (e.g., for the
AEEEM dataset, when EQ was used as the target, the remaining
dataset is alternated as the source dataset). For this single setup, a
total of 30, 20 and 12 experiments were executed from the Open-
source Java systems, NASA and AEEEM datasets respectively. For
the multi-source experiments, we use each project in all 3 datasets
as the target data, then we combine the rest of the projects in each
dataset as the source (e.g., for the AEEEM dataset, when EQ was used
as the target, the remaining datasets were combined as the source). A
total of 15 multi-source experiments were executed. All experiments
were conducted 5 times as used in the work of Bennin et al. [19]
to reduce the impact of sampling bias and the results were averaged
across the independent runs.

C. Domain Divergence Measure

For the domain divergence measure, we use both the population
stability index (PSI) [20] and adversarial approach.

1) population stability index: This is a type of information-
theoretic measure to interpret whether the distribution of the source
and target are similar. PSI was designed for the credit risk industry to
monitor the distribution change in the data that was used to develop
the credit risk model and validation data. It is now widely used in
other domains, as it is closely related to well-established entropy
measures [21] and can measure any change in the distribution of
explanatory variables [20]. Intuitively, it is the number of information
bits lost if we use the source instead of target and then use that
information to go back to the source. This is different from Kullback-
Leibler Divergence [22], which measures the number of bits lost from
source to target.

Calculating PSI is done by using the following steps:
1) Divide the numeric features into a specific number of bins
2) Calculate % of instances in each bin based on the source

sample.
3) Choose a cut-off point for all bins.
4) Apply the cut-off points to the target sample.
5) Generate the distributions for the target sample.
6) Calculate the sum statistics across all bins for both the source

and target samples to calculate the PSI

PSI “

k
ÿ

i“1

pTi ´ Siq ˚ lnp
Ti

Si
q (1)

The general equation for PSI [21] is given in “equation (1)” where;
pTiq is the observed relative frequency of occurrences of the response
variable in the target datasets, and pSiq is the relative frequency of
occurrences of the response variable in the source datasets, K is the
categories numbered from 1 to K, ”i” is the category values from
1 to K, and ln() is the natural logarithm. Based on the guidance of

1https://zenodo.org/record/6640190



Yurdakul [20] and our sample size for both domains, we choose a
bin size of 20 to derive the following benchmark for our PSI:

‚ PSI ď 0.01 = little change has occurred
‚ 0.01 ď PSI ď 0.025 = the distribution has slightly shifted
‚ PSI ě 0.025 = the changes in distribution are significant
The PSI code and dataset are publicly available 2. Next, we

complement our PSI method with an adversarial approach.
2) Adversarial method using the Kolmogorov-Simirnov test: To

prove the presence of distribution shift, we use an adversarial
approach. Here, we detect covariate shift by training a classifier to
discriminate between the source and target [23]. To do this, we assign
a new variable called ”class 0” and “class 1” to the source and target
domain respectively. Next, we shuffle the dataset and split the datasets
into testing and training before training a simple model with the
training set. The model is then used to evaluate the test set, and a
significance test is conducted to show that the result was statistically
different from random chance. This process was executed 10 times.
For the statistical test, we adopt the Kolmogorov-Smirnov (KS) test
[22]. A high value of KS indicates that we can discriminate between
the source and target.

D. Evaluation Performance Metrics

Probability of false alarms (PF) and recall or probability of
detection (PD) were used as evaluation measures. PF is the percentage
of non-defective instances that are misclassified within the non-defect
class, while PD is intuitively the ability of the defect prediction model
to find all the positive instances (i.e., defect classes). These measures
were chosen based on a previous software defect study [19], where
they noted that high recall and low false positive rate values are the
more stable performance indicators for defect prediction. Intuitively,
a defect predictor will “trade-off” between the PF and PD because
the more sensitive the detector becomes, the more often the system is
triggered and the PD values will be increased. Higher PD and lower
PF values indicate a better defect detector.

IV. RESULT

In this section, we present detailed experimental results for the
indicators (PD and PF) as proposed in Section III-D.

A. RQ1. What is the effect of combining multiple sources in CPDP?

Table I reports the average values of the two indicators for the KNN
model on the NASA datasets. The ”Ò” after the PD denotes that the
indicator needs to be maximized (higher the better), while the ”Ó”
after the PF column denotes that the indicator needs to be minimised
(lower the better). The values in the tables depicted in blue indicate
that the value was the best in that experiment set. The complete results
for the other two sets of experiments (AEEEM and Open-source Java
systems datasets) are provided in the Supplementary Material3 (Table
S2 and S3). From the results, we note that when multiple sources
were used, we were able to achieve the best result on 2 occasions
(i.e., NASA experiment; when using “PC3” or ”PC1” as the target
and the remaining as the source) for the PD and PF indicators. Also,
we noticed a lower value of PF in the AEEEEM result (i.e., when
the target was “PDE”). More specifically, when we compared the
outcome of using multiple sources with a target source, we were
able to achieve an improvement of 3% to 7% in terms of PD and a
reduction of 1% to 8% in terms of the PF score. It is also worth noting
that the results with the highest values were from the experiment set
with the lowest PSI measure (i.e., lower divergences).

2https://github.com/pascal082/dataShiftCPDP
3https://zenodo.org/record/6640190

B. RQ2. Does combining multiple sources in CPDP decrease domain
divergence?

To understand the extent of relying on different domains in CPDP,
we looked at how the combination of different source domains affects
the final model performance and the domain divergence. From the
results, we noted 3 cases of when combining multiple sources resulted
in lowering the domain divergence. These cases were seen in the ”ant-
1.7 Ñ all”, ”PC3 Ñ all” and “PC1 Ñ all” experiments. This also
increased the PD and decreased the PF values.

V. DISCUSSION

A. RQ1. What is the effect of combining multiple sources in CPDP?

Our results show that when multiple source domains are merged,
we observe that the number of times a multi-source CPDP is better
than a single-source CPDP is lower. This outcome was also noted in
the work of Zhao et al. [15]. On further examination of the PSI score,
we noticed when the PSI is higher across all predictions, the PD is
lowered and the PF is increased. We found that by alternating the
source dataset, the performance and divergence measure from each
experiment changes. This means one cannot know beforehand the best
source to use. Although previous work has shown that more complex
CPDP models [6] can handle domain divergence, there is still no
evidence on what extent of this domain divergence is acceptable by
these models. Here, it is evident that an increase in domain divergence
decreases the detection performance. With the KS measure, we were
able to correctly identify those sets of datasets that were flagged as
having data shift by the PSI method.

B. RQ2. Does combining multiple sources in CPDP decrease domain
divergence?

From the experimental results, we noticed three instances (”LC Ñ

all”, ”PDE Ñ all” and ”camel-1.6 Ñ all”, etc) when multi-source
was used and the domain divergence was greater than using a single
source. Also, we were still able to derive a better defect model (i.e,
higher PD and lower PF). This could be attributed to the fact that
all information are useful, but some are more useful than others.
Although a previous empirical study in CPDP has shown that the high
variability of the distribution difference found in the source and target
datasets can result in high levels of false alarm [24], the results in
this paper indicate that when the right set of multiple source domains
are combined, then the domain divergence gap is reduced. This was
evident in 3 of the multi-source NASA experiments, where the PSI
values were decreased when the target dataset was ”PC1”, PC3” and
”PC4”. Using the right combination of sources is simpler and faster
than building a more complex model or transforming all features to
a common latent feature space [25].

VI. VALIDITY THREATS

A. Addressing threats to validity

Construct validity: This paper uses probability of false alarms
and recall to assess prediction performance on imbalanced data, since
there are no universally agreed upon performance measures. There is
a potential threat to our experimental results from the two metrics we
consider in this paper. Nevertheless, most empirical studies uses this
procedure [19]. External validity: We acknowledge that the original
datasets might contain some errors in the labels, that may introduce
threats to the defect prediction evaluation. We also acknowledged
a threat to external validity in terms of whether conclusions can be
generalised, since software engineering studies are prone to variability
[26]. These threats have been minimised by experimenting with
different projects, ranging from open source and academic projects.



TABLE I
PD AND PF FOR THE NASA EXPERIEMENT

PSI Ó Target Source PD Ò PF Ó KS-test (shift) PSI Multi-Source PD Ò PF Ó KS-test(shift)
0.03 PC3 CM1 0.837 0.501 Yes
0.04 PC3 PC1 0.849 0.498 Yes 0.01 PC3 Ñ all 0.869 0.488 No
0.04 PC3 PC4 0.846 0.503 Yes
0.03 CM1 PC3 0.853 0.565 Yes
0.08 CM1 PC1 0.856 0.565 Yes 0.04 PC3 Ñ all 0.853 0.489 Yes
0.01 CM1 PC4 0.856 0.465 No
0.04 PC1 PC3 0.877 0.545 Yes
0.08 PC1 CM1 0.887 0.544 Yes 0.014 PC1 Ñ all 0.912 0.415 No
0.03 PC1 PC4 0.887 0.544 Yes
0.04 PC4 PC3 0.796 0.583 Yes
0.01 PC4 CM1 0.857 0.482 No 0.02 PC4 Ñ all 0.826 0.483 Yes
0.03 PC4 PC1 0.827 0.492 Yes

Internal validity: The experimental results in this study may have
been influenced by a few uncontrolled factors. For instance, there
could have been unexpected error in calculating the PSI. We sought
to reduce such threats by executing the experiment five times. Finally,
while we recognise the threats above, we anticipate that our study
still contributes novel findings to the domain of CPDP and research
could use this outcome for selecting the right domain source.

VII. CONCLUSION AND FUTURE WORK

The use of multiple but related sources in CPDP could improve
the performance of CPDP, but can sometimes increase the domain
divergence. This domain divergence lead to NT. To tackle this NT, it
is recommended to address the domain divergence from the model,
data, or learning phase. To this end, most recent works have focused
on developing a robust model, but little or no understanding is known
about how this divergence may further exacerbate when multiple
sources are combined, and how this could affect the learning process.
Accordingly, we consider understanding the problem of domain
divergences and NT in CPDP. We introduced the use of the Population
Stability Index to measure the similarity between the domains.
Experiments on three software defect benchmark datasets reveal that
when domain distribution difference are very similar, the probability
of false alarm is improved by 3% to 7% and the probability of
detection is reduced from 1% to 8%. Also, our results revealed
that when different source data with varied domain divergence were
combined, the domain divergence is lowered in some cases, and the
performance was improved. These results highlight the importance
of using the right domain source to aid the learning process. A
plausible next step could be to use a measure such as the characteristic
stability index to identify and eliminate features that increases domain
divergence.
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