
EasyChair Preprint
№ 15911

CELS (Crystalline Encryption Layered Security): a
Security Extension of Messaging Applications
Using Post-Quantum Cryptography

Noah Loke, Vaibhav Bajpai and Tingting Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 17, 2025



CELS (Crystalline Encryption Layered Security):
A Security Extension of Messaging Applications

using Post-Quantum Cryptography
Noah Loke

Computer Science Department
Cal Poly Pomona

Pomona, CA, USA
contact@noahloke.com

Vaibhav Kumar Bajpai
Independent Researcher

Seattle, WA, USA
vaibhav.iiith@gmail.com

Tingting Chen
Computer Science Department

Cal Poly Pomona
Pomona, CA, USA

tingtingchen@cpp.edu

Abstract—Privacy and security are vital for digital communica-
tions to protect sensitive information and enable free expression.
In this paper we present CELS (Crystalline Encryption Layered
Security), a security extension based on a hybrid cryptographic
approach that layers post-quantum cryptography (PQC) on top
of a messaging application, to provide end-to-end data security.
We introduce two CELS protocols, one for shared key establish-
ment and one for key retrieval. Our prototype implementation,
Discord CELS is a Firefox sidebar extension that adds end-
to-end message encryption to a Discord server channel with
native webhooks. It uses CRYSTALS-Kyber-1024 compiled with
Emscripten for key encapsulation along with AES-256 GCM and
PBKDF2 from the Web Crypto API for data encryption. CELS
is resistant to attacks by both classical and quantum computers.
CELS enables users to protect their messages with end-to-end
encryption from being viewed by the messaging application
company when using their existing service such as Discord. It is
adaptable to other messaging applications and has cross-device
flexibility, subject to platform constraints. Extensive performance
evaluations demonstrate that the prototype system achieves good
efficiency with low overhead, making it a practical security
enhancement.

I. INTRODUCTION

Shor’s quantum algorithm [1] is known to be able to break
current traditional cryptographic algorithms’ foundation, i.e.,
the large integer factoring and large discrete logarithm prob-
lems, given a sufficiently large quantum computer. Although
such a large quantum computer has not been built so far,
adoption of Post-Quantum Cryptography (PQC) is necessary
to maintain the security and privacy of sensitive data in the
face of the quantum computing threat. Despite progress in
cryptography scheme transition such as the NIST 2024 report
on Federal Information Processing Standards (FIPS) to include
PQC algorithms [2], most of current applications have not
adopted PQC.

Security of messaging systems has evolved in the past
decades. In the networking protocol, Transport Layer Security
(TLS), the fundamental encryption component in HTTPS,
provides the basic data security protection for the message

This work is supported partly by grant NSF CNS 2318671.

transmissions in the network against attacks e.g., Man-in-the-
Middle attacks. In TLS 1.3, at least a 2048-bit RSA key
or 256-bit ECDSA key is recommended [3]. However, some
messaging applications such as Discord and Slack do not by
default provide end-to-end encryptions (E2EE) for messages,
which poses privacy threats to users because application
provider companies can decrypt the messages stored on their
servers. Among those messaging systems that have E2EE
implemented, such as Whatsapp, Facebook Messenger and
Telegram, most are still built only on traditional cryptographic
schemes (e.g.,extended triple Diffie-Hellman [4] and ECDSA
[5]) for key establishment. These messaging systems are still
vulnerable to the ”Harvest now, Decrypt later” threat by
quantum computing based attacks.

Recent updates in Signal [6] and iMessage PQ3 [7] have
adopted post-quantum cryptographic schemes to enhance se-
curity. Both have applied CRYSTALS-KYBER-1024 [8] that
is based on the lattice problem difficulty [9] for key encap-
sulation mechanisms. Both systems are in a hybrid mode
using existing cryptographic schemes such as Elliptic-curve
Diffie-Hellman together with Kyber to achieve security as
long as either algorithm remains unbroken. Despite the ad-
vances of these messaging systems, transitioning existing
messaging applications to PQC is facing several noticeable
challenges: 1) Performance and computation overhead: PQC
algorithms may require more computational and communica-
tion resources for encryption, decryption, and key exchange,
which requires efficient implementation of PQC especially
on resource-constrained devices. 2) Cross-device support and
key management: allowing users to sync conversations across
multiple devices is complicated with PQC, because securely
transferring quantum-resistant keys between devices while
maintaining E2EE is more challenging. 3) Backward compat-
ibility: messaging systems must maintain compatibility with
existing users who may not yet support PQC.

In this paper, we present CELS, a PQC-based security
extension on top of existing messaging applications, such as
Discord. Like Signal and iMessage, our security extension is a
hybrid approach that relies on CRYSTALS-KYBER-1024 and



AES-256 for key establishment. Unlike the prior works, our
extension is built as a browser extension to provide end-to-end
security for messaging systems. This architecture allows CELS
to be applicable to different web-based messaging services.
Moreover, it has the advantages of cross-device flexibility
given that the PQC key is initialized by a user-controlled
password. Our prototype implementation allows two commu-
nicating users to easily opt in for guarding their messages
with E2EE by downloading and using the browser extension.
It does not affect the users who don’t adopt PQC in their
communications with Discord servers. The implementation of
Discord CELS using native webhooks in Firefox has shown
its reasonable efficiency level through extensive experiments.

The remainder of this paper is organized as follows. After
reviewing related works in Section II, we provide technical
preliminary details in Section III. In Section IV, we present
the details of CELS protocols. The implementation details are
described in Section V. We discuss the security of CELS and
the extensive experiment results on efficiency in Section VI
and Section VII respectively. Finally we conclude our paper
in Section VIII.

II. RELATED WORKS

A. Messaging Applications with End-to-End Encryption

Many messaging applications, such as WhatsApp [10],
Signal [11], and Facebook Messenger [12], utilize the Signal
protocol [13] to provide end-to-end encryption. The signal uses
the extended triple Diffie-Hellman scheme to establish the se-
cret key between two users, and the Double Ratchet algorithm
based on the shared secret key can be used to exchange private
messages. The Signal protocol can support both synchronous
and asynchronous communications. There are other messaging
applications that use proprietary E2EE protocols to provide
secret chat functions, such as Telegram [14] and Element
(based on Matrix) [15], where MTProto protocol [16] and Olm
encryption library are used respectively [17]. A key encapsu-
lation mechanism is often utilized to perform a key exchange
and establish a shared secret. This shared secret is procedurally
used with a symmetric encryption algorithm, most commonly
AES-256. RSA-2048 provides 112 bits of security strength,
and ECDSA-256 provides 128 bits, both in contrast to AES-
256, which provides 256 bits. Although the communication
that takes place after the key exchange is secured by AES-
256, because that key is commonly propagated by RSA-2048,
the actual security strength for the communication channel is
only 112 bits, not meeting the modern minimum standard of
128 bits on top of its quantum vulnerability.

Most of the aforementioned protocols are based on RSA or
Elliptic Curve Cryptography (ECC) for encryption, which are
vulnerable to Shor’s algorithm running on quantum computers
by efficiently solving large integer factoring and discrete
logarithm problems. There are a few recent advances in
implementing PQC in messaging systems such as Signal with
PQXDH [6] and iMessage PQ3 [7], which we will discuss in
the next subsection in greater detail together with other PQC
applications.

In some popular messaging applications, such as Discord
and Slack, the messages are not end-to-end encrypted. Al-
though the messages are encrypted during transmission by
the TLS protocol, the companies can decrypt the messages
stored on the servers and view the content. Our work provides
end-to-end encryption to web-based messaging systems based
on PQC in the form of browser extensions. Compared with
existing E2EE solutions, it is extended directly to web-based
platforms, which has better accessibility, bypassing the need
for dedicated apps. At the same time, our work is quantum
resistant, superior to other encryption extensions for Discord
such as [18].

B. Application of Post-Quantum Cryptography in Secure Mes-
saging

While the PQC standardization process at NIST is still
ongoing, some research papers have studied PQC deploy-
ment issues in existing applications especially the impact of
efficiency on embedded devices [19] and mobile networks
[20]. Existing works suggest that although PQC encryption
schemes have the expected computation overhead with long
keys, it is feasible to deploy them in existing network and
system architectures, especially in a hybrid approach when
used together with traditional modern cryptographic schemes
[21]–[23].

Signal has adopted PQXDH (or “Post-Quantum Extended
Diffie-Hellman”) Key Agreement Protocol, which provides
post-quantum forward secrecy in the asynchronous setting
based on the post-quantum key encapsulation mechanism
CRYSTALS-KYBER-1024. In 2024, Apple released PQ3 in
iMessage, a post-quantum cryptographic protocol for end-
to-end secure messaging that provides not only PQC key
establishment, but also ongoing PQC rekeying with a self-
healing property from key compromise. There are two en-
cryption keys used in PQ3, i.e, a Kyber-1024 public key for
key encapsulation and a classical P-256 Elliptic Curve public
key for key agreement. Both PQXDH and PQ3 still rely
on traditional cryptographic schemes, for example ECDSA
for user authentication. In our work, we also only focus
on applying PQC for key encapsulation to guarantee end-to-
end security and rely on existing authentication schemes in
the Discord application. Apple also plans to implement PQC
authentication, which is also a beneficial addition. [7] Discord
CELS currently relies on Discord’s native login system for
authentication and non-repudiation.

To the best of our knowledge, there are no prior works that
build security extensions with PQC independently on top of
existing messaging systems in the web environment, which can
be extended to different web-browsers and messaging systems.

III. TECHNICAL PRELIMINARIES

In this section, we review the cryptographic preliminaries
and notations used in CELS.

A. Learning With Errors
The security of the PQC algorithm that we use in CELS is

due to the computational difficulty of the Module Learning



with Errors (LWE) problem [24]. The LWE problem is a
foundational problem in modern cryptography and complexity
theory. It can be viewed as a noisy generalization of a system
of linear equations over a finite field (usually Zq), where
the presence of small “errors” or “noise” makes solving
the system—and thus recovering the secret—computationally
difficult. Module-LWE, as a generalization of the standard
LWE problem, is also believed to be hard both classically
and quantumly.

B. PQC Key-Encapsulation Mechanism

A PQC key-encapsulation mechanism includes a shared
key space κ, key generation algorithm, a key encapsulation
algorithm and a key de-capsulation algorithm described as
follows.

• KeyGen() −→ (sk, pk) is a probabilistic key generation
algorithm that produces a secret key sk and a public key
pk.

• Enc(pk) −→ (ct, ss) is a probabilistic key encapsulation
algorithm that takes public key pk as input, and produces
a ciphertext ct and a shared secret ss as output. In
encryption function, a random number r is generated and
used.

• Dec(sk, ct) −→ ss is a probabilistic key de-capsulation
algorithm that takes the security key sk and ciphertext ct
as input, and outputs shared secret ss.

In CELS, we use ML(Module Lattice)-KEM-1024 [25] as the
PQC key encapsulation mechanism.

C. CRYSTALS-Kyber

CRYSTALS-Kyber is a post-quantum key encapsulation
designed to provide secure key exchange in the presence of
quantum-capable adversaries. It has been selected as a key
encapsulation mechanism (KEM) (i.e., ML-KEM) in Federal
Information Processing Standards (FIPS) 203 by the Secretary
of Commerce [25].

Kyber as the KEM has the aforementioned components.
Internally, Kyber works with polynomials in a ring (e.g.,
Zq[x]/(x

n + 1) for specific n) but structured as modules of
rank k. The operations on polynomials enable fast imple-
mentations and also keep the keys and ciphertexts relatively
short. Kyber typically comes in three security levels: Kyber-
512 (targeting 128-bit security), Kyber-768 (targeting 192-bit
security) and Kyber-1024 (targeting 256-bit security). These
parameter sets differ in polynomial ring dimension, rank, and
noise distribution parameters, balancing security and perfor-
mance.

Kyber is proven IND-CCA2 secure, meaning it provides
strong security guarantees even when adversaries can submit
chosen ciphertexts to a decryption oracle. It also compares
favorably to other lattice-based schemes in terms of runtime
speed (key generation, encapsulation, decapsulation) and band-
width (key and ciphertext sizes) [8].

IV. CELS PROTOCOLS

In this section, we introduce two CELS protocols, namely,
the key establishment protocol and key retrieval, providing
E2EE with postquantum security applicable to existing unpro-
tected messaging applications.

A. Overview

CELS protocols are designed to securely establish an agreed
key between two communicating parties. The postquantum
cryptographic scheme CRYSTALS-Kyber-1024 is used for the
key establishment and retrieval process. The key retrieval pro-
tocol provides better efficiency for parties who communicate
frequently than establishing a new shared key in each new
conversation. For better security, a new shared secret key can
be obtained by rekeying using the key establishment protocol.
The shared secret key can be used to encrypt and decrypt
sensitive data between the two parties. We assume that each
party has their own password to access the CELS service
to initiate the key establishment or messaging process. For
the same user, no keys in CELS protocols are shared across
different devices/browsers.

The CELS protocols are applicable on top of messaging
systems to provide quantum-attack-resistant end-to-end data
security. We assume that the underlying messaging system,
such as Discord, has their own user identity management,
authentication, and security mechanisms, but does not provide
end-to-end encryption for users. The CELS protocols focus on
end-to-end key establishment and retrieval resistant to quantum
attacks between two existing users of the messaging system,
while leaving the user authentication to the messaging systems.

B. Key Establishment Protocol

The CELS key establishment protocol between two parties
is shown in Protocol 1. The goal is to establish a secret key
between Alice and Bob.

Protocol 1 CELS Key Establishment Protocol
Inputs. Alice: User-selected password PA. Bob: User-selected
password PB .
Goal. Generate and securely share a secret key ss for the
encryption of messages between two parties Alice and Bob.

The protocol:
1) Alice: KeyGen() −→ (skKyber, pkKyber).
2) Alice: PBKDF2(PA)−→ kAES .
3) Alice: EncAES(kAES , skKyber) −→ k′ and saves k′ for

future sessions.
4) Alice

pkKyber−−−−−→ Bob
5) Bob: Enckyber(pkKyber) −→ (ss, ct)
6) Bob: PBKDF2(PB)−→ k′AES .
7) Bob: EncAES(k

′
AES , ss) −→ k′′, and save k′′ for future

sessions.
8) Bob ct−→ Alice, and Alice saves ct for future sessions.
9) Alice: DecKyber(skKyber, ct) −→ ss.



The main idea is that Alice first generates a Kyber public-
and-private-key pair, and sends the public key to Bob. Alice
also generates her own AES key based on her user-selected
password PA, which is used to encrypt the Kyber private
key for her future key retrieval. Bob computes the secret
key ss with Kyber encapsulation function using the public
Kyber key received, and sends the ciphertext ct to Alice. Alice
decapsulates ct to obtain the shared key ss.

Bob also generates his own AES key to encrypt ss for his
future key retrieval. The protocol is sequential and there is
Kyber public key and a ciphertext transmitted between Alice
and Bob in the key establishment process (steps 4 and 8). In
Protocol 1, three pieces of ciphertext (k′, k′′, ct) are saved for
future sessions. Users can send these ciphertexts as messages
to the other party to save them on the server of messaging
systems.

C. Key Retrieval Protocol

To access the previously established shared secret ss in a
new session, we have CELS key retrieval protocol to recover
the same ss securely at the two parties using the saved
information k′, k′′, ct in Protocol 1, and the user-selected
passwords PA and PB .

Protocol 2 describes the process at two parties Alice and
Bob respectively to retrieve the shared secret key. In particular,
Alice first decrypts k′ using the same AES key to recover her
Kyber private key skKyber. Then she decapsulates ct using
skKyber to obtain ss. Bob simply uses his AES key (generated
by PB) to decrypt k′′ in order to retrieve ss. Compared
with the key establishment protocol, key retrieval protocol
does not have message exchange between the two parties,
and has fewer cryptographic functions executed. Therefore,
it is suitable for users who initiate conversations frequently
in separate sessions, but the amount of sensitive messages
exchanged is not great.

Protocol 2 CELS Key Retrieval and Messaging Protocol
Inputs. Alice: User-selected password PA, k′, ct. Bob: User-
selected password PB , k′′.
Goal. Securely compute the data encryption key ss from past
sessions to encrypt and decrypt messages between the two
parties Alice and Bob.

Alice:
1) PBKDF2(PA)−→ kAES .
2) DecAES(kAES , k

′) −→ skKyber.
3) DecKyber(skKyber, ct) −→ ss.
4) Alice uses ss to encrypt and decrypt the messages

between the two parties.
Bob:

1) Bob: PBKDF2(PB)−→ k′AES .
2) Bob: DecAES(k

′
AES , k

′′) −→ ss.
3) Bob uses ss to encrypt and decrypt the messages be-

tween the two parties.

V. IMPLEMENTATION

We implement the Discord CELS based on the protocols
described above as a Firefox extension to provide end-to-
end encrypted communication within Discord, leveraging post-
quantum security (Kyber) to securely establish an AES key for
actual message encryption.

Fig. 1: Discord CELS Architecture

Fig. 1 illustrates the overall architecture of our Discord
CELS implementation. There are five main components in our
implementation, i.e., 1) Popup UI that gathers user info and
triggers key exchange steps; 2) Content script which is injected
into Discord, detects new messages in real time and handles
encryption/decryption automatically via DOM, manages keys
and updates DOM; 3) Kyber WASM a postquantum Key En-
capsulation Mechanism (KEM) compiled via Emscripten; 4)
AES helpers for symmetric encryption and utility conversions
and Discord + Webhook, the actual platform where messages
are sent/received in encrypted form.

This structure ensures no external server sees decrypted
messages; only participants with the correct password and keys
can read or write cleartext.

Fig. 2: Sample screenshots of Discord CELS as a browser
sidebar

Fig. 2 shows two sample screenshots of Discord CELS, for
key exchange and messaging respectively. The implementation
is using a small set of native browser APIs such as Web Crypto



API and Emscripten-generated code for Kyber. The source
code of the CELS project is available upon request.

VI. SECURITY ANALYSIS

A. Threat Model
Like the analysis of security messaging systems e.g., in

[17], [26], we assume three types of attackers, i.e., local
adversaries (who can access the local network devices such
as Wi-Fi routers on either end of the communication) and
service provider adversaries, e.g., Discord or who can access
Discord servers. we assume that attackers can create Discord
accounts and send messages as legitimate users. The security
discussions in this section are under these threat models unless
otherwise stated.

B. Security Discussions
In Discord CELS, we utilize Kyber-1024 and AES-256.

Kyber-1024 parameter set has been proven to achieve more
than 128 bits of security and is resistant to all known classical
and quantum attacks [8]. AES-256 also guarantees 128 bits
of security which is mandated by NIST for all cryptographic
algorithms from 2031 onward [27].

Discord CELS also uses a salt with PBKDF2 (Password-
Based Key Derivation Function 2) [28]. To allow the user
to securely encrypt, store, then later access their shared AES
key and/or Kyber private key across distinct sessions without
a central database, a 256 bit salt is used when generating
key material for a user specific AES key. This allows for a
rainbow table attack on commonly used passwords, but can
be effectively mitigated if the user selects a password with
at least 256 bits of entropy. For security configurations of
PBKDF2 we use a work factor of 600,000 as recommended
by OWASP [29], as well as HMAC-SHA-512 for the internal
hash function. SHA-512 provides 256 bits of security strength
against classical algorithms, as well as 128 bits when taking
into account Grover’s quantum algorithm quadratic speedup,
which is still sufficiently secure [27].

The user’s password entered in their credential input is
stored in the browser’s local storage, and its security and
access control are ensured by Firefox. This allows Discord
CELS to securely access the user’s password for automatic
message decryption, but presents possible vulnerabilities in-
volving its persistent storage across sessions. For this reason
we recommend users to press the ”Exit” button to clear
Discord CELS’ local storage in the browser after sessions.

Standard memory management and safety are provided by
the Web Crypto API in JavaScript, and the specific Kyber C
code implementation also properly frees memory after its use,
both natively and through Emscripten [30].

VII. EFFICIENCY EXPERIMENTS

In this section, we perform extensive experiments on the
efficiency of our Discord CELS prototype system, by ex-
amining the detailed step breakdowns of key encapsulation
mechanism based on CRYSTALS-Kyber-1024, measuring the
message encryption and decryption time, and evaluating the
overall system overhead on top of default Discord functions.

A. Experiment Setup

Our experiments are conducted using a Desktop PC with
an AMD Ryzen 5 3600XT 6-Core Processor @ 3.80GHz and
Dual G.Skill 8GB RAM (F4-3600C18D-16GVK) for a total
of 16GB of memory. It runs Windows 11 version 22H2 with
Firefox version 133.0 and LibreWolf version 134.0-1.

In our experiments, the passwords are generated by Keep-
assXC 2.7.9 [31]. When the password length is fixed, a 15-
character random password from the 95 ASCII characters is
used due to the recommendation in [32]. In the experiments
where the message length is fixed, a random 18-word message
from the 999 most common English words [33] is used. This
message length selection is due to a recent survey [34].

B. Key Establishment Time Breakdown

We first measure how much time each step takes in the key
agreement process, i.e., key pair generation, key encapsulation
and key decapsulation to understand the computation time
breakdown. These Kyber local efficiency test results are the
average times of 100 tests. Each test uses a random password
of 15 characters long. Firefox is used for these computation
time breakdown experiments.

TABLE I: Kyber Function Average Execution Time

Keypair Generation 1.52 ms

256b Random Number Generation and Encapsulation 0.88 ms

Decapsulation 0.90 ms

As we can see in Table I, the key generation takes 1.52 ms,
more than the other two functions. The time it takes to generate
a 256-bit random number and complete the encapsulation is
0.88ms on average. The decapsulation function takes similar
amount of time 0.90ms.

C. Encryption and Decryption Time

We measure the time to encrypt the messages of various
lengths. In particular, we randomly generate random messages
of 18, 100 and 1000 words respectively, and test the AES
Encryption and Decryption time on average of 100 tests. We
also measure the time to generate the AES key based on a
random password of 15 characters long. The results are shown
in Table II.

TABLE II: Message Encryption and Decryption Times with
Different Message Lengths

Random
Message
Length

PBKDF2 Key
Generation
Time (ms)

AES
Encryption
Time (ms)

AES
Decryption
Time (ms)

18 698.84 0.07 0.15

100 698.86 0.12 0.08

1000 695.95 0.25 0.11

We can observe that overall the AES encryption and de-
cryption times are less than or equal to 0.25ms for different
message lengths. The PBKDF2 key generation for wrapping



the Kyber private key is relatively time-consuming compared
to AES operations.

We also evaluate the impact of user-selected password
length on message encryption and decryption time and
PBKDF2 key generation time. Table III shows the results with
random passwords in lengths of 15, 32, 64, 128, 256, 512,
1024, and 2048, when a fixed message length of 18 words is
used. Across all password lengths, the times to encrypt and
decrypt messages remain low (from 0.04ms to 0.15ms). The
time for PBKDF2 key generation is in the range of 698.52ms
to 701.10ms.

TABLE III: Symmetric Function Averages with Variable Pass-
word Length

Random Pass-
word Character
Count

PBKDF2 Key
Generation
Time (ms)

AES
Encryption
Time (ms)

AES
Decryption
Time (ms)

15 698.84 0.07 0.15

32 698.65 0.06 0.04

64 700.30 0.09 0.12

128 699.31 0.07 0.04

256 701.10 0.09 0.05

512 698.52 0.11 0.05

1024 699.03 0.05 0.05

2048 699.17 0.04 0.14

D. Overhead

We finally perform the overhead test, where we run our
Discord CELS on two browsers, i.e., one Firefox and one
LibreWolf. One browser is acting as ”Alice” and the other as
”Bob”. Both browsers can access the Internet with a network
download speed of 441.69 Mbps and an upload speed of
513.07 Mbps. Both users are using passwords with 258.50
bits of entropy, 20 word passphrases to log into the Discord
CELS.

We measure the time elapse between the moment ”Alice”
sends the message (clicks the button) and the moment ”Bob”
receives/reads the content of the message. We perform the tests
both on Discord CELS and on web-based Discord application
with native integrated webhooks but without E2EE for com-
parison, and compute the overhead. In each comparison test,
users send the same randomly generated 18-word messages,
and scripts are used to read Discord’s HTML DOM and record
times. The comparison tests are performed ten times and the
measured times are reported in Table IV.

TABLE IV: Average Overhead of Discord CELS to Deliver a
18-word Message

Discord with Webhook without E2EE 291.30 ms

Discord CELS 343.50 ms

Discord without E2EE takes 291.30ms while Discord CELS
takes 343.50ms, resulting in an overhead of 17.92%, which is
reasonable.

VIII. CONCLUSION

In this paper, we present CELS, a security extension of
messaging applications to provide end-to-end encryption using
post-quantum cryptography. Our prototype system Discord
CELS is implemented as a Firefox sidebar extension on the
web-based Discord messaging application, providing message
encryption based on CRYSTALS-Kyber-1024 for communi-
cations between users. CELS is resistant to attacks launched
by both classical and quantum computers, and is also flex-
ible for existing messaging application users. Our extensive
experiments have shown its efficiency to be deployed on top
of Discord.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms
and factoring,” in Proceedings 35th annual symposium on foundations
of computer science, pp. 124–134, Ieee, 1994.

[2] D. Moody, R. Perlner, A. Regenscheid, A. Robinson, and D. Cooper,
“Transition to post-quantum cryptography standards,” tech. rep., Na-
tional Institute of Standards and Technology, 2024.

[3] E. Rescorla, “The transport layer security (tls) protocol version 1.3,”
tech. rep., 2018.

[4] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key distribution
extended to group communication,” in Proceedings of the 3rd ACM
Conference on Computer and Communications Security, pp. 31–37,
1996.

[5] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, pp. 36–63, 2001.

[6] S. with PQXDH. https://signal.org/docs/specifications/pqxdh/.
[7] A. iMessage PQ3. https://security.apple.com/blog/imessage-pq3/.
[8] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,

P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber: a cca-secure
module-lattice-based kem,” in 2018 IEEE European Symposium on
Security and Privacy (EuroS&P), pp. 353–367, IEEE, 2018.

[9] D. Micciancio and S. Goldwasser, Complexity of lattice problems: a
cryptographic perspective, vol. 671. Springer Science & Business
Media, 2002.

[10] WhatsApp. https://www.whatsapp.com/.
[11] Signal. https://signal.org/.
[12] F. Messenger. https://www.messenger.com/.
[13] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila,

“A formal security analysis of the signal messaging protocol,” Journal
of Cryptology, vol. 33, pp. 1914–1983, 2020.

[14] Telegram. https://telegram.org.
[15] Element. https://element.io.
[16] T. S. Chats. https://core.telegram.org/api/end-to-end.
[17] M. Alatawi and N. Saxena, “Sok: An analysis of end-to-end encryp-

tion and authentication ceremonies in secure messaging systems,” in
Proceedings of the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks, pp. 187–201, 2023.

[18] D. 2.0. https://github.com/dozer133/discrypt.
[19] P. Muzikant and J. Willemson, “Deploying post-quantum algorithms in

existing applications and embedded devices,” in International Confer-
ence on Ubiquitous Security, pp. 147–162, Springer, 2023.

[20] J. P. Mattsson, B. Smeets, and E. Thormarker, “Quantum technology
and its impact on security in mobile networks,” Ericsson Technology
Review, vol. 2021, no. 12, pp. 2–12, 2021.

[21] S. P. Kaveri, I. Radhakrishnan, and P. B. Honnavalli, “Secure messaging
in post quantum cryptography using ntruencryption,” in 2024 15th In-
ternational Conference on Computing Communication and Networking
Technologies (ICCCNT), pp. 1–5, 2024.

[22] C. Döberl, W. Eibner, S. Gärtner, M. Kos, F. Kutschera, and S. Ra-
macher, “Quantum-resistant end-to-end secure messaging and email
communication,” in Proceedings of the 18th International Conference
on Availability, Reliability and Security, ARES ’23, (New York, NY,
USA), Association for Computing Machinery, 2023.



[23] F. R. Ghashghaei, Y. Ahmed, N. Elmrabit, and M. Yousefi, “En-
hancing the security of classical communication with post-quantum
authenticated-encryption schemes for the quantum key distribution,”
Computers, vol. 13, no. 7, 2024.

[24] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[25] National Institute of Standards and Technology, “Module-
lattice-based key-encapsulation mechanism standard.”
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf, 2024.

[26] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg,
and M. Smith, “Sok: secure messaging,” in 2015 IEEE Symposium on
Security and Privacy, pp. 232–249, IEEE, 2015.

[27] National Institute of Standards and Technology,
“Recommendation for key management.”
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r5.pdf, 2020.

[28] F. F. Yao and Y. L. Yin, “Design and analysis of password-based
key derivation functions,” in Topics in Cryptology–CT-RSA 2005: The
Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA,
USA, February 14-18, 2005. Proceedings, pp. 245–261, Springer, 2005.

[29] OWASP, “Password storage cheat sheet.”
https://cheatsheetseries.owasp.org/cheatsheets/Password Storage Cheat Sheet.html,
2023.

[30] A. Zakai, “Emscripten: an llvm-to-javascript compiler,” in Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion, pp. 301–
312, 2011.

[31] KeePassXC Cross-platform Password Manager. https://keepassxc.org/,
2024.

[32] National Institute of Standards and Technology, “Digital identity guide-
lines.” https://doi.org/10.6028/NIST.SP.800-63b.

[33] The 1000 most common words in English. https://word-
lists.com/word-lists/the-1000-most-common-words-in-english/.

[34] TextAnyWhere, “how-many-words-do-we-text.”
https://www.textanywhere.com/resources/blog/technology/how-many-
words-do-we-text-in-a-lifetime/, 2021.


