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Abstract: Several outbreak prediction models for COVID-19 are being used by officials around the 

world to make informed-decisions and enforce relevant control measures. Among the standard 

models for COVID-19 global pandemic prediction, simple epidemiological and statistical models 

have received more attention by authorities, and they are popular in the media. Due to a high level 

of uncertainty and lack of essential data, standard models have shown low accuracy for long-term 

prediction. Although the literature includes several attempts to address this issue, the essential 

generalization and robustness abilities of existing models needs to be improved. This paper presents 

a comparative analysis of machine learning and soft computing models to predict the COVID-19 

outbreak. Among a wide range of machine learning models investigated, two models showed 

promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference 

system, ANFIS). Based on the results reported here, and due to the highly complex nature of the 

COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests 

machine learning as an effective tool to model the outbreak.   

Keywords: COVID-19; Coronavirus disease; Coronavirus; SARS-CoV-2; model; prediction; 

machine learning 

 

1. Introduction 

Access to accurate outbreak prediction models is essential to obtain insights into the likely 

spread and consequences of infectious diseases. Governments and other legislative bodies rely on 

insights from prediction models to suggest new policies and to assess the effectiveness of the enforced 

policies [1]. The novel Coronavirus disease (COVID-19) has been reported to infect more than 2 

million people, with more than 132,000 confirmed deaths worldwide. The recent global COVID-19 

pandemic has exhibited a nonlinear and complex nature [2]. In addition, the outbreak has differences 

with other recent outbreaks, which brings into question the ability of standard models to deliver 

accurate results [3]. Besides the numerous known and unknown variables involved in the spread, the 

complexity of population-wide behavior in various geopolitical areas and differences in containment 

strategies had dramatically increased model uncertainty [4]. Consequently, standard epidemiological 

models face new challenges to deliver more reliable results. To overcome this challenge, many novel 

models have emerged which introduce several assumptions to modeling (e.g., adding social 

distancing in the form of curfews, quarantines, etc.) [5-7].  

To elaborate on the effectiveness of enforcing such assumptions understanding standard 

dynamic epidemiological (e.g., susceptible-infected-recovered, SIR) models is essential [8]. The 

modeling strategy is formed around the assumption of transmitting the infectious disease through 

contacts, considering three different classes of well-mixed populations; susceptible to infection (class 



 

S), infected (class I), and the removed population (class R is devoted to those who have recovered, 

developed immunity, been isolated or passed away). It is further assumed that the class I transmits 

the infection to class S where the number of probable transmissions is proportional to the total 

number of contacts [9-11]. The number of individuals in the class S progresses as a time-series, often 

computed using a basic differential equation as follows:  

𝑑𝑆

𝑑𝑡
= −𝛼𝑆𝐼 

(1) 

where  𝐼  is the infected population, and 𝑆  is the susceptible population both as fractions. 𝛼 

represents the daily reproduction rate of the differential equation, regulating the number of 

susceptible infectious contacts. The value of 𝑆  in the time-series produced by the differential 

equation gradually declines. Initially, it is assumed that at the early stage of the outbreak 𝑆 ≈ 1 while 

the number of individuals in class I is negligible. Thus, the increment 
𝑑𝐼

𝑑𝑡
  becomes linear and the 

class I eventually can be computed as follows:  

𝑑𝐼

𝑑𝑡
= 𝛼𝑆𝐼 − 𝛽𝐼 (2) 

where 𝛽 regulates the daily rate of new infections by quantifying the number of infected individuals 

competent in the transmission. Furthermore, the class R, representing individuals excluded from the 

spread of infection, is computed as follows:  

𝑑𝑅

𝑑𝑡
= 𝛽𝐼 (3) 

Under the unconstrained conditions of the excluded group, Eq. 3, the outbreak exponential 

growth can be computed as follows:  

𝐼 (𝑡) ≈  𝐼0 𝑒𝑥𝑝{(𝛼 − 𝛽)} (4) 

The outbreaks of a wide range of infectious diseases have been modeled using Eq. 4. However, 

for the COVID-19 outbreak prediction, due to the strict measures enforced by authorities, the 

susceptibility to infection has been manipulated dramatically. For example, in China, Italy, France, 

Hungary and Spain the SIR model cannot present promising results, as individuals committed 

voluntarily to quarantine and limited their social interaction. However, for countries where 

containment measures were delayed (e.g., United States) the model has shown relative accuracy [12]. 

Figure. 1 shows the inaccuracy of conventional models applied to the outbreak in Italy by comparing 

the actual number of confirmed infections and epidemiological model predictions1. The SEIR models 

through considering the significant incubation period during which individuals have been infected 

showed progress in improving the model accuracy for Varicella and Zika outbreak [13,14]. SEIR 

models assume that the incubation period is a random variable and similarly to the SIR model, there 

would be a disease-free-equilibrium [15,16]. It is worth mentioning that SEIR model will not work 

well where the parameters are non-stationary through time [17]. A key cause of non-stationarity is 

where the social mixing (which determines the contact network) changes through time. Social mixing 

determines the reproductive number 𝑅0 which is the number of susceptible individuals that an 

infected person will infect. Where 𝑅0 is less than 1 the epidemic will die out. Where it is greater than 

1 it will spread. 𝑅0  for COVID-19 prior to lockdown was estimated as a massive 4 presenting a 

pandemic. It is expected that lockdown measures should bring 𝑅0 down to less than 1. the KEY 

reason why SEIR models are difficult to fit for COVID-19 is non-stationarity of mixing, caused by 

nudging (step-by-step) intervention measures.  

One can calculate that standard epidemiological models can be effective and reliable only if (a) 

the social interactions are stationary through time (i.e., no changes in interventions or control 

measures), or (b) there exists a great deal of knowledge of class R with which to compute Eq. 3. Often 

to acquire information on class R, several novel models included data from social media or call data 

records (CDR), which showed promising results [18-25]. However, observation of the behavior of 

 

 



 

COVID-19 in several countries demonstrates a high degree of uncertainty and complexity [26]. Thus, 

for epidemiological models to be able to deliver reliable results, they must be adapted to the local 

situation with an insight into susceptibility to infection [27]. This imposes a huge limit on the 

generalization ability and robustness of conventional models. Advancing accurate models with a 

great generalization ability to be scalable to model both the regional and global pandemic is, thus, 

essential [28].  

A further drawback of conventional epidemiological models is the short lead-time. To evaluate 

the performance of the models, the median success of the outbreak prediction presents useful 

information. The median prediction factor can be calculated as follows: 

𝑓 =  
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑇𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒
 (5) 

 

As the lead-time increases, the accuracy of the model declines. For instance, for the COVID-19 

outbreak in Italy, the accuracy of the model for more than 5-days-in-the-future reduces from 𝑓 = 1 

for the first five days to 𝑓 = 0.86 for day 6 [12].   

 

 

Figure 1. Italy’s COVID-19 outbreak: the actual number of confirmed infections vs. epidemiological 

model. 

     Due to the complexity and the large-scale nature of the problem in developing epidemiological 

models, machine learning (ML) has recently gained attention for building outbreak prediction 

models. ML approaches aim at developing models with higher generalization ability and greater 

prediction reliability for longer lead-times [29-33].  

    Although ML methods were used in modeling former pandemics (e.g., Ebola, Cholera, swine 

fever, H1N1 influenza, dengue fever, Zika, oyster norovirus [8,34-43]), there is a gap in the literature 

for peer-reviewed papers dedicated to COVID-19. Table 1 represents notable ML methods used for 

outbreak prediction. These ML methods are limited to the basic methods of random forest, neural 

networks, Bayesian networks, Naïve Bayes, genetic programming and classification and regression 

tree (CART). Although ML has long been established as a standard tool for modeling natural disasters 

and weather forecasting [44,45], its application in modeling outbreak is still in the early stages. More 

sophisticated ML methods (e.g., hybrids, ensembles) are yet to be explored. Consequently, the 

contribution of this paper is to explore the application of ML for modeling the COVID-19 pandemic. 

This paper aims to investigate the generalization ability of the proposed ML models and the accuracy 

of the proposed models for different lead-times. 



 

Table 1. Notable ML methods for outbreak prediction 

Authors Journal   Outbreak infection  Machine   learning 

[39] 
Transboundary and 

Emerging Diseases 
 Swine fever 

 

Random Forest 

[35] Geospatial Health  Dengue fever Neural Network  

[42] BMC Research Notes  Influenza Random Forest 

[41] 
Journal of Public 

Health Medicine 
 Dengue/Aedes  Bayesian Network 

[38] Informatica   Dengue  LogitBoost 

[8] 
Global Ecology and 

Biogeography 
 H1N1 flu  

 

Neural Network 

[34] Current Science  Dengue  
Adopted multi-regression 

and Naïve Bayes 

[36] 
Environment 

International 
 Oyster norovirus  

 

Neural Network 

[37] Water Research  Oyster norovirus Genetic programming 

[43] 
Infectious Disease 

Modelling 
 Dengue  

Classification and 

regression tree (CART) 

 

    The rest of this paper is organized as follows. Section two describes the methods and materials. 

The results are given in section three. Sections four and five present the discussion and the 

conclusions, respectively.      

  

2. Materials and Methods  

Data were collected from https://www.worldometers.info/coronavirus/country for five 

countries, including Italy, Germany, Iran, USA, and China on total cases over 30 days. Figure 2 

presents the total case number (cumulative statistic) for the considered countries. Currently, to 

contain the outbreak, the governments have implemented various measures to reduce transmission 

through inhibiting people’s movements and social activities. Although for advancing the 

epidemiological models information on changes in social distancing is essential, for modeling with 

machine learning no assumption is required. As can be seen in Figure 2, the growth rate in China is 

greater than that for Italy, Iran, Germany and the USA in the early weeks of the disease. 

 

 

Figure 2. Cumulative number of cases for five countries during thirty days 

(https://www.worldometers.info/coronavirus/country) 

https://www.worldometers.info/coronavirus/country
https://www.worldometers.info/coronavirus/country


 

The next step is to find the best model for the estimation of the time-series data. Logistic, Linear, 

Logarithmic, Quadratic, Cubic, Compound, Power and exponential equations (Table 2) are employed 

to develop the desired model.  

 

Table 2. Models for mathematical forecasting 

Model description Model name Equation number 

R=A/(1+exp(((4*µ)*(L-x)/A)+2)) Logistic (6) 

R=Ax-B Linear (7) 

R=A+ Blog(x) Logarithmic (8) 

R=A+Bx+Cx2 Quadratic (9) 

R=A+Bx+Cx2+Dx3 Cubic (10) 

R=ABx Compound (11) 

R=AxB Power (12) 

R=AEXP(Bx) Exponential (13) 

 

A, B, C, µ, and L are parameters (constants) that characterize the above-mentioned functions. 

These constants need to be estimated to develop an accurate estimation model. One of the goals of 

this study was to model time-series data based on the logistic microbial growth model. For this 

purpose, the modified equation of logistic regression was used to estimate and predict the prevalence 

(i.e., I/Population at a given time point) of disease as a function of time. Estimation of the parameters 

was performed using evolutionary algorithms like GA, particle swarm optimizer, and the grey wolf 

optimizer. These algorithms are discussed in the following. 

 

Evolutionary algorithms  

Evolutionary algorithms (EA) are powerful tools for solving optimization problems through 

intelligent methods. These algorithms are often inspired by natural processes to search for all possible 

answers as an optimization problem [46-48]. In the present study, the frequently used algorithms, 

(i.e., genetic algorithm (GA), particle swarm optimizer (PSO) and grey wolf optimizer (GWO)) are 

employed to estimate the parameters by solving a cost function.  

Genetic Algorithm (GA) 

GAs are considered a subset of "computational models" inspired by the concept of evolution 

[49]. These algorithms use "Potential Solutions" or "Candidate Solutions" or "Possible Hypotheses" 

for a specific problem in a "chromosome-like" data structure. GA maintains vital information stored 

in these chromosome data structures by applying "Recombination Operators" to chromosome-like 

data structures [50-53]. In many cases, GAs are employed as "Function Optimizer" algorithms, which 

are algorithms used to optimize "Objective Functions." Of course, the range of applications that use 

the GA to solve problems is very wide [52,54]. The implementation of the GA usually begins with the 

production of a population of chromosomes generated randomly and bound up and down by the 

variables of the problem. In the next step, the generated data structures (chromosomes) are evaluated, 

and chromosomes that can better display the optimal solution of the problem are more likely to be 

used to produce new chromosomes. The degree of "goodness" of an answer is usually measured by 

the population of the current candidate's answers [55-59]. The main algorithm of a GA process is 

demonstrated in Figure 3.  
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Figure 3. GA algorithm 

In the present study, GA [59] was employed for estimation of the parameters of Eq. 6 to 13. The 

population number was selected to be 300 and the maximum generation (as iteration number) was 

determined to be 500 according to different trial and error processes to reduce the cost function value. 

The cost function was defined as the mean square error between the target and estimated values 

according to Eq. 14:  

 𝑀𝑆𝐸 = √
(𝐸𝑠−𝑇)2

𝑁
 (14) 

where, Es refer to estimated values, T refers to the target values and N refers to the number of data.  

 

Particle Swarm Optimization (PSO) 

In 1995, Kennedy and Eberhart [60] introduced the PSO as an uncertain search method for 

optimization purposes. The algorithm was inspired by the mass movement of birds looking for food. 

A group of birds accidentally looked for food in a space. There is only one piece of food in the search 

space. Each solution in PSO is called a particle, which is equivalent to a bird in the bird's mass 

movement algorithm. Each particle has a value that is calculated by a competency function which 

increases as the particle in the search space approaches the target (food in the bird’s movement 

model). Each particle also has a velocity that guides the motion of the particle. Each particle continues 

to move in the problem space by tracking the optimal particles in the current state [60-62]. The PSO 

method is rooted in Reynolds' work, which is an early simulation of the social behavior of birds. The 

mass of particles in nature represents collective intelligence. Consider the collective movement of fish 

in water or birds during migration. All members move in perfect harmony with each other, hunt 

together if they are to be hunted, and escape from the clutches of a predator by moving another prey 

if they are to be preyed upon [63-65]. Particle properties in this algorithm include [65-67]: 

• Each particle independently looks for the optimal point. 

• Each particle moves at the same speed at each step. 

• Each particle remembers its best position in the space. 

• The particles work together to inform each other of the places they are looking for. 

• Each particle is in contact with its neighboring particles. 

• Every particle is aware of the particles that are in the neighborhood. 

• Every particle is known as one of the best particles in its neighborhood. 



 

The PSO implementation steps can be summarized as: the first step establishes and evaluates 

the primary population. The second step determines the best personal memories and the best 

collective memories. The third step updates the speed and position. If the conditions for stopping are 

not met, the cycle will go to the second step.  

The PSO algorithm is a population-based algorithm [68,69]. This property makes it less likely to 

be trapped in a local minimum. This algorithm operates according to possible rules, not definite rules. 

Therefore, PSO is a random optimization algorithm that can search for unspecified and complex 

areas. This makes PSO more flexible and durable than conventional methods. PSO deals with non-

differential target functions because the PSO uses the information result (performance index or target 

function to guide the search in the problem area). The quality of the proposed route response does 

not depend on the initial population. Starting from anywhere in the search space, the algorithm 

ultimately converges on the optimal answer. PSO has great flexibility to control the balance between 

the local and overall search space. This unique PSO property overcomes the problem of improper 

convergence and increases the search capacity. All of these features make PSO different from the GA 

and other innovative algorithms [61,65,67]. 

In the present study, PSO was employed for estimation of the parameters of Eq. 6 to 13. The 

population number was selected to be 1000 and the iteration number was determined to be 500 

according to different trial and error processes to reduce the cost function value. The cost function 

was defined as the mean square error between the target and estimated values according to Eq. 14.  

 

Grey Wolf Optimizer (GWO) 

One recently developed smart optimization algorithm that has attracted the attention of many 

researchers is the grey wolf algorithm. Like most other intelligent algorithms, GWO is inspired by 

nature. The main idea of the grey wolf algorithm is based on the leadership hierarchy in wolf groups 

and how they hunt [70]. In general, there are four categories of wolves among the herd of grey wolves, 

alpha, beta, delta and omega. Alpha wolves are at the top of the herd's leadership pyramid, and the 

rest of the wolves take orders from the alpha group and follow them (usually there is only one wolf 

as an alpha wolf in each herd). Beta wolves are in the lower tier, but their superiority over Delta and 

omega wolves allows them to provide advice and help to alpha wolves. Beta wolves are responsible 

for regulating and orienting the herd based on alpha movement. Delta wolves, which are next in line 

for the power pyramid in the wolf herd, are usually made up of guards, elderly population, 

caregivers of damaged wolves, and so on. Omega wolves are also the weakest in the power hierarchy 

[70]. Eq. 15 to 18 are used to model the hunting tool: 

 

�⃗⃗� = |𝐶 , 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 

⃗⃗⃗  (𝑡)| (15) 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 , �⃗⃗�  (16) 

𝐴 = 2𝑎 , 𝑟1⃗⃗⃗  − 𝑎  (17) 

𝐶 = 2𝑟2⃗⃗  ⃗ (18) 

where t is represents repetition of the algorithm. 𝐴  and 𝐶  are vectors of the prey site and the 𝑋  

vectors represent the locations of the grey wolves. 𝑎  is linearly reduced from 2 to 0 during the 

repetition. 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗ are random vectors where each element can take on realizations in the range 

[0.1]. The GWO algorithm flowchart is shown in Figure 4. 
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Figure 4. GWO algorithm  

In the present study, GWO [70] was employed for estimation of the parameters of Eq.1 to 8. The 

population number was selected to be 500 and the iteration number was determined to be 1000 

according to different trial and error processes to reduce the cost function value. The cost function 

was defined as the mean square error between the target and estimated values according to Eq. 14.  

Machine learning (ML) 

ML is regarded as a subset of AI. Using ML techniques, the computer learns to use patterns or 

“training samples” in data (processed information) to predict or make intelligent decisions without 

overt planning [71,72]. In other words, ML is the scientific study of algorithms and statistical models 

used by computer systems that use patterns and inference to perform tasks instead of using explicit 

instructions [73,74].  

Time-series are data sequences collected over a period of time [75], which can be used as inputs to 

ML algorithms. This type of data reflects the changes that a phenomenon has undergone over time. Let 

Xt be a time-series vector, in which xt is the outbreak at time point t and T is the set of all equidistant 

time points. To train ML methods effectively, we defined two scenarios, listed in Table 3. 

 

Table 3. Input and output variables for training ML methods by time-series data 

 Inputs Input number Output 

Scenario 1 xt-1, xt-7, xt-14, and xt-21 Four inputs xt (outbreak) 

Scenario 2 xt-1, xt-2, xt-3, xt-4, and xt-5 Five inputs xt (outbreak) 

 



 

 

As can be seen in Table 3, scenario 1 employs data for three weeks to predict the outbreak on day 

t and scenario 2 employs outbreak data for five days to predict the outbreak for day t. Both of these 

scenarios were employed for fitting the ML methods. In the present research, two frequently used ML 

methods, the multi-layered perceptron (MLP) and adaptive network-based fuzzy inference system 

(ANFIS) are employed for the prediction of the outbreak in the five countries. 

 

Multi-layered perceptron (MLP) 

ANN is an idea inspired by the biological nervous system, which processes information like the 

brain. The key element of this idea is the new structure of the information processing system [76-78]. 

The system is made up of several highly interconnected processing elements called neurons that work 

together to solve a problem [78,79]. ANNs, like humans, learn by example. The neural network is set 

up during a learning process to perform specific tasks, such as identifying patterns and categorizing 

information. In biological systems, learning is regulated by the synaptic connections between nerves. 

This method is also used in neural networks [80]. By processing experimental data, ANNs transfer 

knowledge or a law behind the data to the network structure, which is called learning. Basically, 

learning ability is the most important feature of such a smart system. A learning system is more flexible 

and easier to plan, so it can better respond to new issues and changes in processes [81].  

In ANNs, with the help of programming knowledge, a data structure is designed that can act like 

a neuron. This data structure is called a node [82,83]. In this structure, the network between these nodes 

is trained by applying an educational algorithm to it. In this memory or neural network, the nodes have 

two active states (on or off) and one inactive state (off or 0), and each edge (synapse or connection 

between nodes) has a weight. Positive weights stimulate or activate the next inactive node, and negative 

weights inactivate or inhibit the next connected node (if active) [78,84]. In the ANN architecture, for the 

neural cell c, the input bp enters the cell from the previous cell p. wpc is the weight of the input bp  with 

respect to cell c and ac is the sum of the multiplications of the inputs and their weights [85]: 

 

 𝑎𝑐 = ∑𝑤𝑝𝑐𝑏𝑝𝑐                                    (19) 

 

A non-linear function Өc  is applied to ac. Accordingly, bc can be calculated as Eq. 20 [85]: 

                             𝑏𝑐 = 𝜃𝑐(𝑎𝑐) (20) 

 

Similarly, wcn is the weight of the bcn which is the output of c to n. W is the collection of all the 

weights of the neural network in a set. For input x and output y, hw(x) is the output of the neural 

network. The main goal is to learn these weights for reducing the error values between y and hw(x). That 

is, the goal is to minimize the cost function Q(W), Eq. 21 [85]: 

𝑄(𝑊) =
1

2
∑(𝑦𝑖 − 𝑜𝑖)

2

𝑛

𝑖=1

 (21) 

In the present research, one of the frequently used types of ANN called the MLP [76] was 

employed to predict the outbreak. MLP was trained using a dataset related to both scenarios (according 

to Table 2). For the training of the network, 8, 12, and 16 inner neurons were tried to achieve the best 

response. Results were evaluated by RMSE and correlation coefficient to reduce the cost function value. 

Figure 5 presents the architecture of the MLP.  



 

xt-1

xt-2

xt-3

xt-4

xt-5

xt-1

xt-7

xt-14

xt-21

Scenario 2

Scenario 1

Weights

bias

Outbreak

xt

 

Figure 5. Architecture of MLP 

 

Adaptive neuro fuzzy inference system (ANFIS) 

An adaptive neuro fuzzy inference system is a type of ANN based on the Takagi-Sugeno fuzzy 

system [86]. This approach was developed in the early 1990s. Since this system integrates the concepts 

of neural networks and fuzzy logic, it can take advantage of both capabilities in a unified framework. 

This technique is one of the most frequently used and robust hybrid ML techniques. It is consistent with 

a set of fuzzy if-then rules that can be learned to approximate nonlinear functions [87,88]. Hence, ANFIS 

was proposed as a universal estimator. An important element of fuzzy systems is the fuzzy partition of 

the input space [89,90]. For input k, the fuzzy rules in the input space make a k faces fuzzy cube. 

Achieving a flexible partition for nonlinear inversion is non-trivial. The idea of this model is to build a 

neural network whose outputs are a degree of the input that belongs to each class [91-93]. The 

membership functions (MFs) of this model can be nonlinear, multidimensional and, thus, different to 

conventional fuzzy systems [94-96]. In ANFIS, neural networks are used to increase the efficiency of 

fuzzy systems. The method used to design neural networks is to employ fuzzy systems or fuzzy-based 

structures. This model is a kind of division and conquest method. Instead of using one neural network 

for all the input and output data, several networks are created in this model: 

• A fuzzy separator to cluster input-output data within multiple classes. 

• A neural network for each class. 

• Training neural networks with output input data in the corresponding classes. 

Figure 6 presents a simple architecture for ANFIS.  



 

Inputs

Input MFs

Rules Output MF

Output

 

Input 1

Input 2

Input n

Output

 

Figure 6. ANFIS architecture 

In the present study, ANFIS is developed to tackle two scenarios described in table 3. Each input 

included by two MFs with the Tri. shape; Trap. shape and Gauss. shape MFs. The output MF type 

was selected to be linear with a hybrid optimizer type.  

 

Evaluation criteria 

Evaluation was conducted using the root mean square error (RMSE) and correlation coefficient. 

These statistics compare the target and output values and calculate a score as an index for the 

performance and accuracy of the developed methods [87,97]. Table 4 presents the evaluation criteria 

equations. 

Table 4. Model Evaluation metrics 

Accuracy and Performance Index 

Correlation coefficient= 
𝑁 ∑ (𝐴 

 𝑃) −∑ (𝐴 
 ) ∑ (  𝑃) 

√[𝑁 ∑ 𝐴2 
 −(∑ 𝐴  ) 

2
][𝑁 ∑ 𝑃2 

 −(∑ 𝐴𝑃 
 ) 

2
] 
 
 (22) 

RMSE= √
1

𝑁
∑(𝐴 − 

 𝑃)2 (23) 

 

Where, N is the number of data, P and A are, respectively, the predicted (output) and desired (target) 

values.  

 

3. Results 

Tables 5 to 12 present the results of the accuracy statistics for the logistic, linear, logarithmic, 

quadratic, cubic, compound, power and exponential equations, respectively. The coefficients of each 

equation were calculated by the three ML optimizers; GA, PSO and GWO. The table contains country 

name, model name, population size, number of iterations, processing time, RMSE and correlation 

coefficient.  

Table 5. Accuracy statistics for the logistic model 

Country  Model Pop. size iteration Processing time RMSE Correlation coefficient 

Italy 
GA 300 500 82 s 1028.98 0.996 

PSO 1000 500 36 s 3358.1 0.997 



 

GWO 500 1000 14 s 187.15 0.999 

China 

GA 300 500 79 s 42160.4 0.982 

PSO 1000 500 35 s 2524.44 0.994 

GWO 500 1000 13 s 2270.58 0.995 

Iran 

GA 300 500 81 s 1267.04 0.992 

PSO 1000 500 36 s 628.62 0.997 

GWO 500 1000 13 s 392.88 0.996 

USA 

GA 300 500 82 s 1028.98 0.999 

PSO 1000 500 38 s 350.33 0.999 

GWO 500 1000 15 s 22.35 0.999 

Germany 

GA 300 500 86 s 5339.5 0.983 

PSO 1000 500 39 s 555.32 0.997 

GWO 500 1000 16 s 55.54 0.999 

 

 

Table 6. Accuracy statistics for the linear model 

Country Model Pop. size iteration Processing time RMSE Correlation coefficient 

Italy 

GA 300 500 92 s 3774.06 0.845 

PSO 1000 500 42 s 3645.76 0.844 

GWO 500 1000 16 s 3642.44 0.844 

China 

GA 300 500 91 s 7188.95 0.981 

PSO 1000 500 39s 6644.16 0.982 

GWO 500 1000 14 s 5039.48 0.982 

Iran 

GA 300 500 96 s 3330.45 0.943 

PSO 1000 500 45 s 2072.71 0.944 

GWO 500 1000 18 s 1981.97 0.944 

USA 

GA 300 500 88 s 850.22 0.745 

PSO 1000 500 40 s 596.69 0.746 

GWO 500 1000 17 s 592.48 0.746 

Germany 

GA 300 500 93 s 1118.77 0.758 

PSO 1000 500 47 s 964.46 0.759 

GWO 500 1000 20 s 951.63 0.759 

 

Table 7. Accuracy statistics for the logarithmic model 

 Model Pop. size iteration 
Processing 

time 
RMSE Correlation coefficient 

Italy 

GA 300 500 98 s 8325.33 0.634 

PSO 1000 500 51 s 8818.2 0.634 

GWO 500 1000 20 s 9296.59 0.634 

China 

GA 300 500 96 s 40828.2 0.847 

PSO 1000 500 42 s 43835.37 0.847 

GWO 500 1000 17 s 42714.93 0.847 

Iran 

GA 300 500 102 s 4929.97 0.757 

PSO 1000 500 59 s 8775.56 0.757 

GWO 500 1000 22 s 8995.52 0.756 

USA 

GA 300 500 94 s 889.15 0.538 

PSO 1000 500 37 s 1130.33 0.538 

GWO 500 1000 15 s 1135.12 0.538 

GA 300 500 95 s 1552.22 0.548 



 

Germa

ny 

PSO 1000 500 45 s 1966.81 0.548 

GWO 500 1000 21 s 1878.67 0.548 

 

 

 

Table 8. Accuracy statistics for the quadratic model 

 Model Pop. size iteration Processing time RMSE Correlation coefficient 

Italy 

GA 300 500 102 s 6710.01 0.976 

PSO 1000 500 54 s 5102.4 0.953 

GWO 500 1000 26 s 1272.1 0.982 

China 

GA 300 500 100 s 7921.33 0.992 

PSO 1000 500 46 s 4328.71 0.993 

GWO 500 1000 20 s 3710.16 0.993 

Iran 

GA 300 500 105 s 6771.74 0.995 

PSO 1000 500 62 s 822.09 0.998 

GWO 500 1000 24 s 310.02 0.998 

USA 

GA 300 500 98 s 754.6 0.931 

PSO 1000 500 38 s 791.92 0.853 

GWO 500 1000 19 s 307.58 0.938 

Germany 

GA 300 500 101 s 7577 0.904 

PSO 1000 500 49 s 752.95 0.923 

GWO 500 1000 26 s 472.62 0.946 

 

Table 9. Accuracy statistics for the cubic model 

 Model Pop. size iteration Processing time RMSE Correlation coefficient 

Italy 

GA 300 500 112 s 7973.11 0.993 

PSO 1000 500 61 s 4827.08 0.996 

GWO 500 1000 34 s 324.33 0.998 

China 

GA 300 500 113 s 15697.84 0.971 

PSO 1000 500 59 s 3611.15 0.995 

GWO 500 1000 34 s 2429.45 0.995 

Iran 

GA 300 500 120 s 5852.66 0.995 

PSO 1000 500 88 s 3809.76 0.997 

GWO 500 1000 39 s 250.2 0.999 

USA 

GA 300 500 110 s 37766.56 0.875 

PSO 1000 500 49 s 678.36 0.979 

GWO 500 1000 25 s 118.24 0.991 

Germany 

GA 300 500 116 s 1709.06 0.744 

PSO 1000 500 59 s 1812.78 0.967 

GWO 500 1000 29 s 196.8 0.99 

 

Table 10. Accuracy statistics for the compound model 

 Model 
Pop. 

size 
iteration 

Processing 

time 
RMSE 

Correlation 

coefficient 

Italy 

GA 300 500 92 s 8347.51 0.912 

PSO 1000 500 53 s 195705.52 0.918 

GWO 500 1000 22 s 12585.79 0.951 



 

China 

GA 300 500 90 s 41544.05 0.986 

PSO 1000 500 48 s 40195.9 0.988 

GWO 500 1000 23 s 24987.34 0.895 

Iran 

GA 300 500 99 s 1487501.93 0.782 

PSO 1000 500 81 s 8216.81 0.986 

GWO 500 1000 26 s 13635.01 0.864 

USA 

GA 300 500 96 s 655.62 0.994 

PSO 1000 500 32 s 1026.03 0.827 

GWO 500 1000 16 s 364.87 0.988 

Germany 

GA 300 500 98 s 15333537.7 0.93 

PSO 1000 500 72 s 1557.23 0.976 

GWO 500 1000 20 s 431.97 0.998 

 

 

 

Table 11. Accuracy statistics for the power model 

 Model 
Pop. 

size 
iteration 

Processing 

time 
RMSE 

Correlation 

coefficient 

Italy 

GA 300 500 72 s 7063.4 0.983 

PSO 1000 500 40 s 6150.52 0.982 

GWO 500 1000 13 s 3450.96 0.991 

China 

GA 300 500 65 s 39669.92 0.976 

PSO 1000 500 39 s 19365.58 0.987 

GWO 500 1000 12 s 4078.99 0.989 

Iran 

GA 300 500 83 s 2343032.5 0.951 

PSO 1000 500 65 s 92755.53 0.975 

GWO 500 1000 15 s 1031.6 0.991 

USA 

GA 300 500 79 s 1030.01 0.779 

PSO 1000 500 24 s 1005.27 0.751 

GWO 500 1000 11 s 790.16 0.837 

Germany 

GA 300 500 85 s 1475.39 0.871 

PSO 1000 500 69 s 1387.94 0.916 

GWO 500 1000 14 s 1341.91 0.875 

 

Table 12. Accuracy statistics for the exponential model 

 Model 
Pop. 

size 
iteration 

Processing 

time 
RMSE 

Correlation 

coefficient 

Italy 

GA 300 500 79 s 8163.1 0.995 

PSO 1000 500 48 s 52075925.37 0.839 

GWO 500 1000 18 s 12585.79 0.951 

China 

GA 300 500 71 s 68991.73 0.866 

PSO 1000 500 45 s 80104.27 0.865 

GWO 500 1000 17 s 24987.34 0.895 

Iran 

GA 300 500 89 s 1436025.84 0.767 

PSO 1000 500 70 s 3745673.26 0.744 

GWO 500 1000 21 s 13635.01 0.864 

USA 
GA 300 500 84 s 457051.4 0.974 

PSO 1000 500 30 s 982.37 0.932 



 

GWO 500 1000 15 s 364.87 0.988 

Germany 

GA 300 500 87 s 8176.54 0.981 

PSO 1000 500 74 s 3278.55 0.998 

GWO 500 1000 19 s 431.97 0.998 

 

According to Tables 5 to 12, GWO provided the highest accuracy (smallest RMSE and largest 

correlation coefficient) and smallest processing time compared to PSO and GA for fitting the logistic, 

linear, logarithmic, quadratic, cubic, power, compound, and exponential-based equations for all five 

countries. It can be suggested that GWO is a sustainable optimizer due to its acceptable processing 

time compared with PSO and GA. Therefore, GWO was selected as the best optimizer by providing 

the highest accuracy values compared with PSO and GA. In general, it can be claimed that GWO, by 

suggesting the best parameter values for the functions presented in Table 2, increases outbreak 

prediction accuracy for COVID-19 in comparison with PSO and GA. Therefore, the functions derived 

by GWO were selected as the best predictors for this research.  

Tables 13 to 17 present the description and coefficients of the linear, logarithmic, quadratic, 

cubic, compound, power, exponential and logistic equations estimated by GWO. Tables 13 to 17 also 

present the RMSE and r-square values for each equation fitted to data for China, Italy, Iran, Germany 

and USA, respectively.  

 

Table 13. Model description for China fitted by GWO 

Model 

name 

Description RMSE r-

square 

Linear R = 3036,4 × x − 13509,84 5039.48 0.964 

Logarithmic R = −33948,15 +  27124,70 × log(x) 42714.93 0.718 

Quadratic R = −5080,88 + 1455,98 × x + 50,98 × x2 3710.16 0.98 

Cubic R = 3984,73 − 1790,2 × x + 308,52 × x2 − 5,53 × x3 2429.45 0.99 

Compound R = 1601,03 × 1.16x 24987.34 0.801 

Power R = 262,27 × x1,69  4078.99 0.98 

Exponential  R = 1601,03 × EXP(0,15 × x) 24987.34 0.801 

Logistic R = 85011,297/(1 + EXP(((4 × 4483,304) ∗ (9,423

− x)/85011,297) + 2)) 

2270.58 0.992 

 

 

Table 14. Model description for Italy fitted by GWO 

Model name Description RMSE r-

square 

Linear R = 663,71 × x − 5437,25 3642.44 0.713 

Logarithmic R = −7997,93 + 5162,83 × log(x) 9296.59 0.402 

Quadratic R = 2998,21 − 917,93 × x + 51,02 × x2 1272.1 0.965 



 

Cubic R = −978,55 + 506,05 × B2 − 61,95 × x2

+ 2,42 × x3 

324.33 0.997 

Compound R = 2,78 × 1,406x 12585.79 0.904 

Power R = 0,096 × x3,476 3450.96 0.984 

Exponential  R = 2,786 × EXP(0,341 × x) 12585.79 0.904 

Logistic R = 70731,084/(1

+ EXP(((4 × 3962,88)

× (23,88 − x)/70731,08)

+ 2)) 

187.15 0.999 

 

 

 

 Table 15. Model description for Iran fitted by GWO 

Model 

name 

Description RMSE r-square 

Linear R =  656,068 × x − 4527,69 1981.97 0.891 

Logarithmic R =  −7921,009 + 5449,784 × log(x) 8995.52 0.574 

Quadratic R =  310,48 − 251,09 × x + 29,26 × x2 310.027 0.997 

Cubic R =  902,33 − 463,02 × x + 46,07 × x2

− 0,36 × x3 

250.204 0.998 

Compound R =  13,26 × 1,33x 13635.014 0.748 

Power R =  0,51 × x3,09 1031.607 0.982 

Exponential  R =  13,26 × EXP(0,28 × x) 13635.014 0.748 

Logistic R =  21936,052/(1 + EXP(((4

∗ 1255,36) × (14,66

− x)/21936,052) + 2)) 

392.88 0.996 

 

 

 

Table 16. Model description for Germany fitted by GWO 

Model 

name 

Description RMSE r-

square 

Linear R =  128,421 × x − 1130,294 951.635 0.577 

Logarithmic R =  −1528,684 +  959,941 × log(x) 1878.672 0.3 

Quadratic R =  911,113 − 254,342 × x + 12,347 × x2 472.624 0.895 

Cubic R =  −478,087 + 243,097 × x − 27,118 × x2 + 0,848 × x3 196.809 0.981 

Compound R =  3,821 × 1,263x 431.975 0.996 



 

Power R =  0,937x2,021 1341.911 0.766 

Exponential  R = 3,821 × EXP(0,233 × x) 431.975 0.996 

Logistic R = 55179,669/(1 + EXP(((4 × 3740,457) × (30,49

− x)/55179,669) + 2)) 

55.546 0.998 

 

 

 

Table 17. Model description for USA fitted by GWO 

Model 

name 

Description RMSE r-square 

Linear R =  76,833 × x − 666,79 592.486 0.557 

Logarithmic R = −902,637 + 573,32 × log(x) 1135.124 0.289 

Quadratic R =  584,76 − 157,831 × x + 7,569 × x2 307.585 0.88 

Cubic R = −333,235 + 170,881 × x − 18,509 × x2 + 0,56 × x3 118.247 0.982 

Compound R =  6,296 × 1,214x 364.875 0.977 

Power R =  1,707 × x1,735 790.163 0.702 

Exponential  R =  6,296 × EXP(0,194 × x) 364.875 0.977 

Logistic R =  32604,552/(1 + EXP(((4 × 2288,932) × (30,303

− x)/32604,552) + 2)) 

22.354 0.999 

 

As is clear from Tables 13 to 17, in general, the logistic equation followed by the quadratic and 

cubic equations provided the smallest RMSE and the largest r-square values for the prediction of 

COVID-19 outbreak. The claim can also be considered from Figure 7 to 11, which presents the 

capability and trend of each model derived by GWO in the prediction of COVID-19 cases for China, 

Italy, Iran, Germany, and the USA, respectively.    



 

 

Figure 7. Fitness graph for China fitted by GWO 

  

 

Figure 8. Set of models for Italy fitted by GWO 

 



 

 

Figure 9. Set of models for Iran fitted by GWO 

 

 

Figure 10. Set of models for Germany fitted by GWO 

 



 

 

Figure 11. Set of models for USA fitted by GWO 

Figures 7 to 11 illustrate the fit of the models investigated in this paper. The best fit for the 

prediction of COVID-19 cases was achieved for the logistic model followed by cubic and quadratic 

models for China (Figure 7), logistic followed by cubic models for Italy (Figure 8), cubic followed by 

logistic and quadratic models for Iran (Figure 9), the logistic model for Germany (Figure 10), and 

logistic model for the USA (Figure 11).  

 

Machine learning results 

This section presents the results for the training stage of ML methods. MLP and ANFIS were 

employed as single and hybrid ML methods, respectively. ML methods were trained using two 

datasets related to scenario 1 and scenario 2. Table 14 presents the results of the training phase. 

Table 18. Results for the training phase of the ML methods 

 Scenario 1 Scenario2 

 MLP ANFIS MLP ANFIS 

 
No. of 

neurons 
r RMSE 

MF 

type 
r RMSE 

No. of 

neurons 
r RMSE 

MF 

type 
r RMSE 

Italy 

8 0.999 190.81 Tri. 0.999 189.76 8 0.999 199.52 Tri. 0.999 188.55 

12 0.999 194.84 Trap. 
0 

.841 
3743.63 12 0.999 195.79 Trap. 0.876 3276 

16 0.999 188.18 Gauss 0.998 320.93 16 0.999 195.2 Gauss 0.999 206.66 

Average 0.999 191.27  0.946 1418.1 Average 0.999 196.83  0.958 1223.73 

China 8 0.995 2287.55 Tri. 0.996 2293.09 8 0.996 2265.95 Tri. 0.996 2272.13 



 

12 0.996 2259.95 Trap. 0.987 4231.05 12 0.996 2285.73 Trap. 0.989 3835.34 

16 0.995 2407.16 Gauss 0.996 2358.3 16 0.996 2260.05 Gauss 0.996 2272.58 

Average 0.995 2318.22  0.993 2960.81 Average 0.996 2270.57  0.993 2793.35 

Iran 

8 0.998 392.17 Tri. 0.998 395.33 8 0.998 404.21 Tri. 0.998 394.04 

12 0.998 391.04 Trap. 0.977 1282.33 12 0.998 392.77 Trap. 0.986 994 

16 0.998 392.19 Gauss 0.998 396.51 16 0.998 395.43 Gauss 0.998 391.96 

Average 0.998 391.8  0.991 391.39 Average 0.998 397.47  0.994 593.33 

Germany 

8 0.999 55.6 Tri. 0.999 56.25 8 0.999 55.58 Tri. 0.999 55.63 

12 0.999 55.38 Trap. 0.12 1658.7 12 0.999 55.56 Trap. 0.13 1537.26 

16 0.999 55.58 Gauss 0.998 154.99 16 0.999 55.56 Gauss 0.999 62.91 

Average 0.999 55.52  0.705 623.31 Average 0.999 55.56  0.709 551.93 

USA 

8 0.999 21.65 Tri. 0.999 21.75 8 0.999 22.31 Tri. 0.999 22.52 

12 0.999 22.36 Trap. 0.22 861.08 12 0.999 22.3 Trap. 0.2 935.41 

16 0.999 22.31 Gauss 0.998 86.32 16 0.999 22.4 Gauss 0.999 25.03 

Average 0.999 22.1  0.739 323.05 Average 0.999 22.33  0.739 327.65 

 

According to Table 18, the dataset related to scenarios 1 and 2 have different performance values. 

Accordingly, for Italy, the MLP with 16 neurons provided the highest accuracy for scenario 1 and 

ANFIS with tri. MF provided the highest accuracy for scenario 2. By considering the average values 

of the RMSE and correlation coefficient, it can be concluded that scenario 1 is more suitable for 

modeling outbreak cases in Italy, as it provides a higher accuracy (the smallest RMSE and the largest 

correlation coefficient) than scenario 2.  

For the dataset related to China, for both scenarios, MLP with 12 and 16 neurons, respectively 

for scenarios 1 and 2, provided the highest accuracy compared with the ANFIS model. By considering 

the average values of RMSE and correlation coefficient, it can be concluded that scenario 2 with a 

larger average correlation coefficient and smaller average RMSE than scenario 1 is more suitable for 

modeling the outbreak in China.  

For the dataset of Iran, MLP with 12 neurons in the hidden layer for scenario 1 and ANFIS with 

Gaussian MF type for scenario 2 provided the best performance for the prediction of the outbreak. 

By considering the average values of the RMSE and correlation coefficient, it can be concluded that 

scenario 1 provided better performance than scenario 2. Also, in general, the MLP has higher 

prediction accuracy compared with the ANFIS method.  

In Germany, MLP with 12 neurons in its hidden layer provided the highest accuracy (smallest 

RMSE and largest correlation coefficient). By considering the average values of the RMSE and 

correlation coefficient, it can be concluded that scenario 1 is more suitable for the prediction of the 

outbreak in Germany than scenario 2. 

In the USA, the MLP with 8 and 12 neurons, respectively, for scenarios 1 and 2, provided higher 

accuracy (the smallest RMSE and the largest correlation coefficient values) than the ANFIS model. By 

considering the average values of the RMSE and correlation coefficient values, it can be concluded 

that scenario 1 is more suitable than scenario 2, and MLP is more suitable than ANFIS for outbreak 

prediction.  

Figures 12 to 16 present the model fits for Italy, China, Iran, Germany, and the USA, respectively. 

By comparing Figure 12 to 16 with Figures 7 to 11, it can be concluded that the MLP and the logistic 

model fitted by GWO provided a better fit than the other models. In addition, the ML methods 

provided better performance compared with other models.  

 



 

 

Figure 12. Set of models for Italy fitted by ML methods 

 

 

 

Figure 13. Set of models for China fitted by ML methods 

 



 

 

Figure 14. Set of models for Iran fitted by ML methods 

 

 

Figure 15. Set of models for Germany fitted by ML methods 

 



 

 

Figure 16. Set of models for USA fitted by ML methods 

Comparing the fitted models  

This section presents a comparison of the accuracy and performance of the selected models for 

the prediction of 30 days’ outbreak. Figure 17 to 21 shows the deviation from the target values for the 

selected models.  

 

Figure 17. Deviation from target value for models related to Italy 

 



 

 

Figure 18. Deviation from target value for models related to China 

 

 

Figure 19. Deviation from target value for models related to Iran 

 

 

Figure 20. Deviation from target value for models related to Germany 



 

 

 

Figure 21. Deviation from target value for models related to USA 

 

As is clear from Figure 17 to 21, the smallest deviation from the target values is related to the 

MLP for scenario 1 followed by MLP for scenario 2. This indicates the highest performance of the 

MLP method for the prediction of the outbreak.  

Figures 22 to 26 present the outbreak prediction for 75 days and Tables 19 to 23 present the 

outbreak prediction for 150 days.  

 

 

Figure 22. The outbreak prediction for Italy through 75 days 

 



 

Table 19. The outbreak prediction for Italy through 150 days 

 
Logistic 

by GWO 

Linear by 

GWO 

Logarithmic 

by GWO 

Quadratic 

by GWO 

Power by 

GWO 
MLP ANFIS 

Day 

20th  
3794.045 7837.054 -1280.93 5047.906 3225.523 3792.734 3796.738 

Day 

40th 
58966.55 21111.37 273.235 47914.4 35898.08 58966.74 58964.96 

Day 

60th  
70571.86 34385.68 1182.365 131597.7 146966.2 70571.66 70572.12 

Day 

80th  
70729.28 47659.99 1827.402 256097.8 399523.4 70729.27 70729.15 

Day 

100th  
70731.06 60934.31 2327.733 421414.7 867822 70731.09 70730.93 

Day 

120th  
70731.08 74208.62 2736.532 627548.4 1635643 70731.14 70730.87 

Day 

140th 
70731.08 87482.94 3082.167 874498.9 2795218 70731.19 70730.79 

Day 

150th  
70731.08 94120.09 3236.862 1013280 3552851 70731.21 70730.75 

 

 

 

Figure 23. The outbreak prediction for China through 75 days 

 

Table 20. The outbreak prediction for China through 150 days 

 
Logistic 

by GWO 

Linear by 

GWO 

Logarithmic 

by GWO 

Quadratic 

by GWO 

Power by 

GWO 
MLP ANFIS 



 

Day 

20th  
47397.6 47218.47 1341.899 44431.48 41916.55 47397.6 47360.98 

Day 

40th 
84030.16 107946.8 9507.249 134729.1 135599.1 84030.17 84030.39 

Day 

60th  
84996.7 168675.1 14283.67 265812 269471.3 84996.7 84996.67 

Day 

80th  
85011.08 229403.4 17672.6 437680.2 438660.2 85011.08 85011.05 

Day 

100th  
85011.29 290131.7 20301.26 650333.6 640132.8 85011.3 85011.22 

Day 

120th  
85011.3 350860 22449.02 903772.3 871733.6 85011.34 85011.13 

Day 

140th 
85011.3 411588.3 24264.94 1197996 1131815 85011.38 85011.05 

Day 

150th  
85011.3 441952.5 25077.68 1360403 1272113 85011.41 85011.01 

 

 

 

Figure 24. The outbreak prediction for Iran through 75 days 

 

Table 21. The outbreak prediction for Iran through 150 days 

 Logistic by GWO 
Linear by 

GWO 

Logarithmic 

by GWO 

Quadratic 

by GWO 

Power by 

GWO 
MLP ANFIS 

Day 20th  6898.344 8593.676 -830.677 6993.955 5494.377 6902.315 6875.585 

Day 40th 21455.58 21715.05 809.8719 37087.98 47060.48 21457.4 21456.65 

Day 60th  21931.01 34836.43 1769.531 90592.56 165300.1 21932.24 21930.68 



 

Day 80th  21936 47957.8 2450.42 167507.7 403082.8 21935.1 21935.54 

Day 100th  21936.05 61079.18 2978.559 267833.4 804764.4 21935.11 21935.6 

Day 120th  21936.05 74200.55 3410.08 391569.6 1415829 21935.12 21935.63 

Day 140th 21936.05 87321.93 3774.925 538716.4 2282679 21935.13 21935.65 

Day 150th  21936.05 93882.61 3938.219 621068.7 2826737 21935.13 21935.67 

 

 

 

Figure 25. The outbreak prediction for Germany through 75 days 

 

 

Table 22. The outbreak prediction for Germany through 150 days 

 Logistic by 

GWO 

Linear by 

GWO 

Logarithmic by 

GWO 

Quadratic by 

GWO 

Power by 

GWO 

MLP ANFIS 

Day 

20th  431.027 1438.128 -279.772 763.1467 400.0548 432.8991 431.8119 

Day 

40th 35356.27 4006.551 9.199328 10492.96 1624.405 35355.14 35355.72 

Day 

60th  55043.44 6574.974 178.2366 30100.56 3687.126 55036.14 55044.03 

Day 

80th  55179.07 9143.397 298.1705 59585.93 6595.829 55179.05 55178.88 

Day 

100th  55179.67 11711.82 391.1984 98949.09 10355.87 55179.9 55179.47 

Day 

120th  55179.67 14280.24 467.2078 148190 14971.42 55179.92 55179.42 



 

Day 

140th 55179.67 16848.66 531.4728 207308.7 20445.86 55179.94 55179.37 

Day 

150th  55179.67 18132.88 560.2357 240572.3 23506.09 55179.96 55179.35 

 

 

 

Figure 26. The outbreak prediction for the USA through 75 days 

 

Table 23. The outbreak prediction for the USA for 150 days 

 Logistic by 

GWO 

Linear by 

GWO 

Logarithmic by 

GWO 

Quadratic by 

GWO 

Power by 

GWO 

MLP ANFIS 

Day 

20th  
242.6091 869.8855 -156.73 456.0663 309.616 244.0038 243.6504 

Day 

40th 
21951.15 2406.562 15.85698 6383.264 1031.324 21942.25 21948.25 

Day 

60th  
32547.08 3943.238 116.8138 18366.35 2084.876 32552.6 32548.47 

Day 

80th  
32604.34 5479.914 188.4437 36405.33 3435.319 32606.19 32604.47 

Day 

100th  
32604.55 7016.591 244.0043 60500.21 5060.548 32606.63 32604.72 

Day 

120th  
32604.55 8553.267 289.4005 90650.97 6944.676 32606.7 32604.76 

Day 

140th 
32604.55 10089.94 327.7825 126857.6 9075.446 32606.78 32604.8 

Day 

150th  
32604.55 10858.28 344.9611 147231.9 10230.16 32606.81 32604.82 

 

 



 

4. Discussion 

The parameters of several simple mathematical models (i.e., logistic, linear, logarithmic, 

quadratic, cubic, compound, power and exponential) were fitted using GA, PSO, and GWO. The 

logistic model outperformed other methods and showed promising results on training for 30 days. 

Extrapolation of the prediction beyond the original observation range of 30-days should not be 

expected to be realistic considering the new statistics. The fitted models generally showed low 

accuracy and also weak generalization ability for the five countries. Although the prediction for 

China was promising, the model was insufficient for extrapolation, as expected. In turn, the logistic 

GWO outperformed the PSO and GA and the computational cost for GWO was reported as 

satisfactory. Consequently, for further assessment of the ML models, the logistic model fitted with 

GWO was used for comparative analysis.  

In the next step, for introducing the machine learning methods for time-series prediction, two 

scenarios were proposed. Scenario 1 considered four data samples from the progress of the infection 

from previous days, as reported in table 3. The sampling for data processing was done weekly for 

scenario 1. However, scenario 2 was devoted to daily sampling for all previous consecutive days. 

Providing these two scenarios expanded the scope of this study. Training and test results for the two 

machine learning models (MLP and ANFIS) were considered for the two scenarios. A detailed 

investigation was also carried out to explore the most suitable number of neurons. For the MLP, the 

performances of using 8, 12 and 16 neurons were analyzed throughout the study. For the ANFIS, the 

membership function (MF) types of Tri, Trap, and Gauss were analyzed throughout the study. The 

five counties of Italy, China, Iran, Germany, and USA were considered. The performance of both ML 

models for these countries varied amongst the two different scenarios. Given the observed results, it 

is not possible to select the most suitable scenario. Therefore, both daily and weekly sampling can be 

used in machine learning modeling. Comparison between analytical and machine learning models 

using the deviation from the target value (figures 17 to 21) indicated that the MLP in both scenarios 

delivered the most accurate results. Extrapolation for long-term prediction of up to 150 days using 

the ML models was tested. The actual prediction of MLP and ANFIS for the five countries was 

reported which showed the progression of the outbreak. 

5. Conclusions 

The global pandemic of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) has 

become the primary national security issue of many nations. Advancement of accurate prediction 

models for the outbreak is essential to provide insights into the spread and consequences of this 

infectious disease. Due to the high level of uncertainty and lack of crucial data, standard 

epidemiological models have shown low accuracy for long-term prediction. This paper presents a 

comparative analysis of ML and soft computing models to predict the COVID-19 outbreak. The 

results of two ML models (MLP and ANFIS) reported a high generalization ability for long-term 

prediction. With respect to the results reported in this paper and due to the highly complex nature of 

the COVID-19 outbreak and differences from nation-to-nation, this study suggests ML as an effective 

tool to model the outbreak.    

For the advancement of higher performance models for long-term prediction, future research 

should be devoted to comparative studies on various ML models for individual countries. Due to the 

fundamental differences between the outbreak in various countries, advancement of global models 

with generalization ability would not be feasible. As observed and reported in many studies, it is 

unlikely that an individual outbreak will be replicated elsewhere [1]. 

Although the most difficult prediction is to estimate the maximum number of infected patients, 

estimation of the n(deaths) / n(infecteds) is also essential. The mortality rate is particularly important 

to accurately estimate the number of patients and the required beds in intensive care units. For future 

research, modeling the mortality rate would be of the utmost importance for nations to plan for new 

facilities.    

 

   



 

 

Nomenclatures 

Multi-layered perceptron MLP Grey wolf optimization GWO 

Adaptive network-based fuzzy inference system ANFIS Mean square error MSE 

Susceptible-infected-recovered SIR Root mean square error RMSE 

Call data record  CDR Artificial intelligence AI 

Classification and regression tree CART Artificial neural network ANN 

Evolutionary algorithms EA Triangular  Tri. 

Genetic algorithm GA Gaussian Gauss. 

Particle swarm optimization PSO Trapezoidal Trap. 

Membership function MF Machine learning  ML 
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