
EasyChair Preprint

№ 692

LESS: Logging Exploiting SnapShot

Hanseung Sung, Minhwa Jin, Mincheol Shin, Hongchan Roh,
Wongi Choi and Sanghyun Park

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 23, 2018

LESS: Logging Exploiting SnapShot

Hanseung Sung*, Minhwa Jin*§, Mincheol Shin*, Hongchan Roh**, Wongi Choi*, Sanghyun Park*†

*Department of Computer Science, Yonsei University

Seoul, Republic of Korea

{hssung, mhjin, smanioso, cwk1412, sanghyun}@yonsei.ac.kr

**ICT R&D Center, SK Telecom

Seoul, Republic of Korea

hongchan.roh@sk.com

Abstract— The in-memory key-value store provides a

persistence method to ensure data durability. The currently

provided methods are either to create a snapshot file of a current

dataset or to write the log of the performed command in the log

file. However, the snapshot method has a risk of data loss and

append only logging method cause a system failure due to an

increase in log file size. To prevent excessive AOF file size growth,

the in-memory key-value store provides a reconstruction method,

but also a performance degradation and excessive memory usage

occur. In this paper, we propose a new persistence method for

effective memory usage and throughput. The new approach is

called Logging Exploiting SnapShot (LESS). LESS is a method

that combines the advantages of a snapshot using low memory

usage and the benefits of an append only logging method that

guarantees data persistence. We implemented LESS on Redis

and conducted experiments. A benchmark test demonstrated that

the proposed approach reduces the maximum memory usage by

57% and it is 2.7 times faster than the original approach. Overall,

the experimental results showed that LESS is effective for Redis.

Keywords—NoSQL, In-memory Key-Value Store, Redis,

Persistence Method, Recovery

I. INTRODUCTION

Redis, the most famous key-value store available[1-6],
provided two persistence methods to guarantee the data
durability from the volatility of DRAM. First, the Redis
Database file (RDB) is a method for saving to persistence
storage such as HDD or SSD in the form of a compact binary
dataset to a point in time. The other method, Append Only File
(AOF), logs all commands to update the dataset into an AOF
file. For greater durability, Redis mainly uses the AOF method
because RDB may not guarantee the data durability of the
newly inserted data immediately after RDB file generation.
However, as data continue to be inserted into Redis, the AOF
file size increases. The bigger the size of the AOF file is, the
slower the Redis performance and the recovery time become.
Redis supports the AOF Rewrite method to prevent the AOF
file size from growing exponentially. The AOF Rewrite
method is a reconstruction method that reduces the size of the
currently stored AOF file which also results in excessive
memory usage during this process. Increasing the memory
usage during the AOF Rewrite process degrades the Redis
performance.

§ This author contributed equality to this work.
† Corresponding author.

In this paper, we propose a novel persistence method for
Redis called Logging Exploiting SnapShot (LESS) for
troubleshooting problems when performing an AOF Rewrite.
LESS is a persistence method that exploits the generation of
RDB instead of generating the shortest sequence of log records.
Furthermore, the log records are written directly to the new
AOF file instead of being stored in the AOF Rewrite buffer
which causes excessive memory usage. LESS increases the
available memory space for storing a dataset as compared to
the original approach. Moreover, LESS has been reduced in a
blocking state compared to the original persistence methods
during a workload, which denotes the high availability of our
approach.

II. BACKGROUND

A. RDB (Snapshot)

The RDB method generates point-in-time snapshots of a
dataset at specific intervals. Given that Redis is a single thread-
based process, requests received from a client are delayed
during generation of RDB for the main process. To avoid a
performance degradation from a request delay, Redis creates a
child process to generate the RDB using a fork system call. The
child process generates the RDB utilizing the copy-on-write
method[7]. The RDB method has an advantage of smaller file
size than the AOF when loading a dataset of the same size.
Additionally, the recovery speed of RDB exceeds that of the
AOF for the same dataset. However, if a system crash occurs
before the RDB file is recreated, all data loaded during that
time will be lost. Owing to this problem, the durability of the
dataset is not guaranteed after the creation of the RDB.
Furthermore, as the dataset grows larger in size, the CPU usage
for generating the RDB increases significantly. Under this
situation, the request received from a client takes milliseconds
or even a full second because of CPU overhead.

B. AOF (Append Only File)

The AOF is a method that writes all log records in an AOF
file whenever a key-value pair is inserted, modified, or deleted.
When a command modifying the key-value data is requested, it
stores the requested key-value pair in the dataset. Next, the log
record for the stored key-value pair is stored in the AOF buffer.
Subsequently, the log records stored in the AOF buffer are
guaranteed to be written to the AOF file using the fsync
function.

The durability of the AOF persistence method surpasses the
RDB because the AOF stores a record of all data changes.
Accordingly, Redis performs the recovery using an AOF file if
such a file and an RDB file exist. However, when using the
AOF, Redis is slower than other methods because the AOF
method creates a disk I/O while continuously writing log
records to the disk. In addition, the AOF file size exceeds the
RDB file size for the same dataset.

C. AOF Rewrite

Using AOF mode, the size of the AOF file increases
linearly because data are continuously inserted into Redis.
Increasing the size of AOF file results in performance
degradation and excessive resource usage. In addition, Redis
takes a long time to recover when using the AOF if the size of
the AOF file continues to increase.

To solve these problems of the AOF method, Redis
provides an AOF Rewrite method for reconstructing the size of
an AOF file by preserving only log records for the final state of
the current dataset. The AOF Rewrite method is triggered
when the AOF file exceeds the threshold size. The AOF
Rewrite operation process is as follows. First, if an AOF
Rewrite method is triggered, Redis creates a child process
using a fork system call. AOF Rewrite also exploits the copy-
on-write mechanism. Then, the child process creates a
temporary AOF file and generates the shortest sequence of
SET log records. During an AOF Rewrite, log records
generated by the main process are appended in the current
AOF file. The logs are also stored in the AOF Rewrite buffer.
If the child process completes the generation of a temporary
AOF file, a terminal signal is sent to the main process. After
the main process receives a terminal signal, the main process
flushes the log records in the AOF Rewrite buffer to the
temporary AOF file. Finally, Redis renames the temporary
AOF file to the current AOF file and changes the file to write
the log records from the current AOF file to the temporary
AOF file.

III. MOTIVATION

AOF Rewrite causes two problems, namely, memory
overhead and throughput degradation.

• Memory overhead: After an AOF Rewrite is triggered,
the log record for the newly requested key-value pair is
stored in both the AOF buffer and Rewrite buffer until
the child process completes the generation of a
temporary AOF file. That is, the log records of the same
contents are simultaneously written to two buffers.
Therefore, the AOF Rewrite method causes an out-of-
memory to occur when executed on systems with
limited memory capacity.

• Throughput degradation: Redis is a single thread-
based process. This means that only one command can
be processed at a particular time. When the child
process completes the creation of the temporary AOF
file, the main process appends all log records stored in
the Rewrite buffer to a temporary AOF file. If a new
key-value pair insertion is requested from the client
while the main process is performing the flush

operation, the request waits until the operation of
writing the contents of the Rewrite buffer to the
temporary file is completed. A delay in requests leads to
a decline of the overall throughput.

0

10,000

20,000

30,000

40,000

50,000

0

1

2

3

4

5

6

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171

T
h
ro

g
u
h
p
u
t(

o
p
s/

se
c)

M
e
m

o
ry

 U
sa

g
e
(G

B
)

Time(sec)

Total Memory Usage AOF Rewrite Buffer Memory Usage Throughput(ops/sec)
Fig. 1. An experiment with workloads to conduct an AOF Rewrite. The x-axis

represents the flow of time during the workload, and the y-axis represents the

memory usage and throughput over time.

We experimented with using the Memtier-benchmark[8] to

verify memory overhead and throughput degradation. An
experiment was conducted to simulate the workload of hot data
that are frequently updated by users. This is because there is no
variation in the size of the data, but the effect of the AOF file
can be identified. A workload composed of 100,000 SET
commands and 900,000 duplicated SET commands was used.
The key and value size applied in the requests correspond to
16B and 10KB, respectively.

The experiment result is shown in Figure 1. Figure 1
indicates that the memory usage increases sharply and the
throughput is zero during the workload. The AOF Rewrite
occurred four times during the following elapse-time durations:
3-8s, 13-26s, 60-133s, and 175-177s. When the AOF Rewrite
occurs in Redis, the amount of AOF Rewrite buffer memory
usage is increased. Similarly, the overall memory usage
increased in proportion with the AOF Rewrite buffer memory
usage. Moreover, the throughput was declined because Redis
incurs CPU overhead during the generation of command logs
when inserting key-value pairs into the dataset. During a
certain period of using the AOF Rewrite buffer, no operations
were conducted because the main process in Redis has to write
log records in the AOF Rewrite buffer to a temporary AOF file.

IV. DESIGN

A. LESS : Logging Exploiting SnapShot

Our approach was designed to reduce the memory usage
and improve the performance of Redis. The LESS method
creates an RDB file when Redis begins to conduct an AOF
Rewrite, as opposed to creating log records by inserting key-
value pairs. Algorithm 1 describes the overall process of LESS.

Rewrite
Buffer

AOF
Buffer

Dataset
Client

Request

Memory(DRAM)

Disk(HDD or SSD)

Main
Process

Dataset
Child
Process

2. fork4. Append Command Logs

AOF File

3. Generate Temporary RDB File
& Create snapshot for current

dataset

Temp
RDB File

Temp
AOF File

1. Create Temporary AOF File
& Change AOF File descriptor

6. Remove

AOF File
RDB File

7. Rename
Temporary
RDB File

AOF File

6. Rename
Temporary
AOF File

5. Terminate child process
& Send a signal

Fig. 2. Operation procedure after LESS is triggered

Algorithm 1 LESS(AOF_Current_Size, AOF_LESS_Min_Size,

TempRDB, TempAOF, rdbSaveInfo)

 Input:

AOF_Current_Size: current AOF file size

AOF_LESS_Min_Size: Minimum AOF file size of starting LESS Method

TempRDB: Filename of temporary RDB

TempAOF: Filename of temporary AOF

rdbSaveInfo : Metadata to the RDB file

 Output: none

 /* Start LESS method */

1 if AOF_Current_Size > AOF_LESS_Min_Size then

 /* Create Temp AOF file */

2 TempAOF_fd ← createFile(TempAOF)

 /* Change File Descriptor to Temp AOF file, command logs are stored to

Temp AOF */

3 AOF_fd ← TempAOF_fd

 /* Create Child Process using fork system call */

4 childpid ← fork()

5 if childpid == 0 then /* Child process */

 /* Generate Temp RDB file*/

6 retval = rdbGenerate(TempRDB, rdbSaveInfo)

7 if retval == OK then

 /* Send terminate signal to parent process */

8 exitCode ← OK

9 exitFromChild(exitCode)

10 else /* Parent process */

 /* This procedure everything directly called here will be called 10 times per

second */

11 ServerCron :

12 if TerminalChild() == True then

13 exitCode ← readexitCode()

14 if exitCode == OK then

 /* If success generating RDB file, rename AOF & RDB file */

15 renameFile(TempAOF, AOF_filename)

16 renameFile(TempRDB, RDB_filename)

17 End Procedure

18 End

LESS operates the same as the AOF method until it is
triggered. LESS is triggered when the AOF file size exceeds
the threshold. The detailed procedure for LESS is as follows.

In this case, as shown in Figure 2, the main process creates
a temporary AOF file and changes the AOF file descriptor to
this temporary AOF file. The child process is then forked and a
snapshot file is created for the current dataset. While the child
process generates an RDB, the main process calls a fsync
function to ensure that log records in the AOF buffer are
written to the temporary AOF file that the AOF file descriptor
is pointing to. Requests newly received from the client during
LESS operation are processed through the main process.

After the creation of an RDB file for the child process, the
procedure is as follows. First, the child process sends a
terminal signal to the main process. Then, the main process
renames the name of the temporary AOF file to the name of the
current AOF file and subsequently changes the name of the
temporary RDB file to the name of the current RDB file. When
the LESS operation is complete, the AOF and RDB files are
stored separately on a disk.

There are two main differences between LESS and AOF
Rewrite. First, LESS does not use a Rewrite buffer, which is
used in the AOF Rewrite. It writes the log record directly in the
AOF file. Thus, the memory usage of LESS is smaller than that
of AOF Rewrite. Second, the AOF Rewrite method generates

an AOF file, but with the LESS method, the child process
generates a serialized RDB file as opposed to an AOF file.
Therefore, the disk I/O of the LESS method is relatively lighter
than the AOF Rewrite. For this reason, the proposed approach
increases the throughput compared to the AOF Rewrite method.

LESS does not use Rewrite buffer and does not perform an
append operation in the main process. Because a Rewrite
buffer is not used, the memory usage does not sharply increase
with LESS. As a result, LESS is safe from an out-of-memory
occurrence when compared to AOF Rewrite. Furthermore,
with respect to the same memory capacity, our approach
increases the available memory space to store the dataset when
compared to the original persistence methods. In addition,
LESS does not conduct a heavy disk I/O caused by the
merging operation performed by the AOF. Our suggestion
solves the heavy disk I/O problem by storing the files
separately rather than merging contents of Rewrite buffer and
temporary AOF file.

Therefore, the proposed approach has an advantage with

regard to memory usage and avoiding a heavy disk I/O

because real-time processing applications using Redis receives

a quick and continuous response, thereby denoting the high

availability of the proposed approach.

B. LESS Recovery Mechanism

The recovery mechanism of LESS for cases which a failure
occurs is described as follows. If a system crash occurs
between the creation of a temporary AOF file and temporary
RDB file, the existing files on disk are AOF, Temporary AOF,
and RDB files. In this case, the AOF and Temporary AOF
guarantee the durability of the data after the creation of the
RDB file. Therefore, LESS conducts a recovery using the RDB
file to reorganize the dataset and then reads the AOF and
Temporary AOF files to replay the command logs. If a crash
occurs during the generation of an RDB file, the existing files
on disk are AOF, Temporary AOF, RDB, and Temporary RDB
files. As in the previous case, LESS conducts a recovery using
RDB, AOF, and Temporary AOF files. If a crash occurs after
the Temporary AOF file is renamed, the existing files on disk
are AOF, RDB, and Temporary RDB files. In this case, the
Temporary RDB and AOF files guarantee the durability of the
data. Therefore, LESS conducts a recovery using the
Temporary RDB and AOF files. Finally, when LESS
completes its process, the existing files on disk are AOF, and
RDB files. In this case, LESS conducts a recovery using the
RDB file and then reads the AOF file to replay the command
logs.

V. EXPERIMENTAL EVALUATION

A. Experiment Setting

We conducted all experiments by comparing the AOF to
LESS in terms of memory usage and throughput of the
workload. RDB only mode is excluded from the experiment
because RDB only mode does not guarantee the durability of
the dataset. The hardware and software configurations for
experiments are shown in Table 1.

TABLE I. EXPERIMENT SETTING

Hardware Setting

CPU
Intel(R) Xeon(R) CPU E5-2660 v2 @

2.20GHz 10cores

RAM DDR3 64 GB

Disk(SSD) Crucial_CT250MX200SSD1 250 GB * 3

Software Setting

OS Cent OS 7.3.1611 (Core)

Linux Kernel Version 3.10.0-514.26.2.el7.x86_64

Redis Version 4.0.10

AOF Option Default(everysec)

Max memory Option 30 GB

Memtier benchmark

version
1.2.13

B. Experiments Comparing Our Approach to Original

Approach Using the Same Workload

This experiment compared the memory usage and
throughput with the LESS method according to the AOF mode
(Rewrite–On) processed for the same workload. The workload
used in this experiments is the same as that described in
Section 3.

0

1

2

3

4

5

1 11 21 31 41 51 61 71 81 91

M
em

o
ry

(G
B
)

Time(sec)

AOF(Rewrite-On) LESS

Fig. 3. Experimental results using the same workload in terms of memory

usage.

Fig. 4. Experimental results using the same workload in terms of throughput.

Figure 4 shows that LESS completed the workload in 64s,
whereas AOF mode completed the workload in 177s. The
throughput of the LESS is 2.7 times higher than that of the
AOF Rewrite. Compared to the AOF method, our approach has
no time during which the use of the memory increases rapidly,
as shown in Figure 3. Given that our approach writes log
records to a temporary AOF file instead of storing the log
records in the AOF Rewrite buffer; Our approach does not use
memory for the AOF Rewrite buffer. AOF mode increases the
memory usage dramatically because of the use of this buffer.

The results show that the original method can cause an out-of-
memory problem to occur owing to the use of an AOF Rewrite
buffer.

Given that our approach also incurs CPU overhead during
the generation of an RDB file, an interval of degradation of the
throughput occurs, as shown in Figure 4. Nevertheless, our
approach does not conduct a heavy disk I/O during the flushing
of log records in the AOF Rewrite buffer.

As a result, our method improves the throughput over the
traditional method. There were fewer cases in which the
throughput was reduced to zero. Even when the throughput
was reduced to zero, there were almost no cases in which the
throughput continued at this level.

VI. CONCLUSTION

In this paper, we proposed a new persistence method of
Redis, for effective memory usage and throughput, which is
called LESS. It exploits the advantage of generating RDB as
opposed to AOF Rewrite. We conducted experiments
comparing LESS to a conventional method using the Memtier-
benchmark. The results show that the throughput of LESS is
2.7 times faster than an AOF Rewrite. The maximum memory
usage was reduced by up to 57% compared to an AOF Rewrite.
Since we implemented LESS directly in Redis code, LESS can
be immediately applied to practical areas by using Redis.

Our method has the advantage of being able to efficiently
use memory from an out-of-memory occurrence in systems
that provide limited memory usage. Consequently, LESS
outperforms the original method in terms of memory usage and
throughput for the Redis performance.

ACKNOWLEDGMENT

This research was supported by the MSIT (Ministry of
Science and ICT), Korea, under the SW Starlab support
program (IITP-2017-0-00477) supervised by the IITP (Institute
for Information & communications Technology Promotion).

REFERENCES

[1] Redis. https://redis.io/

[2] Memcached. https://memcached.org/

[3] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
14). Seattle, WA: USENIX Association, pp. 429–444, April 2014.

[4] J. Ousterhout, A. Gopalan, et al. “The RAMCloud Storage System,”
ACM Trans. Comput. Syst., 33(3):7:1–7:55, August 2015.

[5] Repcached. http://repcached.lab.klab.org/

[6] Ignite. https://ignite.apache.org/

[7] Copy-on-Write. https://en.wikipedia.org/wiki/Copy-on-write

[8] Memtier benchmark. https://redislabs.com/blog/memtier_benchmark-a-
high-throughput-benchmarking-tool-for-redis-memcached/

[9] M. Xu, X. Xu, J. Xu, Y. Ren, H. Zhang, and N. Zheng, “A Forensic
Analysis Method for Redis Database based on RDB and AOF File,” in
Journal of Computers, Vol 9, No 11, 2538-2544, November 2014.

[10] X. Bao, L. Liu, N. Xiao, Y. Lu, and W. Cao. “Persistence and Recovery
for In-Memory NoSQL Services: A Measurement Study” IEEE
International Conference on Web Services (ICWS) pp. 530-537, July
2016.

