

Fuzzy Temporal Non-Monotonic Reasoning

Poli Venkatasubba Reddy

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

January 15, 2024

Fuzzy Temporal Non-monotonic Reasoning

Poli Venkata Subba Reddy

Abstract— Non-monotonic reasoning is reasoning is kind of knowledge in which many conclusion will be drawn. The nonmonotonic problem is undividable. An undecided problem has no solution. Fuzzy logic will made undecided problem into decidable problem. Some time, fuzzy non-monotonic reasoning deal with fuzzy temporal constraint like pat, present feature etc. A young bird can fly but very young bird may not fly. In this paper, Fuzzy temporal non-monotonic reasoning is studied with unknown and known twofold fuzzy set to made undecided problem in to decidable. Fuzzy temporal truth maintenance system (FTTMS) is studied for computation of fuzzy non-monotonic reasoning. Some examples are given.

Keywords—non-monotonic reasoning, fuzzy Sets, twofold fuzzy sets, fuzzy non-monotonic reasoning, FTTMS, incomplete knowledge

I. INTRODUCTION

Non-monotonic reasoning will draw different conclusions and it is undecided reasoning. Sometimes Artificial Intelligence (AI) has to deal with undecided problems. Nonmonotonic problem is undecided. In non.-monotonic reasoning, if some knowledge is added to the system then the conclusion will be changed, if knowledge base is incomplete then the reasoning is also incomplete. Knowledge bases are collecting the facts and give the conclusion based on facts. If the knowledge is temporal; then the reasoning also changes. For instance, a young bird is kept in room. After sometime it is escaped. Whether the bird can fly or not? Here age of the bird is involved.

John McCarthy [5] formalized non-monotonic reasoning with predicates P(x1,x2,...,xn) for the propositions of type "x is A".

The non-monotonic logic may be defined as $\forall x (P(x) \land Q(x) \rightarrow R(x))$ $\exists P(x) \land Q(x) \rightarrow_{\neg} R(x)$ For instance, $\forall x (bird(x) \land wings(x) \rightarrow fly(x))$ $bird(peacock) \land wings(peacock) \rightarrow fly(peacock)$ $\exists x (bird(x) \land wings(x) \rightarrow f) \rightarrow_{\neg} fly(x))$

 $\exists x (bird(penguin) \land wings(penguin) \rightarrow fly(penguin))$

I. FUZZY LOGIC

Zadeh [15] fuzzy logic is based on belief rather than probable (likelihood). The fuzzy logic made imprecise information in to precise.

Zadeh fuzzy logic is characterized by single membership function.

Zadeh[16] has introduced fuzzy set as a model to deal with incomplete information. Fuzzy set is a class of objects with a continuum of grades.

The set A of X is characterized by its membership function $\mu_A(x)$ and ranging values in the unit interval [0, 1]

 $\mu_A(x)$: X \rightarrow [0, 1], x \in X, where X is Universe of discourse.

A = $\mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + ... + \mu_A(a_n)/x_n$, where "+" is union

 $\mu_{\text{bird}}(x) = \mu_{\text{bird}}(x_1)/x_1 + \mu_{\text{bird}}(x_2)/x_2 + \ldots + \mu_{\text{bird}}(x_n)/x_n$

$$\begin{split} \mu_{bird}(x) &= \mu_{bird}(x_1)/x_1 + \mu_{bird}(x_2)/x_2 + \ldots + \mu_{bird}(x_n)/x_n \\ \mu_{bird}(x) &= 0.1/\text{Penguin} + 0.3/\text{Hen} + 0.5/\text{Cock} + 0.6/\text{Parrot} + \\ 0.8/\text{eagle} + 1.0/\text{flamingos} \end{split}$$

$\mu_{A}(x) = 1 - \mu_{A}(x)$	Negation
$\mu_{A}(x) \Lambda \mu_{A}(x) = \min\{ \mu_{A}(x) \Lambda, \mu_{A}(x) \}$	Conjunction
$\mu_A(\mathbf{x}) \nabla \mu_A(\mathbf{x}) = \max \{ \mu_A(\mathbf{x}), \mu_A(\mathbf{x}) \}$	Disjunction
$\mu_{QA}(x) = \mu_A(x)^q$	Quantifier

The fuzzy rules are of the form "if <Precedent Part> then <Consequent Part>"

if x is P the n x is Q.

. if x is P_1 and x is P_2 x is P_n then x is Q

The Zadeh [14] fuzzy conditional inference s given by if x is P₁ and x is P₂ x is P_n then x is Q = min 1, $(1-\min(\mu_{P1}(x), \mu_{P2}(x), ..., \mu_{Pn}(x)) + \mu_Q(x))$ (2.1)

The Mamdani [8] fuzzy conditional inference s given by if x is P₁ and x is P₂ ..., x is P_n then x is Q = $\min \{\mu_{P1}(x), \mu_{P2}(x), ..., \mu_{Pn}(x), \mu_{Q}(x)\}$ (2.2)

The fuzzy conditional inference may be derived "Consequent Part" from "Precedent Part". [15].

Fuzzy conditional inference is given by fuzzy conditional inference

If x is then x is $Q = {\mu_P(x)}$

if x is P₁ and x is P₂ ... x is P_n then x is Q ={ min($\mu_{P1}(x), \mu_{P2}(x), ..., \mu_{Pn}(x),$)} (2.3)

 $P(x) \land Q(x) \rightarrow R(x) = \{P(x) \land Q(x)\}$

For instance, x is bird Λ x has wings \rightarrow x can fly = x is bird Λ x has wings

- x is bird A x has wings

II. FUZZY TEMPORAL NON-MONOTONIC REASONING

The temporal logic is logic with time constraints and Time variables "t1-t0" like "before", "meet", "after", where starting time t0 and ending time t1.

The time constraints are necessary to deal with data [1, 4]. Fuzzy temporal logic should deal with incomplete information of time constraints.

A temporal variable is " t_1 - t_0 ", where t0 is starting time and t1 ending time.

For instance "past"= t_1 - t_0 , $t_1 < t_0$

"Present" = t_1 approximately t_0

"feature"= t_1 - t_0 , $t_1 \ge t_0$

A fuzzy temporal set is set of temporal variables with interval" t1-t0".

Fuzzy Temporal non-monotonic reasoning May be formalized with fuzzy predicate for the proposition of type " x is A", when A is fuzzy set may be defined as

 $\begin{array}{l} \forall x \ (P(x) \land T(x) \rightarrow R(x)) \\ \forall x \ (P(x) \land T(x) \rightarrow_{\mathsf{T}} R(x) \\ \text{For instance} \\ \forall x \ (bird(x) \land young(x) \rightarrow fly(x)) \\ \forall x \ (bird(x) \land young(x) \rightarrow_{\mathsf{T}} fly(x)) \end{array}$

x is bird Λx is young Λx is unknown to fly $\rightarrow x$ can fly Suppose,

x is bird Λx is young Λx is unknown to fly $\rightarrow x$ can 't fly

x is bird Λx is young Λx is unknown to fly $\rightarrow x$ can't fly

For example,

Ozzie is bird Λ Ozzie is young Λ Ozzie is unknown to fly \rightarrow Ozzie can fly

Ozzie is bird Λ Ozzie is young Λ Ozzie is known to fly \rightarrow Ozzie can't fly

Ozzie is bird Λ Ozzie is young Λ Ozzie is unknown to fly \rightarrow Ozzie can fly

The fuzzy temporal non-monotonic logic may be defined as

 $\forall x (P(x) \land Q(x) \land T(x) \land R(x) \rightarrow S(x))$

 $\forall x (P(x) \land Q(x) \land T(x) \land R(x) \rightarrow S(x)$

For instance,

 $\forall x \text{ (bird(x) } \Lambda \text{ wings(x) } \Lambda \text{ young(x) } \Lambda \text{ unknown-of-fly(x)} \rightarrow \text{fly(x)})$

 $\forall x \ (bird(x) \ \Lambda \ wings(x) \ \Lambda \ young(x) \ \Lambda \ known-of-fly(x) \rightarrow_{\exists} fly(x)$

III. GENERALIZED FUZZY TEMPORAL NON-MONOTONIC REASONING

Zadeh [13] Proposed fuzzy set with single membership function. The two fold fuzzy set [12] will give more evidence than single membership function.

The fuzzy non-monotonic set may defined with two fold membership function using unknown and known

Definition: Given some Universe of discourse X, the proposition "x is P" is defined as its two fold fuzzy membership function as

$$\mu_P(\mathbf{x}) = \{\mu_P^{\text{unknown}}(\mathbf{x}), \, \mu^{\text{known}}(\mathbf{x})\}$$

 $\mathbf{P} = \{\mu_{\mathbf{P}}^{\text{unknown}}(\mathbf{x}), \, \mu_{\mathbf{P}}^{\text{known}}(\mathbf{x})\}$

Where P is Generalized fuzzy set and $x \in X$,

 $\underset{known)}{\mu_P(x)^{(unknown,\ known)}\Lambda}\ \mu_Q(x)\ ^{(unknown-,\ known)} \ \textbf{\ }\ \mu_S(x)\ ^{(unknown,\ known)}$

where P,Q and S are twofold fuzzy set known, known}.

 $\begin{array}{l} \mu_{\text{bird}}(x) \land \mu_{\text{wings}}(x) \not\rightarrow \mu_{\text{fly}}(x) \\ \mu_{\text{bird}}(x)^{(\text{unknown},\text{known})} \land \mu_{\text{wings}}(x)^{(\text{unknown},\text{known})} \not\rightarrow \mu_{\text{fly}}(x)^{(\text{unknown},\text{known})} \end{array}$

The conflict of the incomplete information may be defined by fuzzy certainty factor(FCF).

FCF =(unknown- known) $\mu^{FCF_{P}}(x) \rightarrow [0,1], x \in X$

 $\mu_{\text{bird}} FCF(\mathbf{x}) \rightarrow [0,1]$

Where known and unknown are the fuzzy membership functions.

The fuzzy non-monotonic reasoning will bring uncertain knowledge in to certain knowledge. $\mu_{\text{bird}}(x) \stackrel{(\text{unknown, known})}{\rightarrow} \mu_{flv}(x)$

$$\begin{array}{c} \mu_{P}(x) \stackrel{(unknown,known)}{\longrightarrow} \mu_{S}(x) \\ S = \mu_{S} \stackrel{FCF}{\longrightarrow} (x) = 1 \quad \mu_{P} \stackrel{FCF}{\longrightarrow} (x) < \alpha \\ 0 \quad \mu_{P} \stackrel{FCF}{\longrightarrow} (x) < \alpha \end{array}$$

$$\begin{array}{l} fly = \mu \, _{fly} \, ^{FCF} \left(x \, \right) = 1 \quad \mu \, _{bird} \, ^{FCF} \left(x \! > \! = \! 056 \right. \\ 0 \quad \mu \, _{bird} \, ^{FCF} \left(x \, \right) \! < \! 0.5 \end{array}$$

Bird = {0.2/penguin +0.3/Ozzie+ 0.8/parrot+ 0.9/waterfowl + 1.0/eagle, 0.1/penguin +0.2/Ozzie+ . 0.1/parrot+ 0.1/waterfowl + 0.1/eagle }

Wings= {0.1/penguin +0.3/Ozzie+ 0.7/parrot+ 0.8/waterfowl + 0.9/eagle, 0.0/penguin +0.1/Ozzie+. 0.2/parrot+ 0.1/waterfowl + 0.1/eagle }

Definition: The two fold fuzzy set for the proposition of the type "x is P" is given by

$$\mu_{P}(\mathbf{x}) = \{\mu_{P}^{unknown}(\mathbf{x}), \mu_{P}^{nunknown}(\mathbf{x})\}$$

 $\mu_{bird}^{FCF}(\mathbf{x}) = \{ \mu_{bird}^{unknown}(\mathbf{x}), - \mu_{bird}^{known}(\mathbf{x}) \}$

- = $\{0.2/\text{penguin} + 0.3/\text{Ozzie} + 0.8/\text{parrot} + 0.9/\text{waterfow}\} +$
- 1.0/eagle, 0.1/penguin +0.1/Ozzie+ . 0.1/parrot+
- 0.1/waterfowl + 0.1/eagle }
- = { 0.1/penguin +0.2/Ozzie+ . 0.7/parrot+ 0.8/waterfowl + 0.9/eagle }

 $\mu_{wings}^{FCF}(x) = \{ \mu_{wings}^{unknown}(x), - \mu_{wings}^{known}(x) \}$

wings= {0.1/penguin +0.3/Ozzie+ 0.7/parrot+ 0.8/waterfowl + 0.9/eagle, 0.0/penguin +0.1/Ozzie+ . 0.2/parrot+

0.1/waterfowl + 0.1/eagle }

= { 0.1/penguin +0.2/Ozzie+ . 0.5/parrot+ 0.6/waterfowl + 0.8/eagle }

 $\mu_{young}^{FCF}(x) = \{ \mu_{wings}^{unknown}(x), - \mu_{wings}^{known}(x) \}$

young= $\{0.3/\text{penguin} +0.4/\text{Ozzie} + 0.7/\text{parrot} + 0.8/\text{waterfowl} + 0.9/\text{eagle}, 0.0/\text{penguin} +0.1/\text{Ozzie} + .0.2/\text{parrot} + 0.3/\text{waterfowl} + 0.3/\text{eagle}\}$

= = { 0.3/penguin +0.4/Ozzie+ . 0.3/parrot+ 0.5/waterfowl + 0.6/eagle }

Using (2.3), fuzzy inference is given by if x is P_1 and x is $P_2 \dots x$ is P_n then x is Q

 $\ \ if \ \ x \ is \ P_1 \ and \ \ x \ is \ P_2 \ \ldots \ x \ \ is \ P_n \ then \ \ x \ is \ Q_1$

 $Q_1 \ = P_1 \ \Lambda P_2 \ \Lambda \dots \ \Lambda P_n$

The fuzzy temporal non-monotonic logic may be defined as

 $\forall x (P(x) \land Q(x) \land T(x) \land R(x) \rightarrow S(x))$

 $\forall x (P(x) \land Q(x) \land T(x) \land R(x) \rightarrow S(x)$

For instance,

 $\forall x \text{ (bird(x) } \Lambda \text{ wings(x) } \Lambda \text{ young(x) } \Lambda \text{ unknown-of-fly(x)} \rightarrow \text{fly}(x))$

 $\forall x \ (bird(x) \ \Lambda \ wings(x) \ \Lambda \ young(x) \ \Lambda \ known-of-fly(x) \rightarrow_{\exists} fly(x)$

The two statements combined with two fold fuzzy logic.

x is bird Λ x has wings Λ x is young \rightarrow x can fly

x can fly= x is bird Λ x is young Λ x has wings

 $\begin{array}{l} \mu_{bird}(x) \ \Lambda \ \mu_{wings}(x) \ \Lambda \ \mu_{young}(x) \ \rightarrow \ \mu_{fly}(x) \\ \{\mu_{bird}^{\ unknown}(x), \ \mu_{bird}^{\ known}(x)\} \ \Lambda \ \{ \ \mu_{bird}^{\ unknown}(x), \ \mu_{bird}^{\ known}(x) \} \\ \Lambda \ \{ \ \mu_{young}^{\ unknown}(x), \ \mu_{young}^{\ known}(x) \} = \mu_{fly}(x) \\ \mu_{bird}^{\ FCF}(x) \ \Lambda \ \mu_{wings}^{\ FCF}(x) \ \Lambda \ \mu_{youngs}^{\ FCF}(x) \ \rightarrow \ \mu_{fly}(x) \\ \text{ if } x \ is \ P_1 \ and \ P_2 \ \dots x \ is \ P_n \ then \ x \ is \ P_1 \ and \ P_2 \ \dots x \ is \ P_n \\ = \ min(\mu_{P1}(x), \ \mu_{P2}(x), \ \dots, \ \mu_{Pn}(x)) \\ \mu_{fly}(x) = \mu_{bird}^{\ FCF}(x) \ \Lambda \ \mu_{wings}^{\ FCF}(x) \end{array}$

 $\mu_{bird}^{FCF}(x) = \{0.1/\text{penguin} + 0.1/\text{Ozzie} + . 0.7/\text{parrot} + 0.8/\text{waterfowl} + 0.9/\text{eagle} \}$

 $\mu_{wings} \stackrel{FCF}{=} (x) \quad \mu_{wings}(x) = \{\mu_{wings} \stackrel{unknown}{=} (x), \mu_{wings} \stackrel{unknown}{=} (x)\}$

= { 0.1/penguin +0.2/Ozzie+ . 0.5/parrot+ 0.6/waterfowl + 0.8/eagle }

 $\mu_{young}^{FCF}(x) = \{\mu_{young}^{unknown}(x), \mu_{youngs}^{unknown}(x)\} \\ = \{0.3/penguin + 0.4/Ozzie+ . 0.3/parrot+ 0.5/waterfowl + 0.6/eagle \}$

Fuzzy conditional inference "consequent part "may be derived from "precedent part".

x is bird Λ x has wings Λ x is young \rightarrow x can fly

x can fly =min { x is bird , x has wings } = { 0.1/penguin +0.2/Ozzie+ . 0.3/parrot+ 0.5/waterfowl + 0.6/eagle } The inference of "x can fly" for $\alpha \ge 0.5$ is given by = 1/waterfowl + 1/eagle

Here fuzzy logic made incomplete information to precise information's. Some birds can fly and some birds can't fly. The fuzzy decision sets or quasi fuzzy set is defined by

$$\begin{array}{ll} R=\mu_{A}{}^{R}\left(x\right)=1 & \mu_{A}{}^{FCF}\left(x\right)\!\!>=\!\!\alpha, \\ 0 & \mu_{A}{}^{FCF}\left(x\right)\!\!<\!\!\alpha \end{array}$$

The parrot, waterfowl and eagle can fly. The penguin and Ozzie can't fly

The inference of "x can't fly" for $\alpha < 0.5$ is given by = 0/.1 penguin +0.2/Ozzie

The inference of "x can fly" for $\alpha \ge 0.5$ is given by = 0.6/parrot+ 0.6/waterfowl + 0.8/eagle

he parrot, waterfowl and eagle can fly and, penguin and Ozzie are can't fly.

IV. FUZZY TRUTH MAITANACE SYSTEM

Doyel [4] studied truth maintenance system TMS] for non-monotonic reasoning

The fuzzy truth maintenance system (FTTMS) for fuzzy non-monotonic reasoning using fuzzy conditional inference as

FTTMS is having There is list of justification and conditions.

if x is bird and x has wings and x is young then x can fly

List L(IN-node, OUT-node), FCF-node IN-node is unknown OUT-node is known FCF is (belirf-disbilief) Consider the proposition " if x is bird then x can fly) x is bird IN 0.9 OUT 0.1 FCF 0.8 Conclusion : x can fly if FCF>=0.5. x is bird IN 0.3 OUT 0.1 FCF 0.2 Conclusion :x can't fly if FCF<0.5.

Consider the proposition " if x has wings then x is fly) x has wings IN 0.8 **OUT 0.1** FCF 0.7 Conclusion : x can fly if $FCF \ge 0.5$. x has wings IN 0.3 **OUT 0.1** FCF 0.2 Conclusion :x can't fly if FCF<0.5. Consider the proposition " if x is young then x is fly) X is youngs IN 0.6 **OUT 0.1** FCF 0.5 Conclusion : x can fly if FCF>=0.5. x is young IN 05 OUT 0.1 FCF 0.4 Conclusion :x can't fly if FCF<0.5.

Consider the proposition " if x is bird and x has wings and x is young then x is fly)

x is bird IN 0.9 OUT 0.1 FCF1 0.8 x has wings IN 0.8 OUT 0.1 FCF2 0.7 X is young IN 0.6 OUT 0.1 FCF3 0.5

FCF=min{FCF1,FCF, FCF32}=0.5

Conclusion : x can fly if $FCF \ge 0.5$.

X is very young FCF3 0.5

FCF=min{FCF1,FCF2, FCF3}=0.25 Conclusion :x can't fly (if FC<0. 5.

Here is the fuzzy temporal no monotonic logic is making imprecise to precise.

V. CONCLUSION

Non-monotonic reasoning will give different concussions if some knowledge is added to the theory. Fuzzy non-

monotonic logic made imprecise to precise. A sometimes time constraint has to deal by fuzzy non-monotonic reasoning. A bird can't fly in the past but it can fly present and it can 'fly feature We have shown the difference between fuzzy temporal fuzzy non-monotonic reasoning and fuzzy monotonic reasoning..

ACKNOWLEDGMENT

The author thanks to Sri Venkateswara University for providing facilities to carry out this work.

REFERENCES

- B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert System: The MYCIN Experiments of the Stanford Heuristic Programming Project, Readings, Addition-Wesley, M.A, 1984.
- [2] A. Bochnan, A Logical Theory of Non-monotonoc Inference and Unknown Change, Springer 2001..
- [3] Allen, J.F. Natural Language Understanding, Benjamin Cummings, 1987, Second Edition, 1994.
- [4] J. Doyle, A Truth Maitance System, Artificial Intelligence, Vol.11, No.3, 1979.
- [5] Jhon McCarthy, Circumscription A Form of Non-monotonic Reasoning, Artificial Intelligence, Vol.13, pp.27-39, 1980.
- [6] W. Lukaszewicz (1990) Non-Monotonic Reasoning. Ellis-Horwood, Chichester, West Sussex, England.
- [7] Mathieu Beirlaen; Christian Straßer, Non-monotonic reasoning with normative conflicts in multi-agent deontic logic, Journal of Logic and Computation, Vo.24, Issue 6, 2014
- [8] E. H. Mamdani, Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis, IEEE Transactions on Computers, vol.C-28,issue.2, pp.1182-1191, 1977.
- [9] N. Rescher, Many-Valued Logic, McGrow-Hill, New York, 1969.
- [10] Poli Venkata Subba Reddy, <u>Fuzzy Non-Monotonic Logic</u>, SEIREA Journal of Computer, vol4,issue.1, pp.1-12.
- [11] Poli Venkata Subba Reddy, Fuzzy Truth Maintenance System for Non-Monotonic Reasoning, 2021 International Conference on Fuzzy Theory and Its Applications (iFuzzy 2021) IEEE XPlore, 2021.
- [12] Poli Venkata subba reddy, Fuzzy logic based on Unknown and known membership functions, Fuzzy Information and Engineering, Volume 9, Issue 4, December 2017, Pages 405-422. P
- [13] Poli Venkata subba Reddy, "Fuzzy Modulations for Knowledge Representation and Distributed Automated Fuzzy Reasoning System", International Journal of Computational Intelligence and Information Security, vol.1,no.2, pp.76-79, 2010.
- [14] H.Seki, H. Ishii, and M. Mizumoto, On the monotonicity of fuzzyinference methods related to T-S inference method, IEEE Trans. Fuzzy Systems, vol. 18, no. 3, pp. 629-634, 2010.
- [15] L.A. Zadeh, "Calculus of Fuzzy restrictions", Fuzzy sets and their applications to cognitive and decision processes, L.A.Zadeh,K.S.Fu,M.Shimura,Eds,New York, Academic, 1975, pp.1-39.
- [16] L.A Zadeh," Fuzzy sets", Information Control, vol.8, 3pp.38-353, 1965.
- [17] L.A Zadeh , A Note on Z-numbers, Fuzzy Information Science, vol.181, pp.2923-2932, 2011.
- [18] L.A Zadeh, fuzzy sets and Information Granularity, Selected Papers bt L.A. Zadeh,pp.432-448, 1979.