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Abstract—In this research paper, it is proved that lin-
ear/quadratic approximations to Shannon/Gibbs entropy lead to
Tsallis entropy, Sq(p) for q = 2/q = 3. Based on higher degree
approximations of logarithm, entropic polynomials are derived.
Linear approximation to Renyi entropy is also determined.

I. INTRODUCTION

Boltzmann introduced the concept of ”entropy” in an effort
to innovate the field of statistical mechanics. In the formu-
lation of Boltzmann, entropy of a uniform probability mass
function was defined. Gibbs, Shannon generalized the concept
of entropy for an arbitrary probability mass function. Shannon
placed ”information theory” on a sound mathematical basis
[Ash]. Various other types of entropy such as Renyi entropy
were defined and their properties are explored.

In recent years, Tsallis introduced an ”entropy measure”
in an effort to generalize statistical mechanics. In [Rama 1],
the author showed that a linear approximation to logarithmic
function will approximate Shannon/Gibbs entropy, H(X)
with Tsallis entropy Sq(p) with q = 2. In this research paper,
based on higher degree approximation of logarithm, Shannon
entropy is approximated by structured polynomials. It is also
shown that linear approximation to Renyi entropy also leads
to Tsallis entropy under some conditions.

This research paper is organized as follows. In section 2
motivation for approximations of Shannon/Gibbs entropy is
discussed. In section 3, based on higher degree approximation
of logarithm function, Shannon entropy is shown to lead to
structured polynomials with some properties. In section 4,
Tsallis entropy is shown to result as a linear approximation
to Renyi entropy under some conditions. The research paper
concludes in section 5.

II. MOTIVATION FOR APPROXIMATIONS

From the considerations of statistical physics, Tsallis intro-
duced a new entropy measure. For a long time, it is not clear
how such a novel entropy measure is related to Gibbs/Shannon
entropy. This research article sheds light on such a ques-
tion. More interestingly, using higher order approximations,
it is reasoned that NOVEL polynomial approximations to
Gibbs/Shannon entropy result naturally.

III. APPROXIMATIONS TO SHANNON AND GIBBS ENTROPY

Lemma 1. Consider a discrete random variable X with finite
support for the probability mass function. Under reasonable

assumptions, we have that H(X) ≈
(
1−

m∑
i=1

p2i

)
log2 e.

Proof. From the basic theory of infinite series, for |x| < 1,
we have that:
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Let pi = (1− qi) with 0 < pi < 1; then we have 0 < qi < 1.
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Now let us consider the entropy, H(X) of a discrete random
variable X which assumes finitely many values. We have that

H(X) = −
m∑
i=1

pi log2 pi

= −
m∑
i=1

(1− qi) log2(1− qi)

= −
m∑
i=1

(1− qi) loge(1− qi) log2 e

Now using the above infinite series and neglecting the terms
q2i
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4
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4 , . . . we have

H(X) ≈ −
m∑
i=1

(1− qi)(−qi) log2 e

=
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(1− qi)(qi) log2 e
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Remark 1: In the above approximation, the error term is∑
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It can be upper bounded by a geometric series q2i + q4i + q6i +

. . . =
q2i

1−q2i
. Thus, the approximations is good under some

conditions.
Remark 2: Thus, the square of the L2 − norm of the vector
corresponding to the probability mass function (of a discrete
random variable) is utilized to approximate the entropy of the
discrete random variable. In summary, we have that

H(X) ≈ f(p1, p2, . . . , pm) =
(
1−

m∑
i=1

p2i

)
log2 e.

Thus, an approximation to Gibbs-Shannon entropy naturally
leads to the scaled Tsallis entropy for the real parameter
q = 2. The quantity H(X) with the above approximation is
rounded-off to the nearest integer [Rama 4]. For continuous
case i.e., for probability density functions associated with
continuous random variables, similar results can easily be
derived.

We readily have that:
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It can be readily seen that quadratic approximation to log(.)
leads to Tsallis entropy for q = 3, i.e., S3(p). Now we
provide higher order approximation.

Suppose we truncate the infinite series at R. Let us specif-
ically consider the quantity

[
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3 + . . .

]
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Binomial theorem, we can express the quantity as follows.
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H(p1, p2, . . . , pn) ≈ f(p1, p2, . . . , pn), where

f(p1, p2, . . . , pn) =
n∑
i=1

g(pi), where all the polynomials

{g(p1), g(p2), . . . , g(pn)} have the same coefficients, that
add upto ONE. These polynomials are structured ones in the
spirit of Euler, Bernoulli polynomials. Like Euler/Bernoulli
numbers, the coefficients of such structured polynomials can
be studied for interesting properties [Rama 2].

Remark 3: The sequence of polynomials approximating
Shannon entropy are SAME for any random variable.
Tsallis entropy is a special case where only the constant
coefficients and qth coefficient in qi are considered and all
other coefficients are zero.

Tsallis entropy: Sq(p) = 1
(q−1) −

1
(q−1)

n∑
i=1

pqi . Our

approximation f(p1, p2, . . . , pn) =
n∑
i=1

g(pi).

A. Algebraic Interpretations of Entropy Functions

1) Shannon/Gibbs entropy H(X) = −
n∑
i=1

pi loge pi.

2) Tsallis entropy for real parameter q: Sq(p) = 1
(q−1) (1−

n∑
i=1

pqi ) = Sq(p1, p2, . . . , pn).

Our contribution: H(p1, p2, . . . , pn) =
n∑
i=1

g(r)(pi),

where g(r)(.) is a polynomial (in pi) (for any arbitrary
polynomial) and r is the degree at which log(1 − qi)
(where qi = 1−pi) is truncated. i.e., We have a sequence
of polynomials as r increased providing a better approx-
imation to Shannon entropy of any random variable .
That is, Coefficients of polynomials are independent of
the Probability Mass Function (PMF). i.e., sequence of
polynomials providing better approximation have same
coefficients for any PMF.

We are currently exploring properties of such entropic
polynomials.



IV. RELATIONSHIP BETWEEN RENYI ENTROPY AND
TSALLIS ENTROPY

We now reason that Renyii entropy is approximated by
Tsallis Entropy under some conditions [Rama 3].

Definition 1 (Renyi entropy). Renyi entropy (of a discrete
random variable X) of order α, where α ≥ 0 and α 6= 1 is

defined as Hα(X) = 1
1−α log

( n∑
i=1

pαi
)
.

We can rewrite Hα(X) as follows.

Hα(X) = 1
1−α log

(
1−

(
1−

n∑
i=1

pαi
))

.

Letting 1−
n∑
i=1

pαi = r, we have that Hα(X) = 1
1−α log(1−r).

However, from the basic theory of infinite series [Kno], we
have that: log(1 − r) = −r + r2

2 −
r3

3 + . . . for |r| < 1. We
consider non-degenerate probability mass functions (PMF’s).
For such PMF’s it readily follows that for α ≥ 1 and 0 < r <
1. Thus, if we truncate the infinite series for log(1 − r), we
have that log(1− r) ≈ −r for |r| < 1.

Hence, it readily follows that with such approximation, we
have:

Hα(X) ≈ 1

1− α

(
−
(
1−

n∑
i=1

pαi
))

=
1

α− 1

((
1−

n∑
i=1

pαi
))

= Sα(p).

Where Sα(p) is Tsallis entropy with α is the real parameter.
Now, we bound the error term in approximating log(1 − r)
by −r. The error term is r2

2 −
r3

3 + r4

4 −
r5

5 + . . . =
r2( 12 −

r
3 ) + r4( 14 −

r
5 + . . .) with |r| < 1. Thus, the error

term can be bounded by the following geometric series. i.e.,
r2 + r4 + r6 + . . . = r2

1−r2 .
Remark 4: The above approach of approximating entropy
(such as Shannon entropy) was first proposed in [Rama1],
[Rama4]. Specifically Shannon entropy is approximated by
Tsallis entropy for a linear approximation i.e. log(1−r) ≈ −r
for |r| < 1. It is shown that higher order approximations
are different from Tsallis entropy except in the case of
approximation. log(1− r) ≈ −r + r2

2 for |r| < 1.
The higher order polynomial approximation of log(1 − r)

leads to interesting entropy functions. We are currently deriv-
ing those polynomials approximating Renyi entropy.

Note: We can consider higher order approximations in
association with log(1−r) and arrive at better approximations
of Renyi entropy of order α. We now consider second order
approximation: log(1− r) ≈ −r + r2

2 for |r| < 1.
Using this approximation, we have that
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Expanding
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and simplifying, we have that
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the above expression, multinomial theorem can be used for
further simplification. Simplifying the above, we have that

Hα(X) ≈ 1
2(α−1)

(
1−

n∑
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p2αk −
n∑
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n∑
j=1
j 6=i
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.

Using the definition of Tsallis entropy, we have Hα(X) ≈
2α−1
2α−2S2α(p)− 1

2(α−1)

( n∑
i=1

n∑
j=1
j 6=i

pαi p
α
j

)
.

We now obtain an equivalent expression for Renyi Entropy.
Letting ti = pαi , we arrive at the vector t̂ = (t1, t2, . . . , tn)

T ).
In terms of that vector, the following approximation based on
quadratic form is readily obtained Hα(X) ≈ 1

2(α−1 (1−t̂
T B̂t̂),

where B̂ = êêT with ê, a column vector of 1′s· Now, we
consider a specific value of α, i.e., α = 2 and arrive at an
expression for approximating the Renyi entropy:

H2(X) ≈ 1
2

(( n∑
i=1

pi
)2 − n∑

i=1

n∑
j=1

p2i p
2
j

)
.

Initial simplification of the above expression leads to

H2(X) ≈ 1
2

(
S2(p)

(
1− S2(p)

)
+

n∑
i=1

n∑
j=1
j 6=i

pipj

)
.

On further simplification, we arrive at the following ap-
proximation for H2(X) in terms of Tsallis entropy S2(p).
H2(X) ≈

(
S2(p)− 1

2

(
S2(p)

)2)
.

We now briefly consider the approximation of Shan-
non entropy of a continuous random variable h[f ] =

−
+∞∫
−∞

f(x) log f(x)dx.

Note: We consider probability density functions which are
bounded by 1. For example, suitably normalized exponential
density i.e., we consider 0 < f(x) < 1 fro all x. Let g(x) =
1 − f(x), 0 < g(x) < 1. Hence, log

(
1 − g(x)

)
= −g(x) +(

g(x)
)2

2 −
(
g(x)
)3

3 + . . ..
Considering linear approximation, we have that log

(
1 −

g(x)
)
≈ −g(x). Thus, h[f ] ≈ −

+∞∫
−∞

f(x)
(
− g(x)

)
dx ≈

+∞∫
−∞

f(x)
(
1− f(x)

)
dx = 1−

+∞∫
−∞

f2(x)dx = Sq(f) for q = 2.

Thus, Shannon entropy is approximated by Tsallis entropy.

V. SIGNIFICANCE OF RESULTS

In Shannon’s information theory, the concept of entropy
plays most crucial role. In fact, mutual information definition,
effectively is
I(X;Y ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X), where
X,Y are input and output random variables of a Discrete
memoryless channel(DMC). Also H(X|Y ) and H(Y |X) are
conditional entropy values. The approximations provided in
this research paper potentially provide estimation of quantities
like channel capacity effectively. We expect the results derived



in this research paper to be of utility in information theoretic
research.

VI. CONCLUSION

In this research paper, based on approximating logarithmic
power series, structured polynomial approximation to Shan-
non/Gibbs entropy are proposed. Properties of such polyno-
mials are proved. Also, Renyi entropy leads to Tsallis entropy
with a linear approximation to logarithmic function(under
some conditions).
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