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Abstract. Traditional latent factor models such as principal component analysis (PCA) provide a
statistical framework to infer low-rank latent components across a multitude of biologically relevant
settings. However, when this low-rank structure manifests from a sparse subspace, approaches that seek
to infer the relevant features either lack the ability to perform feature selection, or fail to quantify the
uncertainty in their selected features. In this paper, we present SuSiE PCA, a highly scalable sparse
latent factor approach that explicitly models uncertainty in contributing variables through posterior
inclusion probabilities (PIPs). We validate our model in extensive simulations and demonstrate that
SuSiE PCA outperforms other approaches for detecting relevant signals in observed data, while being
robust to model mis-specification. To illustrate its performance in real-data scenarios, we apply SuSiE
PCA to multi-tissue eQTL data from GTEx v8 and identify tissue-specific regulatory factors and their
contributing eGenes. Next, we investigate its performance to identify gene regulatory modules using
large-scale perturbation screen data. We find that SuSiE PCA discovers modules enriched for genes
relevant for ribosome function to a greater extent than competing methods (ribosome pathway: FDR
= 9.2× 10−82, 63 genes involved vs. 1.4× 10−33, 35 genes involved), while being ∼18x faster. Overall,
SuSiE PCA provides an efficient and flexible tool to identify relevant features in high-dimensional
structured biological data.

1 Introduction

Principal component analysis (PCA) is a popular dimension reduction technique [1] that has been widely
applied for exploratory data analysis in many fields. One notable functionality of PCA is to synthesize
crucial information across features into a small number of principal components (PCs). For example, PCA
is commonly used to infer population structure from large-scale genetic data [2, 3]. The top PCs explain
differences in genetic variation arising from different geographic origins and ancestry of individuals, due to
historical migration, admixture, etc. [4]. Moreover, PCA provides a means to rank contributing relevant
variables for each latent component, as Tipping and Bishop(1986) proposed the probabilistic reformulation
of principal component analysis (PPCA) [5]. Specifically, each PC is independent of other PCs and has its
unique weights to represent the “importance” of original features, suggesting different latent components
arise from different combinations of variables, or distinct aspects of information from the data.

However, one disadvantage of conventional PCA is that PCs provide limited interpretability, as each results
from a linear combination of variables in the data [6]. To improve the interpretability of PCs, while providing
an identifiable solution in high-dimensional data, a common approach is to impose sparsity on the PCA
loadings. Broadly speaking, there are two types of approaches to achieving sparsity on the loading matrix.
The first is the regularization methods such as sparse PCA, which rewrites the PCA as a regression-based
optimization problem and then includes a L1 penalty on the objective function [6] to achieve sparse loadings.
The second type of method is the Bayesian treatment of PPCA, which imposes sparsity-induced prior on the
factor loading matrix [7, 8, 9, 10, 11, 12]. Despite various methods that focus on inducing sparse solutions
for PCA, few provide a statistically rigorous way to select variables relevant to each factor in a post-hoc
manner. Although several sparse models are capable of shrinking the loadings of uninformative variables to
zero, for those variables with non-zero weights, neither a reasonable threshold nor a formal statistical test is
provided to inform feature prioritization for validation or follow-up.
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Here, we propose SuSiE PCA, a highly-scalable Bayesian framework for sparse PCA, that quantifies the
uncertainty of contributing features for each latent component. Specifically, SuSiE PCA leverages the re-
cent “sum of single effects” (SuSiE) approach [13] to model a loading matrix such that each latent factor
contains at most L contributing features. Latent factors and sparse loading weights are learned through
an efficient variational algorithm. In addition to providing a sparse loading matrix, SuSiE PCA computes
posterior inclusion probabilities (PIPs) for each feature, which enables defining ρ−level credible sets for
feature selection. We demonstrate through extensive simulations that SuSiE PCA outperforms existing la-
tent factor approaches in identifying relevant features contributing to structured data while being robust
to data-generating assumptions. Next, we apply SuSiE PCA to multi-tissue eQTL data from the GTEx v8
[14, 12] study to identify tissue-specific components of regulatory genetic features and contributing eGenes.
We also apply SuSiE PCA to high-dimensional perturb-seq data (CRISPR-based screens with single-cell
RNA-sequencing readouts) [15] and identify gene sets more enriched in the ribosome, coronavirus disease
pathways when compared with sparse PCA (FDR = 9.2 × 10−82, 63 genes involved vs. 1.4 × 10−33, 35
genes involved) while requiring 17.8 times less computing time. Overall, we find SuSiE PCA provides an
efficient approach to compute interpretable latent factors from high-dimensional biological data. We pro-
vide an open-source python implementation that can run seamlessly on CPUs, GPUs, or TPUs available at
http://www.github.com/mancusolab/susiepca.

2 Materials and Method

2.1 SuSiE PCA Model

Let XN×P be the observed data matrix, ZN×K be the K dimensional latent vectors, and WK×P be the
loading matrix. We denote the normal distribution with mean µ and variance σ2 as N (µ, σ2), the multinomial
distribution with n choices and probabilities π as Multi(n,π) and the matrix normal distribution with
dimension N ×K, mean M, row-covariance R, and column-covariance C as MNN,K(M,R,C). We denote
the basis vector in which kth coordinate is 1 and 0 elsewhere as ek. The sampling distribution of X under
the SuSiE PCA model is given by,

X | Z,W, σ2 ∼ MNN,P (ZW, IN , σ2IP ) (2.1)

Z ∼ MNN,K(0, IN , IK) (2.2)

W =

K∑
k=1

ekw
⊺
k (2.3)

wk =

L∑
l=1

wkl (2.4)

wkl = wklγkl (2.5)

wkl | σ2
0kl ∼ N (0, σ2

0kl) (2.6)

γkl | π ∼ Multi(1,π), (2.7)

where wk corresponds to the kth row of W, and contains exactly L non-zero elements determined by the
sum of L single-effect vectors wkl. These single-effect vectors are described by a single random effect wkl

and indicator vector γkl which assigns the effect to a feature with prior probabilities π = 1
p1.

2.2 Variational Inference in SuSiE PCA

We seek to perform inference of model variables Z,wkl, and γkl conditional on observed data X, however the
marginal likelihood is intractable to compute and therefore, we cannot evaluate the posterior exactly. While
sampling based approaches such as Markov Chain Monte Carlo (MCMC) methods provide a numerical
approximation of the exact posterior distribution [16], they often lack computational efficiency in high-
dimensional settings. As an alternative, we leverage recent advancements in the variational inference that
provides an analytical approximation to the posterior distribution [17] and remains computationally efficient.
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Briefly, To approximate the conditional distribution of latent variables Z given the observed samples X,
variational methods first impose a family of densities over the latent variables, Q(Z), usually predefined
as known distributions parameterized with a set of variational parameters. Then the goal is to infer those
variational parameters such that the variational distribution Q(Z) is as similar as possible to the true
posterior distribution P (Z |X). A quantity commonly used to measure dissimilarity between distributions
is Kullback-Leibler divergence DKL(Q∥P ) [18]. However, since KL divergence contain the unknown true
posterior distribution P (Z |X), it cannot be directly computed. Instead, we can show that the log-likelihood
of data, logP (X) can be decomposed as:

logP (X) = DKL(Q∥P ) + L(Q) (2.8)

Where L(Q) = EQ[logP (Z,X) − logQ(Z)], which is also known as the Evidence Lower Bound (ELBO).
Since the logP (X) is a constant with respect to the variational parameters, minimizing KL divergence is
equivalent to maximizing ELBO. As the ELBO does not contain the unknown posterior distribution and
therefore is tractable to compute and maximize for variational parameters.

Mean-Field Approximation Mean field approximation [19] is a common solution to find the optimal
solution that maximizes ELBO. The basic assumption is that we can factorize the variational distribution
into independent components. Then using the calculus of variations, one can show that the distribution
Q∗

j (zj) minimizing KL divergence for each factor Zj can be expressed as:

lnQ∗
j (zj |X) = Ei̸=j [lnP (Z,X)] + constant (2.9)

Applying the Mean-Field approximation to SuSiE PCA the approximate posterior given by,

Q(Z,W) = Q(Z)Q(W) (2.10)

Q(W) =

K∏
k=1

L∏
l=1

Q(wkl | γkl)Q(γkl) (2.11)

Equation (2.10) factorizes the variational densities of the latent variables Z and the loading matrix W into
independent parts. We further assume that the variational distribution of loadings wkl from each factor
across L single effects are independent as well, leading to equation (2.11). For ease of notation we first define
τ = 1

σ2 , τ0kl =
1

σ2
0kl

. We obtain the optimal variational distributions of variables Z,wkl, and γkl is given by,

Q(Z) := MNn,k(Z | µZ, In,ΣZ) (2.12)

Q(wkl|γkl) := N (µwkl
, σ2

wkl
) (2.13)

Q(γkl) := Multi(1,αkl). (2.14)

The corresponding update rules for variational parameters from Q(·) can be expressed as,

µZ = τXE[W⊺
]ΣZ (2.15)

ΣZ = (E[WW
⊺
]τ + Ik)

−1 (2.16)

µwkl
= τσ2

wkl
E[R⊺

klZk] (2.17)

Σwkl
= σ2

wkl
Ip (2.18)

σ2
wkl

= (τE[Z⊺
kZk] + τ0kl)

−1 (2.19)

αkl = softmax(logπ − logN (0 | µwkl
, σ2

wkl
)). (2.20)

For details and derivations, please see Supplemental Note.

ELBO and Estimating τ, τ0kl The ELBO provides a natural criterion for evaluating model performance
during model training, and also provides a means to perform hyperparameter optimization for model variance
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(or equivalently precision) parameters. Given the above definitions for Q, we derive the ELBO for SuSiE
PCA as,

ELBO(W,Z) = EQ [log Pr(X,Z,W)− logQ(Z,W)]

= EQ[log Pr(X|Z,W)] + EQ(Z)[log Pr(Z)− logQ(Z)] + EQ(W,Γ )[log Pr(W,Γ )− logQ(W,Γ )].

(2.21)

The maximum likelihood estimates of model precision parameters τ, τ0kl, results in closed-form update equa-
tions given by,

τ̂0kl =

∑P
i=1 αkli∑P

i=1 αkli(µ2
wkli

+ σ2
wkli

)
(2.22)

τ̂ =
NP∑

i,j X
2
ij − 2tr(E[W]X⊺µZ)

. (2.23)

We provide details on individual components of expectation and a a complete description of our inference
procedure in Supplemental Note.

2.3 Posterior Inclusion Probability and Credible Set

One of the distinguishing features that the SuSiE model[13] provides is a posterior inclusion probability (PIP).
The PIP reflects the posterior probability that a given variable has a non-zero effect given the observed data.
Here we extend the PIP definition to include latent factors. Specifically, given variational parameters αkl we
can define the PIP that the ith variable has a non-zero effect in the kth latent component as,

PIPki := Pr(wki ̸= 0 |X) = 1−
L∏

l=1

(1− αkli) (2.24)

Similarly, a level-ρ credible set (CS) refers to a subset of variables that cumulatively explain at least ρ
of the posterior density. Here, we define factor-specific level-ρ CSs, which can be computed across each αkl

independently, resulting in K×L total level-ρ credible sets. This lets us reflect on the uncertainty in identified
variables to explain a single-effect for each latent factor.

2.4 Simulations

To investigate the performance of SuSiE PCA in variable selection and model fitting, we simulated various
data sets that are controlled by 4 parameters: the sample size N , number of features P , number of latent
factors K, and number of single effects L in each of the factors. For simplicity, we assume L is the same across
different factors. The simulated data X is generated according to equation (2.1), where N = 1000, P = 6000,
and zk and wk, for k = 1, · · · , 4 are simulated such that each factor only contain 40 non-zero effects (0.67%)
given by,

zk ∼ N (0, IN ) (2.25)

w1,i ∼ N (0, 1) i = 1, · · · , 40 (2.26)

w2,i ∼ N (0, 1) i = 41, · · · , 80 (2.27)

w3,i ∼ N (0, 22) i = 81, · · · , 120 (2.28)

w4,i ∼ N (0, 1) i = 121, · · · , 160, (2.29)

with the remaining effects set to zero. Considering the scale of the estimates of loadings may differ from
various types of methods, we normalized the loading matrix with respect to Frobenius norm, i.e. tr(A⊺A) =
tr(B⊺B) = 1.

To evaluate the accuracy of SuSiE PCA, we compare inferred posterior expectations with the true latent
variables. However, due to the rotational invariance property in latent factor models, evaluating loading
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or latent factor accuracy can be challenging. To account for possible rotation, we leverage the Procrustes
transformation [20], which finds an orthogonal rotation matrix P to transform the estimated loading matrix

to the true loading matrix space. Specifically, given an estimated loading matrix Ŵ := EQ[W] under
approximate posterior distribution Q and true effect matrix W, the “Procrustes Norm” can be obtained
as following:

||W − Ŵ||2P := min
{P|P−1=P⊺}

||ŴP−W||2F . (2.30)

Here we perform the Procrustes analysis via Procrustes package [21], from which P is obtained by performing

a singular value decomposition on matrix Ŵ⊺W (padding zeros on matrix Ŵ would ensure the above
operation process correctly).

In addition, we employ the relative root mean squared error (RRMSE) to evaluate the reconstructed data
loss as,

RRMSE(X̂,X) =

√√√√∑
i,j(X̂ij −Xij)2∑

i,j X
2
ij

. (2.31)

For model comparison, we also evaluate the performance of sparse PCA[6] and Empirical Bayes Matrix
Factorization (EBMF) (a recently described variational approach)[12] on the same data sets with the same
K, and compare the model performance with SuSiE PCA via criterion described above.

2.5 Real Data Analysis

To illustrate the application of SuSiE PCA in genetic research, we downloaded the Genotype-Tissue Expres-
sion (GTEx) summary statistics data, composed of z-scores computed from the testing association between
genetic variants and the gene expression levels across 44 different human tissues. The GTEx project collected
genotype data and gene expression data from 49 non-disease tissues across n = 838 individuals, providing
an ideal resource database to study the relationship between genetic variants and gene expression levels [14].
The genetic variants that are statistically associated with gene expression levels are referred to as expression
quantitative trait loci (eQTLs). To identify eQTLs, the GTEx project tested the association between each
nearby genetic variant of a certain gene with its expression levels using linear regression to yield a z score.
The summary data we explored reflects the most significant eQTL (equivalently, the largest absolute z score
in each SNP and gene pair) at each of 16069 genes (row) from 44 tissues (column) curated from GTEx
(v8) in ref[12], as those 16069 genes show indication of being expressed in 44 of all 49 human tissues. To
identify tissue-specific components of regulatory genetic features and contributing genes, we applied SuSiE
PCA across this z-score matrix with a latent dimension of 27 and the number of single effects of 18. The
prior information on the number of latent dimensions comes from Wang et al. (2021) [12] who contribute to
the z-score dataset and run the EBMF model with 27 factors. To determine the appropriate L that fits the
data, we run the SuSiE PCA with L ranged from 10 to 25, and select the model when the increase in the
total percentage of variance explained (PVE) is less than 5%. PVE is a measure of the amount of signals in
the data captured by the latent component, the PVE of the factor zk is calculated based on the following
equation:

PVEk =
sk∑

k sk +NP/τ
(2.32)

where sk =
∑N

i=1

∑P
j=1(E[zik]E[wkj ])

2.

We next investigated genome-scale Perturb-seq data to discover the co-regulated gene sets affected by some
common type of perturbations. To collect the Perturb-seq (CRISPR-based screens with single-cell RNA-
sequencing readouts) dataset, the Replogle et al. [15] performed the experiment with 2056 distinct knocked-
out genes (perturbations) as well as one non-targeting control group (no perturbations) over an average
of 150 different single cells, and then measured the expression levels of the downstream 8563 genes from
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each cell. The final dataset contains 310385 rows, each representing one perturbation in a specific cell, and
the expression levels of 8563 downstream genes as the column. As an exploratory analysis, we omitted
the single-cell level information and aggregated the expression levels of downstream genes with the same
perturbation over all the cells, which resulted in a “psuedo-bulk” data matrix with 2057 rows and 8563
columns. We then performed the SuSiE PCA and Sparse PCA to investigate the regulatory modules from
the common perturbations. To exclude the batch effects and other non-genetic covariates, we regressed out
the germ-line group and the mitochondrial percent from the original expression data and then aggregated the
expression level of downstream genes with the same perturbation. Finally, the aggregated data is centered
and standardized before input into SuSiE PCA and sparse PCA.

3 Results

3.1 Simulation Results

To evaluate the performance of SuSiE PCA, we performed extensive simulations (see Materials and Meth-
ods). Briefly, we generated 100 simulations by varying model parameters and performed inference using SuSiE
PCA with the true number of latent variables (K) and effects (L) known. First, we evaluated the ability of
inferred PIPs to discriminate between relevant and non-relevant features for latent factors. Specifically, we
compared the sensitivity and specificity of inferred PIPs to normalized posterior mean weights from SuSiE
PCA (see Figure 1). When selecting variables based on PIPs > 0.90, SuSiE PCA identifies 88.9% of true
positive (non-zero) signals, demonstrating largely calibrated posterior inference. We observed nearly all true
negative signals exhibited PIPs < 0.05. As a comparison, the posterior weights performed well on excluding
the true negative signals, but fail to capture true positive signals as rapidly as PIP thresholds. Overall, the
simulation demonstrates that PIPs provide an intuitive and more efficient indicator for feature selection than
normalized posterior weights in SuSiE PCA. In addition, we also examined the sensitivity and specificity
using weights estimated from sparse PCA and EBMF (see Figure S1), which have similar trends to the curves
in Figure 1 (B) and can only capture a small proportion of the true positive signals as the cutoff threshold
increases.

Fig. 1: PIPs exhibit a higher efficiency in selecting the true signals than the posterior weights
in SuSiE PCA
The proportion of correct classified signals using PIPs as cutoff (A) or posterior weights as cutoff (B). The green dots
represent sensitivity, i.e. Pr(PIPs ≥ cutoff | True positive signal), the red dots represent specificity, i.e. Pr(PIPs <
cutoff | True false signal). For consistency and to ensure comparability between PIPs and weights, the weights are
standardized to be ranged from 0 to 1.

Next, we examined the estimation accuracy of the loading matrix as a function of sample size (N), feature
dimension (P ), latent dimension (K), and the number of single effects (or sparsity level) (L), via the Pro-
crustes errors defined in equation 2.30 (Figure 2 A-D). We found that SuSiE PCA has the smallest Procrustes
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errors across all simulation settings compared to sparse PCA and EBMF. And we noticed that the Bayesian
methods including SuSiE PCA and EBMF maintain a low error even with a small sample size or high feature
dimension. Moreover, we found that SuSiE PCA has the lowest RRMSE across all simulations compared
with other methods (Figure S2); And EBMF and SuSiE PCA have a lower level of Procrustes error of factor
Z than sparse PCA (Figure S3). In summary, SuSiE PCA exhibits the best estimation accuracy, which is
consistent with its superior performance in variable selection.

Finally, we investigate the model robustness in model mis-specification. Similar to other latent factor models,
SuSiE PCA could be mis-specified as it requires manually inputting the latent dimension K and the number
of single effects L. Considering the potential model misspecification setting, the simulation data sets are
generated based on (2.25-2.29) and then input into SuSiE PCA, sparse PCA and EBMF with two mis-
specified situations: vary L while fixing K, or vary K while fixing L. The model estimation accuracy is then
evaluated and compared among three models with Procrustes error (see Figure 2 E-F). We observed that
as K and L in the model approaches the true value (i.e. K = 4 or L = 40), the Procrustes error decreases
rapidly to the lower level in SuSiE PCA, and remains the same even when K > 4 or L > 40. However, the
error for sparse PCA has a V-shape and reaches its minimum at the real K. The explanation is that when
there are over-specified latent factors in the model, SuSiE PCA and EBMF will not extract any information
from the data due to their probabilistic model structure; the sparse PCA, on the other hand, cannot handle
the weights as it does not impose any probabilistic assumption on it. Instead, the value of the redundant
latent factor in sparse PCA is close to 0, which ensures the latent component does not contribute.

Fig. 2: SuSiE PCA generates the smallest Procrustes error in weight matrix than sparse PCA
and EBMF (A-D) and is robust to over-specified K and L (E-F).
For each scenario in (A-D) we vary one of the parameters at a time to generate the simulation data while fixing the
other 3 parameters, and then input the true parameters (N,P,K,L) into models. Finally, we compute the Procrustes
error and plot them as a function of N,P,K,L. For (E-F), we use the same simulation setting in Figure 1 to generate
data but vary the specified L in SuSiE PCA (E) and K in all three models (F). Reference lines refer to the error
from the models with correctly specified parameters (i.e. L = 40,K = 4).
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3.2 GTEx Z-score Data

To illustrate the utility of SuSiE PCA to make inferences in biological data, we analyzed multi-tissue eQTL
results from GTEx v8 (see Material and Methods). Specifically, we sought to identify latent factors
corresponding to tissue-specific and tissue-shared eQTLs similar to ref[12]. Overall, we found that 27 latent
factors explained 53.1% of the variance in the data (see Figure S5). Although we set L = 18 across all factors,
we found the number of tissues with PIP > 0.9 is frequently lower than 18 in different factors (see Figure
S4), which is due to inferred τ0kl acting to “shut off” uninformative features. Indeed, we observed 30/486 τ0kl
with estimates greater than e10 (see Figure S6) which effectively shrink the effect size of the corresponding
single effect toward 0, driving the number of non-zero single effects in some factors smaller than specified L.
We found this behavior also reflected in estimated level-0.9 credible sets, where 456/486 contained a single
tissue, and the remaining 30 credible sets contained at least two tissues.

To understand what each factor represents, we examined inferred PIPs (Figure S8) and posterior mean
weights of each tissue across 27 factors (Figure S7). Here we present the results from factor z1 and z3
through the posterior weights (Figure 3; see Figure S7 for the remainder). We observed that the latent factor
z1 with the second largest PVE demonstrates high absolute weights on most tissues except for the brain
tissues, while the latent factor z3 has large weights almost exclusively on brain tissues. Moreover, we observed
that brain tissue tends to appear as a group and have similar effects, implying the eQTLs in brain tissue are
different from that in other tissue and those strong signals are specifically captured by the factor z1. For the
rest of the factors, we noticed that factors with large PVE such as z2, z4, z5 tended to have large weights on
multiple tissues; for example, factor z2 has large weights on esophagus and thyroid, suggesting the eQTLs
signals are mostly shared across those tissues; while the factors with small PVE usually have large weights
exclusively on one or a few tissues, for example, liver-specific component z12, lung-specific component z15,
etc. The only exception is that the factor z0 with the largest PVE has an exclusively large weight only on the
testis, implying the z0 captures the testis-specific eQTL signals. This is consistent with the investigation of
the latent factor values of z0: the gene with the largest factor value in z0 is DDT (Figure S9), which is shown
to be associated with testis cancer. [22] Overall, we find that SuSiE PCA is able to identify tissue-specific
components from multi-tissue eQTL data in an intuitive, interpretable manner.

Fig. 3: Factor z1 and z3 captures different types of tissues (tissues without brain vs. brain
tissues)

3.3 Perturb-seq Data

To identify gene regulatory modules from genome-wide perturbation data, we ran SuSiE PCA on perturb-seq
in cell lines [15] (see Methods) with K = 10 and L = 300. Briefly, we inputted the normalized expression
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data (2057 × 8563) to SuSiE-PCA to identify gene regulatory modules (i.e. Z) and downstream regulated
networks (i.e. W). To ensure our results were robust to K and L, we explored a grid of possible combinations
and found that K=10 and L=300 retain the most important information while keeping the relevant gene set
much smaller (see Figures S10 for a detailed explanation). As a comparison, we also ran sparse PCA with
the default level of sparsity (α = 1) and K = 10.

Overall, we found the total PVE was 10.71% across all components (Figure S11), with each component
exhibiting 299 downstream genes with PIP > 0.9 on average. Focusing on the leading component, we found
that perturbations with the top 10 largest absolute factor scores are primarily related to Ribosomal Protein
Small (RPS) subunit genes and Ribosomal Protein Large subunit (RPL) family (Figure 4A). To provide a
broader characterization of the module function, we extracted downstream genes with PIP greater than 0.9
(298 genes) as input into ShinyGO [23] to perform a gene set enrichment analysis (Figure 4B). We observed
the most enriched pathway was related to ribosome function (FDR=9.2× 10−82,63 genes involved), followed
by Coronavirus disease (FDR=2.5× 10−62,62 genes involved). Inspecting the loadings at these downstream
genes, we found nearly all weights were positive, suggesting that the knockout of RPS and RPL genes
down-regulate the expression level of those downstream genes. We found multiple elongation factor genes
(EEF1G, EEF1A1, EEF1B2, EIF4B, EIF3L) among the leading downstream genes, which are known to
be involved in ribosome function. Additionally, recent studies have suggested that the decreased expression
of elongation factor genes is associated with less severe conditions among COVID-19 patients [24, 25]. We
repeated pathway analysis for each latent factor using corresponding loadings at genes with PIP greater than
0.9 (see Figures S12-S20). To compare with Sparse PCA, we performed the same pathway analysis on factor
loadings and assessed enrichments. We observed components identified by Sparse PCA to be less enriched
with biological pathways when compared to SuSiE PCA (80 unique enriched pathways in sparse PCA versus
88 pathways in SuSiE PCA), and the top enriched pathways such as ribosome and coronavirus disease are
less significant and contain less number of selected genes (FDR = 1.4×10−33,35 genes; FDR = 2.9×10−18,29
genes). Overall, we find distinct biological functions identified by each component, with groupings consistent
with previous works [26, 27, 28].

Fig. 4: The perturbations with top factor scores in the first component mostly belong to RPL
and RPS family(A), and the enrichment analysis results of downstream genes in the same
component are enriched for ribosome and coronavirus disease(B)
Each point in (A) represents the latent factor value of each perturbation. The top 9 points as well as the control
group are labeled in the plot and colored red and blue, respectively. In gene set enrichment analysis, we input the
downstream genes with PIP > 0.9 and show the top enriched pathways with log(FDR) and the number of genes
included in the corresponding pathways.
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Table 1: Comparison of mean and standard deviation of running time (seconds) between models
Model 4 Simulation 5 GTEx z-score Perturb-seq

SuSiE PCA 3.14(0.49) 1.20 68.11
Sparse PCA 51.96(33.50) 41.22 1213.21

EBMF 39.83(5.80) 498.60 243.03

4 Discussion

In this paper, we propose SuSiE PCA, an efficient Bayesian variable selection approach to principal compo-
nents analysis for structured biological data. The sparsity of the loading matrix is achieved by restricting
the number of features associated with each factor to be at most L. Through simulations and real-data
application, we find that SuSiE PCA outperforms existing approaches to sparse latent structure learning in
identifying contributing features, while maintaining a more efficient run time.

There are several advantages of SuSiE PCA as compared to other sparse factor models. First, SuSiE PCA
generates the posterior inclusion probabilities (PIPs) for each feature that quantifies the uncertainty of the
selected feature, which can not be provided by other sparse models, such as sparse PCA with regularization
or the Bayesian treatment of PPCA. And assessing the selected variables based on the probability is more
reasonable and convenient than using weights. Second, PIPs are capable of selecting more signals with high
confidence. In simulations, we demonstrated that using weights for variable selection from SuSiE PCA,
sparse PCA, and EBMF can deliver a high specificity (low false discovery rate) but with low sensitivity as
the cutoff value increase, while using PIPs as selection tools can maintain a high sensitivity for any positive
cutoff value between 0 and 1. Third, SuSiE PCA provides a more precise estimate of the loadings and
higher prediction accuracy, even in the misspecified case, as we impose a probabilistic distribution over the
loadings that enables a much more accurate inference on the posterior distribution. Finally, the inference
procedure of SuSiE PCA works on the dimension of K and L, which is typically set to be much smaller
than feature dimension P ; therefore, it is scalable to high-dimensional data and requires less computational
demands. Actually, we implement the SuSiE PCA with the JAX library developed by Google to enable fast
convergence on CPU, GPU, or TPU.

Although SuSiE PCA only allows one common L specified across all factors, the number of non-zero effects
captured across factors can be varied and learned from the data. This is because we treat the inverse of
variance τ0kl of the lth single effect in factor zk as a random variable. As the Algorithm 1 (Supplement
Note) demonstrates, the MLE of τ0kl at the step 3 is derived before inference of other parameters. When
the L specified in the model, for a certain factor k, is greater than the true number of signals associated
with that factor, the MLE of the τ0kl will be extremely large for those excessive single effects, which then
shrinks the wkl and PIP to be 0 or close to 0, and therefore removes the redundant single effects from the
model. From this point of view, without prior knowledge of the data, one can specify a relatively larger L
during the initial model fitting, and then examine the estimates of τ0kl to explore how many single effects
are reasonable for the dataset.

Overall, SuSiE PCA provides a flexible approach to high-dimensional biological data with a low-rank struc-
ture.

4 All run-time data in the table are based on the analyses performed on the same CPU for consistency. The CPU
we used is the Apple M2 chip with 16 GB memory.

5 Run time for simulation are recorded based on simulation setting in Figure 1, i.e. N = 1000, P = 6000,K = 4, L =
40, the average run time and corresponding standard deviation are computed for 100 simulations. We presented a
more detailed runtime comparison in simulation at Supplement figure S4
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1 Inference on SuSiE PCA

Here we present all mathematical derivations of the inference on SuSiE PCA. The SuSiE PCA model has
the following structure:

X | Z,W, σ2 ∼ MNN,P (ZW, IN , σ2IP ) (1.1)

Z ∼ MNN,K(0, IN , IK) (1.2)

W =

K∑
k=1

ekw
⊺
k (1.3)

wk =

L∑
l=1

wkl (1.4)

wkl = wklγkl (1.5)

wkl | σ2
0kl ∼ N (0, σ2

0kl) (1.6)

γkl | π ∼ Multi(1,π). (1.7)

First, the complete-data log-likelihood of data and parameters is given by:

ℓc(σ
2, σ2

0 ,π |X,Z,W) = log Pr(X | Z,W, σ2) + log Pr(Z) + log Pr(W | σ2
0 ,π)

= logMNn,p(X | ZW, In, Ipσ
2) + logMNn,k(Z | 0, In, Ik)+

L∑
l=1

K∑
k=1

[
logMulti(γkl | 1,π) + logN (wkl | 0, σ2

0)
]

Before proceeding to the full derivation of variational distribution of parameters Z,wkl, and γkl, we first give
some helpful definitions, including the expansion of first and second moment of W and Z, as well as the
expansion of the log-likelihood function.
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1.1 Helpful definitions

First and Second Moment of wk

E[wkl | γkl] = p-vector of posterior conditional means

V[wkl | γkl] = p-vector of posterior conditional variances

E[wk] = E[
∑
l

wkl] =
∑
l

E[wkl]

E[wkl] =
∑
l

E[wkl | γkl] ◦ E[γkl]

V[wk] = V[
∑
l

wkl] =
∑
l

V[wkl]

V[wkl] = E[wklw
⊺
kl]− E[wkl]E[wkl]

⊺

= E[w2
klγklγ

⊺
kl]− E[wkl]E[wkl]

⊺

= diag(E[wkl | γkl] ◦ E[wkl | γkl] ◦ E[γkl])− E[wkl]E[wkl]
⊺

diag(V[wkl]) = E[wkl | γkl] ◦ E[wkl | γkl] ◦ E[γkl]− (E[wkl | γkl] ◦ E[γkl])
2

E[w⊺
kwk] = tr(V[wk]) + E[wk]

⊺E[wk]

E[w2
kl] = [E2[wkl | γkl] + V[wkl | γkl]] ◦ E[γkl]

First and Second Moment of W

E[W] = E[
∑
k

ekw
⊺
k ] =

∑
k

ekE[wk]
⊺

E[WW
⊺
] = E[(

∑
k

ekw
⊺
k)(

∑
k′

ek′w
⊺
k′)

⊺
]

= E[
∑
k

∑
k′

ekw
⊺
kwk′e

⊺
k′ ]

=
∑
k

∑
k′

eke
⊺
k′E[w⊺

kwk′ ]

=
∑
k

∑
k′

eke
⊺
k′E[wk]

⊺E[wk′ ] +
∑
k

eke
⊺
k(E[w

⊺
kwk]− E[wk]

⊺E[wk])

= E[W]E[W]
⊺
+
∑
k

eke
⊺
k(E[w

⊺
kwk]− E[wk]

⊺E[wk])

= E[W]E[W]
⊺
+
∑
k

eke
⊺
ktr(V[wk])

= E[W]E[W]
⊺
+ diag(tr(V[w1]), . . . , tr(V[wk]))

Second Moment of Z

E[Z⊺
Z] = tr(In)ΣZ + E[Z]⊺E[Z]

= nΣZ + E[Z]⊺E[Z]
E[Z⊺

kZk] = tr(V[Zk]) + E[Zk]
⊺E[Zk]

= tr(In(ΣZ)kk) + E[Zk]
⊺E[Zk]

= n(ΣZ)kk + E[Zk]
⊺E[Zk]
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Other terms in Log Likelihood

logMNn,p(X | ZW, In, Ipσ
2) = − 1

2σ2
tr
[
(X− ZW)

⊺
(X− ZW)

]
− np

2
log(2πσ2)

logMNn,k(Z | 0, In, Ik) = −1

2
tr
[
Z

⊺
Z
]
− nk

2
log(2π)

logMulti(γkl | 1,π) =
p∑

i=1

γkli log(πi)

logN (wkl | 0, σ2
0) = − 1

2σ2
0

w2
kl −

1

2
log(2πσ2

0)

tr
[
E¬Z

[
(X− ZW)

⊺
(X− ZW)

]]
= tr

[
E¬Z(X

⊺
X−X

⊺
ZW −W

⊺
Z

⊺
X+W

⊺
Z

⊺
ZW)

]
= tr(X

⊺
X)− 2tr(E[W]X

⊺
Z) + tr(Z

⊺
ZE[WW

⊺
])

= tr(X
⊺
X)− 2tr(E[W]X

⊺
Z) +

p∑
i=1

tr(ZΣWiZ
⊺
) + E[W⊺

]Z
⊺
ZE[W]

tr
[
E¬W

[
(X− ZW)

⊺
(X− ZW)

]]
= tr

[
E¬W(X

⊺
X−X

⊺
ZW −W

⊺
Z

⊺
X+W

⊺
Z

⊺
ZW)

]
= tr(X

⊺
X)− 2tr(X

⊺E[Z]W) + tr(E[ZTZ]WW
⊺
)

E[tr((X− ZW)
⊺
(X− ZW))] = E[tr(X⊺

X−X
⊺
ZW −W

⊺
Z

⊺
X+W

⊺
Z

⊺
ZW)]

= tr(X
⊺
X−X

⊺E[Z]E[W]− E[W⊺
]E[Z⊺

]X+ E[W⊺
Z

⊺
ZW])

= tr(X
⊺
X)− 2tr(X

⊺E[Z]E[W]) + tr(E[Z⊺
Z]E[WW

⊺
])

Rkl := X− E[Z](
∑
k′ ̸=k

ek′E[wk′ ]
⊺
+

∑
l′ ̸=l

ekE[wkl′ ]
⊺
)

= X−
∑
k′ ̸=k

E[Zk′ ]E[wk′ ]
⊺ −

∑
l′ ̸=l

E[Zk]E[wkl′ ]
⊺
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1.2 Derivation of Variational Distributions

In this section, we formally present the detailed derivation of variational distributions of all variables in the
model including Q(Z), Q(wkl | γkli = 1), Q(γkl). The derivation of the optimal variational distribution is
based on the mean-field approximation (see Methods) and the corresponding equation (2.10). For the ease
of notation, let τ = 1

σ2 , p = logπ and τ0 = 1
σ2
0
.

Derivation of logQ(Z)

logQ(Z) = E¬Z

[
ℓc(σ

2, σ2
0 ,π |X,Z,W)

]
= E¬Z

[
logMNn,p(X | ZW, In, Ipσ

2)
]
+ logMNn,k(Z | 0, In, Ik)

= −τ

2

[
−tr(X

⊺
ZE[W])− tr(E[W⊺

]Z
⊺
X) + tr(Z

⊺
ZE(WW

⊺
))
]
− 1

2
tr(Z

⊺
Z) +O(1)

= −1

2

[
tr(τZ

⊺
ZE(WW

⊺
)) + tr(Z

⊺
Z)− tr(τX

⊺
ZE[W])− tr(τE[W⊺

]Z
⊺
X)

]
+O(1)

= −1

2

[
tr(Z

⊺
Z(E(WW

⊺
)τ + Ik))− tr(τX

⊺
ZE[W])− tr(τE[W⊺

]Z
⊺
X)

]
+O(1)

= −1

2

tr(Z (E(WW
⊺
)τ + Ik)︸ ︷︷ ︸

Σ−1
Z

Z
⊺
)− tr(ZE[W]X

⊺
τ)− tr(τXE[W⊺

]Z
⊺
)

+O(1)

= −1

2

tr(ZΣ−1
Z Z

⊺
)− tr(ZΣ−1

Z ΣZE[W]X
⊺
τ︸ ︷︷ ︸

µ⊺
Z

)− tr(τXE[W⊺
]ΣZ︸ ︷︷ ︸

µZ

Σ−1
Z Z

⊺
)

+O(1)

= −1

2

[
tr(Σ−1

Z Z
⊺
Z)− tr(Σ−1

Z µ
⊺
ZZ)− tr(Σ−1

Z ZTµZ) + tr(Σ−1
Z µT

ZµZ)− tr(Σ−1
Z µT

ZµZ)
]
+O(1)

= −1

2

[
tr(Σ−1

Z (Z
⊺
Z− ZTµZ − µT

ZZ+ µT
ZµZ))

]
+O(1)

= −1

2
tr
(
Σ−1

Z (Z− µZ)
⊺
(Z− µZ)

)
+O(1) ⇒

Q(Z) = MNn,k(Z | µZ, In,ΣZ)
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Derivation of logQ(wkl | γkli = 1)

logQ(wkl|γkli = 1) = −τ

2
E¬wkl

[tr((Rkl − Zkw
⊺
kl)

⊺
(Rkl − Zkw

⊺
kl))]−

τ0
2
E¬wkl

[

L∑
l=1

K∑
k=1

w2
kl] +O(1)

= −τ

2
E¬wkl

[−2tr(R
⊺
klZkw

⊺
kl) + tr(Z

⊺
kZkw

⊺
klwkl)]−

τ0
2
w2

kl +O(1)

= −τ

2
E¬wkl

−2tr((X−
∑
k′ ̸=k

Zk′w
⊺
k′ −

∑
l′ ̸=l

Zkw
⊺
kl′)

⊺
Zkw

⊺
kl) + tr(Z

⊺
kZkw

2
kl)


− τ0

2
w2

kl +O(1)

= −τ

2
E¬wkl

−2tr((X
⊺
Zk −

∑
k′ ̸=k

wk′Z
⊺
k′Zk −

∑
l′ ̸=l

wkl′Z
⊺
kZk)w

⊺
kl) + tr(Z

⊺
kZkw

2
kl)


− τ0

2
w2

kl +O(1)

= −τ

2
E¬wkl

−2(X
⊺
i Zk −

∑
k′ ̸=k

wk′,iZ
⊺
k′Zk − Z

⊺
kZk

∑
l′ ̸=l

wkl′ i)wkl + Z
⊺
kZkw

2
kl


− τ0

2
w2

kl +O(1)

= −1

2
[−2τ(X

⊺
i E[Zk]−

∑
k′ ̸=k

E[wk′,i]E[Z
⊺
k′Zk]− E[Z⊺

kZk]
∑
l′ ̸=l

E[wkl′ i])wkl + τE[Z⊺
kZk]w

2
kl]

− τ0
2
w2

kl +O(1)

= −1

2
[−2τ(X

⊺
i E[Zk]−

∑
k′ ̸=k

E[wk′,i]E[Z
⊺
k′Zk]− E[Z⊺

kZk]
∑
l′ ̸=l

E[wkl′ i])wkl + τE[Z⊺
kZk]w

2
kl

+ τ0w
2
kl] +O(1)

= −1

2
[−2τ(X

⊺
i E[Zk]−

∑
k′ ̸=k

E[wk′,i]E[Z
⊺
k′Zk]− E[Z⊺

kZk]
∑
l′ ̸=l

E[wkl′ i])wkl

+ (τE[Z⊺
kZk] + τ0)︸ ︷︷ ︸
1/σ2

wkl

w2
kl] +O(1)

= − 1

2σ2
wkl

[w2
kl − 2 τσ2

wkl
(X

⊺
i E[Zk]−

∑
k′ ̸=k

E[wk′,i]E[Z
⊺
k′Zk]− E[Z⊺

kZk]
∑
l′ ̸=l

E[wkl′ i])︸ ︷︷ ︸
µwkl

wkl] ⇒

= logN (µwkl
, σ2

wkl
)

We can update wkl for all feature at once:

µwkl
= τσ2

wkl
E[R⊺

klZk],Σwkl
= σ2

wkl
Ip
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Derivation of logQ(γkl) Note that τR⊺
klE[Zk] = E[wkl | γkl]/σ

2
wkl

= µwkl
/σ2

wkl
.

logQ(γkli = 1) = E¬γkl
[ℓc(σ

2, σ2
0 ,π, |X,Z,W)] + logMulti(γkl | π) +O(1)

= −τ

2
E¬γkl

tr((Rkl − Zkw
⊺
kl)

⊺
(Rkl − Zkw

⊺
kl)) + logMulti(γkl | π) +O(1)

= −τ

2
[−2tr(R

⊺
klE[Zk]E[wkl | γkli = 1]γ

⊺
kl) + tr(E[Z⊺

kZk]E[w2
kl | γkli = 1])] + logπi +O(1)

= −τ

2

[
−2R

⊺
kliE[Zk]E[wkl | γkli = 1] + E[Z⊺

kZk]E[w2
kl | γkl]

]
+ logπi +O(1)

= τR
⊺
kliE[Zk]E[wkl | γkli = 1]− τ

2
E[Z⊺

kZk]E[w2
kl | γkli = 1] + logπi +O(1)

=
1

σ2
wkl

E[wkl | γkli = 1]2 − τ

2
E[Z⊺

kZk]E[w2
kl | γkli = 1] + logπi −

τ0
2
E[w2

kl | γkli = 1] +O(1)

=
1

σ2
wkl

E[wkl | γkli = 1]2 − 1

2
E[w2

kl | γkli = 1](τE[Z⊺
kZk] + τ0) + logπi +O(1)

=
1

σ2
wkl

E[wkl | γkli = 1]2 − 1

2σ2
wkl

E[w2
kl | γkli = 1] + logπi +O(1)

= − 1

2σ2
wkl

[
−2E[wkl | γkli = 1]2 + E[w2

kl | γkli = 1]
]
+ logπi +O(1)

= − 1

2σ2
wkl

[
−2E[wkl | γkli = 1]2 + σ2

wkl
+ E[wkl | γkli = 1]2

]
+ logπi +O(1)

=
1

2σ2
wkl

E[wkl | γkli = 1]2 + logπi +O(1) ⇒

log α̃kli = logπi − logN (0 | µwkl
, σ2

wkl
)

Q(γkl) = Multi(1,αkl = softmax(log α̃kl))

1.3 Derivation of Evidence Lower Bound(ELBO)

To compute the maximum likelihood estimate of the variance terms τ and τ0 and determine the likelihood
of the data under SuSiE PCA, we write out the Evidence Lower Bound (ELBO).

ELBO(W,Z) = EQ [log Pr(X,Z,W)− logQ(Z,W)]

= EQ[log Pr(X|Z,W)] + EQ[log Pr(Z,W)− logQ(Z,W)]

= EQ[log Pr(X|Z,W)] + EQ(Z)[log Pr(Z)− logQ(Z)]+

L∑
l=1

[
EQ(wl|Γl)[log Pr(wl|Γl)− logQ(wl|Γl)] + EQ(Γl)[log Pr(Γl)− logQ(Γl)]

]
= EQ[log Pr(X|Z,W)] + EQ(Z)[log Pr(Z)− logQ(Z)]

+ EQ(W,Γ )[log Pr(W,Γ )− logQ(W,Γ )]

The first is the expectation of the data with respect to all the parameters in the model:

EQ[log Pr(X|Z,W,Γ )] = EQ

[
− 1

2σ2
tr
[
(X− ZW)

⊺
(X− ZW)

]
− np

2
log(2πσ2)

]
= − 1

2σ2

[
tr(X

⊺
X)− 2tr(X

⊺E[Z]E[W]) + tr(E[Z⊺
Z]E[WW

⊺
])
]
− np

2
log(2πσ2)
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The second term is the negative KL divergence of Z.

EQ(Z)[log Pr(Z)− logQ(Z)] = E[−1

2
tr(Z

⊺
Z)− nk

2
log(2π) +

1

2
tr(Σ−1

Z (Z− µZ)
⊺
(Z− µZ))

+
nk

2
log(2π) +

n

2
log(|ΣZ|)]

= −1

2
tr(E[Z⊺

Z]) +
1

2
tr[Σ−1

Z (E[Z
⊺
Z]− µ

⊺
ZµZ)] +

N

2
log(|ΣZ|)

= −1

2
tr(E[Z⊺

Z]) +
1

2
tr[Σ−1

Z (NΣZ + µ
⊺
ZµZ − µ

⊺
ZµZ)] +

N

2
log(|ΣZ|)

= −1

2
tr(E[Z⊺

Z]) +
NK

2
+

N

2
log(|ΣZ|)

The last term contains joint negative KL divergence of W and Γ can be further decomposed as following:

EQ(W,Γ )[log Pr(W,Γ )− logQ(W,Γ )] = EQ(W,Γ )[log Pr(W | Γ ) Pr(Γ )− logQ(W | Γ )Q(Γ )]

= EQ(W,Γ )[log Pr(W | Γ )− logQ(W | Γ )]

+ EQ(W,Γ )[log Pr(Γ )− logQ(Γ )]

=

K∑
k=1

L∑
l=1

EQ(wkl,γkl)[log Pr(wkl|γkl)− logQ(wkl|γkl)]+

K∑
k=1

L∑
l=1

EQ(γkl)[log Pr(γkl)− logQ(γkl)]

=

K∑
k=1

L∑
l=1

P∑
i=1

αkliEQ(wkl|γkl)[log Pr(wkl|γkli = 1)

− logQ(wkl|γkli = 1)]+

K∑
k=1

L∑
l=1

P∑
i=1

Eγkl
[log Pr(γkli = 1)− logQ(γkli = 1)]

The first expectation term of the last line of equation EQ(wkl|γkl) can be expanded as following:

EQ(wkl|γkl)

[
log

Pr(wkl|γkl)

Q(wkl|γkl)

]
=

P∑
i=1

EQ(wkl|γkli=1)

[
log

Pr(wkl|γkli = 1)

Q(wkl|γkli = 1)

]

= E[
P∑
i=1

[−τ0
2
(wkli)

2 +
1

2σ2
wkl

(wkli − µwkli
)2]

− p

2
log(2π/τ0) +

p

2
log(2πσ2

wkl
)]

=

P∑
i=1

[
(−τ0

2
+

1

2σ2
wkl

)E[(wkli)
2]− 1

2σ2
wkl

µ2
wkli

]
− P

2
log(2π/τ0) +

P

2
log(2πσ2

wkl
)

=

P∑
i=1

[
(−τ0

2
+

1

2σ2
wkl

)[µ2
wkli

+ σ2
wkl

]− 1

2σ2
wkl

µ2
wkli

]
+

P

2
log(σ2

wkl
τ0)

=

P∑
i=1

[−τ0
2
µ2
wkli

− τ0
2
σ2
wkl

+
1

2
] +

P

2
log(σ2

wkl
τ0)
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And the second expectation term Eγkl
can be decomposed as

EQ(Γ )[log Pr(Γ )− logQ(Γ )] =

K∑
k=1

L∑
l=1

P∑
i=1

EQ(γkli=1) [(γkli log πi − γkli logαkli)]

=

K∑
k=1

L∑
l=1

P∑
i=1

[E(γkli) log(πi)− E(γkli) log(αkli)]

=

K∑
k=1

L∑
l=1

P∑
i=1

[αkli(log(πi)− logαkli)]

Finally, we provide the algorithm for SuSiE PCA.

Algorithm 1 Algorithm for SuSiE PCA

Require: Data XN×P

Require: Number of Factors K; Number of single effects in each factor L
Require: Initialize variational parameters (µZ,ΣZ;µwkl ,Σwkl ;αkl); hyperparameters τ, τ0kl, for l = 1, · · · , L; k =

1, · · · ,K
Require: update equations on different variables: FZ;Fwkl ;Fαkl ;Fτ0 ;Fτ

Require: function to compute ELBO, FELBO

Ensure: ELBO increase
1: repeat
2: W←

∑L
l=1 µw ◦α. ▷ Define µw,α as (L,K, P ) arrays by arranging µwkl ,αkl

3: τ0 ← Fτ0(µw,Σw,α)
4: for k in 1, · · · ,K do
5: E[R⊺

klZk]
(1) = X

⊺
µzk −

∑
k′ ̸=k E[wk′ ]E[Z⊺

k′Zk] ▷ compute the first two terms in Eq
6: for l in 1, · · · , L do
7: E[wkl′ ] = wk − µwkl ◦αkl ▷ removing the lth effect from wk

8: E[R⊺
klZk] = E[R⊺

klZk]
(1) −wkE[Z

⊺
kZk] ▷ complete the calculation of E[R⊺

klZk]
9: (µwkl ,Σwkl)← Fwkl(E[R

⊺
klZk],E[Z

⊺
kZk], τ0kl, τ)

10: αkl ← Fαkl(E[R
⊺
klZk],µwkl ,Σwkl)

11: wk = E[wkl′ ] + µwkl ◦αkl ▷ Update the wk

12: end for
13: end for
14: (µZ,ΣZ)← FZ(X, τ,E[W])
15: τ = Fτ (X, τ,E[W],E[Z])
16: ELBO ← FELBO

17: until convergence criterion satisfied
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2 Supplementary Figures

Fig. S1: Sensitivity decreases fast as cutoff value increase when choosing weights from sparse
PCA and EBMF for variable selection
The proportion of correct classified signals using posterior weights from sparse PCA (A) and EBMF (B) as the cutoff.
The green dots represent sensitivity, i.e. Pr(weights ≥ cutoff |True positive signal), the red dots represent specificity,
i.e. Pr(weights < cutoff | True false signal). For consistency and comparable between PIPs and weights, the weights
are standardized to be ranged from 0 to 1.



10 Dong and Nicholas

Fig. S2: SuSiE PCA has the lowest RRMSE across all simulations
The RRMSE is defined in Simulation equation (2.31), which is an assessment of the model prediction performance.
The base simulation data is the same as the simulation setting in Figure 1. For each scenario in (A-D) we only vary
one of the parameters at a time to generate the simulation data while fixing the other 3 parameters and then input
the true parameters (N,P,K,L) into models. Finally, we compute the RRMSE based on equation (2.31) and plot them
as a function of N,P,K,L.
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Fig. S3: SuSiE PCA and EBMF has lower Procrustes error of latent factor Z than sparse PCA
across all simulations
The Procrustes error for latent factor Z is computed in the same manner of loading (Figure 1) using equation (2.30).
For each scenario in (A-D) we only vary one of the parameters at a time to generate the simulation data while fixing
the other 3 parameters and then input the true parameters (N,P,K,L) into models. Finally, we compute the Procrustes
errors of Z based on equation (2.30) and plot them as a function of N,P,K,L.
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Fig. S4: SuSiE PCA remains the fastest method on either CPU or GPU than sparse PCA and
EBMF across all simulations
All analyses are performed on high-performance computing center with the same CPU (AMD EPYC 7302 16-Core
Processor) or GPU (Nvidia Tesla A40). Noticed that platform where we collect the runtime data in this figure is
different from that in Table 1 and therefore is not comparable.
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Fig. S5: Percent of variance (PVE) explained by 27 factors from SuSiE PCA in GTEx z score
summary data.
PVE is a measurement of variance explained by the model and is computed based on equation (3.1)

Fig. S6: The MLE of the precision parameter log τ0kl in SuSiE PCA will be extremely large for
those over-specified single effects in GTEx Z score summary data.
The τ0kl is the inverse variance of the random variable wkl. When there are excessive number of single effects specified
in the SuSiE PCA, the MLE of corresponded τ0kl will become extremely large and as a result shrink those redundant
single effects to 0.
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Fig. S7: Posterior weights by factors from SuSiE PCA across different tissues in GTEx Z score
summary data.
The posterior weights (or loadings) refers to the strengthen of association of the tissues contribution to the factor.
The L is set to be 18 which means each factor has at most 18 tissues with non-zero effects.
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Fig. S8: Posterior inclusion probabilities (PIPs) by factors from SuSiE PCA across different
tissues in GTEx Z score summary data.
Most of (PIPs) are exactly 1 across different tissue by factors, implying the model is quite confident in terms of the
tissues contributing to each factor
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Fig. S9: Scatterplot of latent factor values of z1 vs. z0 in GTEx Z score summary data.
Latent factor values refer to the posterior means of latent factor Z. Each point represents a specific gene, the genes
with the top 5 absolute largest latent factor values are the red points with labels. The ”outlier” gene DDT is found
to be associated with testicular cancer.
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Fig. S10: Total percent of variance explained (PVE) as a function of the number of latent
dimension K (A) and the number of single effects L (B) in SuSiE PCA
(A) We first fixed L = 300, and varied K from 6 to 12. The increased amount between two consecutive K in total PVE
becomes smaller after K reaches 10. (B) We then fixed K=10 and varied L from 200 to 800. Although the total PVE
reaches its maximum at L=700, we noticed that only the first three components have 600 of downstream genes with
PIP > 0.9, while the rest of the components only have 200-400 genes with PIP > 0.9. We then compared the results
between L=300 and L=700 and realized the smaller L retains the same top significant downstream genes relevant to
the component. Considering the parsimony and interpretation of the model, we finally choose K=10 and L=300.
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Fig. S11: Percent of variance (PVE) explained by 10 factors from SuSiE PCA in gene expression
data from perturb-seq data.
PVE is a measurement of variance explained by the model and is computed based on equation (3.1)

Fig. S12: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 1 in perturb-seq data
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Fig. S13: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 2 in perturb-seq data

Fig. S14: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 3 in perturb-seq data
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Fig. S15: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 4 in perturb-seq data

Fig. S16: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 5 in perturb-seq data



Supplement: A Scalable Bayesian Variable Selection Technique for Principal Component Analysis 21

Fig. S17: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 6 in perturb-seq data

Fig. S18: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 7 in perturb-seq data
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Fig. S19: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 8 in perturb-seq data

Fig. S20: factor scores (A) and top enriched pathways of gene set enrichment analysis of down-
stream gene (B) from SuSiE PCA factor 9 in perturb-seq data
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