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Abstract. We show that the classical approach to the soundness of
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1 Introduction

The very first data flow analysis algorithms [2, 1, 3, 4] were postulated: map the
program to a control flow graph (CFG), derive binary vector fixpoint equations
using transfer functions/transformers to abstract the actions in the CFG, solve
iteratively or by elimination, the result is postutaled to be the abstract infor-
mation available on the program semantics. We call this approach “syntactic”
since the values of the variables are not taken into account at all by the transfer
functions/transformers in the equations.

Gary Kildall proposed to reason on paths in the CFG [21]: define the ab-
stract information available on any path in the CFG by composition of syntactic
transfer functions/transformers along that path and then merge/join/meet the
information on all paths. In general, this yields more precise results than the fix-
point equations (except for distributive frameworks where transformers preserve
joins/meets and the results are the same). This is an abstract form of sound-
ness since one can prove that the solution of the equations over-approximates
the merge over all paths solution. [12, Section 9] showed that the merge over all
paths solution is also the solution of fixpoint equations taken over the disjunctive
completion [12, 15] of the original abstract domain. So the imprecision is not due
to the equations but to the abstract domain [16].

Bernhard Steffen observed that by considering the CFG as a transition sys-
tem, the information along a path can be specified by a modal/temporal logic
formula [28, 29]. Model-checking over all paths yields the abstract information
available about the program semantics. The specification is concise and an exist-
ing model-checker can be reused for the implementation. Fixpoint iterates con-
vergence requires the abstract domain to be finite (which excludes e.g. Kildall’s
constant propagation [21] for which the model checker would not be guaranteed
to terminate). The information on the program semantics is still defined with
respect to a syntactic abstraction of the semantics, not the semantics itself.

To solve this problem, David Schmidt proposed to get the abstraction of the
paths by abstract interpretation of a trace semantics [25]. Now the information
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extracted from the program is related to the semantics, but indirectly, since it
is postulated syntactically on abstract paths, not on the traces of the semantics
itself.

David Schmidt used his model to explore “Why some flow analyzes are un-
sound?” and claimed that the live variable analysis is unsound [25, Section 7].
As shown in [14] this is because the analysis is about potential liveness while
David Schmidt’s counter-example is on definite liveness. David Schmidt claims
that this is not a problem in practice since the information is used dually [25]. If
a variable is not potentially live, it is definitely dead and its value need not be
stored e.g. in a register. But if a data flow analysis were wrong, its dual would be
wrong too. As shown by this erroneous reasoning, the syntactic modal/temporal
specification on abstract paths but not directly on the semantics may be prob-
lematic.

In this paper, we explore the definition of dataflow analyses by direct ab-
straction of the trace semantics. So the abstract information extracted by the
static analysis is directly related to the program trace semantics, not to an ab-
straction of this semantics. In this way, values of variables can be taken into
account, which is not the case with temporal specifications on abstract paths.
The analyzes should therefore be more precise and provably sound.

Surprisingly, this approach shows that the abstract syntactic definition of
liveness is unsound with respect to its semantic definition. The problem is both
for definite and potential liveness. The problem comes from the fact that the
semantic definition takes values into account while the abstract definition hence
the resulting dataflow analysis algorithm captures that incorrectly.

Example 1 For definite liveness, consider for example if & (x==0) & x = x-x ;
where x is dead on exit. The syntactic equational and path-based definitions
of definite liveness both yield x is live at & and ¢. However, this program is
equivalent to if ¢ (x==0) & x = 0 ; so x is not live at ¢. Moreover, this last
program is itself equivalent to &; (skip) so that no variable, in particular x is
live at &. Therefore the semantic definition of definite liveness at & and ¢ in
the original program +if ¢ (x==0) & x = x-x ; should be that x is not live, in
contradiction with the syntactic equational and path-based definite liveness. 0O

Potential liveness or, dually, definite deadness is not better.

FEzxample 2 For definite deadness, consider ¢ x = y-y ;& where x is live at ¢ on
exit. Syntactically, x is not used in y-y and x is modified by the assignment so
x is syntactically dead at ¢. Semantically, x is not used in y-y since changing
the value of x at & will not change the value of y-y which is always 0. However,
assume x = 0 at & then the assignment & x = y-y ; does not modify this value.
So in that case x is not modified by the assignment and therefore x is live at &
i.e. if the precondition x = 0 is always true, the compiler is allowed to remove the
assignment. For all other initial values x # 0 at &, the assignment does modify
this value by assigning 0 in which case x is dead at &. So syntactically, x is
definitely dead at & while, semantically, this is not always the case (i.e. when x
is 0 at &). O



Syntactic and Semantic Soundness of Structural Dataflow Analysis 3

To solve these soundness problems, we first define a structural fixpoint trace
semantics in Section 2. Then, in Section 3, we first provide an intuitive semantic
definition of liveness by abstraction of a trace semantics: “a variable is live at
some point if its value may be read before the next time it is modified”. The
above examples 1 and 2 show that the classical syntactic liveness algorithm
is unsound with respect to this definition. At that point we could change the
algorithm or the liveness definition. We choose the second alternative (so as not
to have to change compilers, but this choice is arbitrary!). This second definition
“a variable is live at some point if its value may be read before the next time
it is assigned to” mixes a syntactic (assignment) and a semantic (value) points
of view (thus preventing meaningful program syntactic transformation such as
useless assignment elimination). It specifies exactly in what sense the classical
syntactic deadness/liveness algorithm [19, 20, 18] is sound. Then by a further
purely syntactic abstraction “a variable is live at some point if its value may be
used before the next time it is assigned to” (where use and assigned to are defined
syntactically, thus preventing expression and assignment optimizations), we get,
by calculational design [9], the classical syntactic potential liveness algorithm [19,
20, 18] in Section 4, and the dual definite deadness algorithm in Section 5. The
definition of the trace semantics is structural, so we get the classical syntactic
deadness/liveness algorithm in structural form. Surprisingly, there is no fixpoint
iteration and the (implicit) equations are solved by elimination, which is more
efficient. This is comparable to equation resolution by elimination for reducible
flowcharts [27, 24, 26] but much simpler and efficient. In Section 6, we discuss
whether liveness analysis is correctly used for code optimization. We conclude
in Section 7. The Appendix contains the formal version of informal definitions
and the missing proofs.

2 Syntax and Trace Semantics

Programs are a subset of C with the following context-free syntax.

XY ... €V variable (V not empty)
A e An=1]x]|A-A arithmetic expression
B € B ::=A; <A, | B;nandB, boolean expression
S € % = statement
X=A3 assignment
| 3 skip
| if(B)S | if (B) SelseS conditionals
| while (B) S | break ; iteration and break
| {si3} compound statement
Stedl::=slL s | ¢ statement list
PeP ::=51 program

A break exits the closest enclosing loop, if none this is a syntactic error. If P is
a program then int main () { P } is a valid C program. We call “[program)]
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component” S € Pc 2 $ U $7 U P either a statement, a statement list, or a
program.

2.1 Program labels

Labels are not part of the language, but useful to discuss program points reached
during execution. For each program component S, we define informally (rigorous
definitions are given in the Appendix A.1)

at[s] the program point at which execution of S starts;

aft[[s] the program exit point after S, at which execution of S is supposed to nor-
mally terminate, if ever;

esc[[s] a boolean indicating whether or not the program component S contains a
break ; statement escaping out of that component S;

brk-to[S] the program point at which execution of the program component S goes to
when a break ; statement escapes out of that component S;

brks-of [S] the set of labels of all break ; statements that can escape out of S

in[s] the set of program points inside S (including at[s] but excluding aft[s] and
brk-to[s]);
labs[[s] the potentially reachable program points while executing S either at, in, or

after the statement, or resulting from a break.

2.2 Traces

Because liveness analysis at a program point relates the past, present, and fu-
ture of a computation, we use a trace semantics relating the past computation
reaching that program point to the future computation continuing this past
computation. For simplicity, the program point where liveness is calculated is
the entry point at[S] at a program component S.

A trace m € T™ is a sequence of states separated by events. States are
program labels designating the next action to be executed in the program. The
events record the effect of this execution i.e. the value assigned to a variable,
a test B which is true (marked (B)) or false (marked (-B)), a break ; exiting
from a loop, or a skip when execution goes on with no variable modification. For
example, the program

Gx=x+13if8 (x<0)&x=03¢8 (1)

. . Xx=x+1=1 —|(X<0)
executed with initial value 0 of x has execution trace & (2
&. A trace 7 can be finite 7 € T* or infinite 7 € T*® (recording a non-terminating

computation) so T+ £ T* U T® 1. Trace concatenation = is defined as follows

8 = Ty undefined if ¢, # ¢, my <, 2y if € T® is infinite
T[lel - z17'[2 £ Tl'lelﬂ'z if T € T* is finite

In pattern matching, we sometimes need the empty trace 3. For example if e’
=¢thenm=>andsot =2¢.

1 Abstracting program label states would yield Stephen Brookes trace semantics [6].



Syntactic and Semantic Soundness of Structural Dataflow Analysis 5

States do not record the value of variables x. g()x is the last value assigned
to x on trace 7 (or 0 at initialization).

o®)x 20  g(mt XEAEV, )x 2v  g(mt —> ¢)x £ g(nt)x otherwise  (2)

2.3 Trace semantics

The trace semantics of a program component S is a relation between past traces
reaching the entry point at[s] and future traces recording the computation of S
from at[s]. For example, program S in (1) has the following two pairs of traces
in its trace semantics.

=0 = = 1= (x <0
(t X 0 b, & X =X+ 0 ( ) e4>€8+oo[[sﬂ

=1=1 =x+1=2 _|(X<0
(& X e, & X=X 2} ) e4>€8+m[[SH

In the mazimal trace semantics §T°[s], the observation of the future compu-
tation is maximal. It is finite when the program execution stops and infinite
when the execution does not terminate. In the prefiz trace semantics 8*[s], the
observation of the future computation is finite and can stop at any time during
the execution (in particular just at the program entry). For example, program
S in (1) has the following two pairs of traces in its prefix trace semantics.

=0=0 =1=1 =x+1=2
(0 =250, 0) € 8°[9] (b = b, 4 —2 u) € 8*[s]

It follows from this discussion that the prefix trace semantics is a relation between
finite traces 8*[S] € p(T* x T*) while the maximal trace semantics is a relation
between finite traces and finite or infinite traces §7°[s] € p(T* x T™*).

2.4 Formal definition of the prefix trace semantics

The prefix trace semantics is defined in fixpoint form by structural induction on
the syntax of program components.

e A prefix future trace of an assignment S ::= ¢ x = A ; (where at[S] = ¢)
continuing some past trace ;¢ either stops at ¢ or is ¢ followed by the event
x = A =v where v € V is the value assigned to x (that is the value of the arith-
metic expression A evaluated on 71¢) and finishing at the label aft[s] after the
assignment.

S*[s] & {(nt, &), (mt, ¢ 2227V aft]s]) |t € T Av = A[Alo(r0)}  (3)

= =A=
We often write ¢ ——— ¢ for¢ —— =~ ¢ (since € x = A ; can be recovered from
the program text and the unique program label ¢). The value of an arithmetic
expression A in environment p € Ev 2 V-V is 4 [A]p € V:

dilp21  dx[p2p(x)  d[A -Afp = d[a]p-AlA]p  (4)

e A prefix trace of a break statement S ::= ¢ break ; continuing some initial
trace 7t either stops at ¢ or is the trace t followed by the break ; event and
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ending at the break label brk-to[S] (which is defined as the exit label of the
closest enclosing iteration).

A b k
S*[s] 2 {(mt, ), (e, £ = brk-to[[S]) | ¢ € T} (5)
e A prefix trace of a conditional statement S ::= if ¢ (B) S, continuing some

initial trace ¢ is
e cither ¢ when the observation of the execution stops on entry of the program
component;
e or, when the value of the boolean expression B on 7,¢ is ff, ¢ followed by the
event —(B) and finishing at the label aft[s] after the conditional statement;
e or finally, when the value of the boolean expression B on ;¢ is tt, ¢ followed

by the test event B followed by a prefix trace of S, continuing ¢ L, at[s,].
S*[s] & {(me, &) | myt e T} (6)
-(B) +
U {(mt, ¢ — aft[s]) | B[B]o(m,t) = ff Amt e T}
B B *
U {(me, ¢ — at[[s,] = m,) | B[B]e(n,t) = tt A (mt — at[s,], m,) € S*[S,]}
Notice that if 7, starting at[s,] is a maximal trace of S, terminating aft[s,] then

B
¢ — at[[s,] = 7, is also a maximal trace of S terminating aft[S] since aft[s,] =
aft[[s].

Observe also that definition (6) includes the case of a conditional within an

iteration and containing a break statement in the true branch s,. Since brk-to[[S] =

b k
brk-to[[S,]], from (m,¢ L, at[s,], m, —, brk-to[[S,]) € 8*[s,], we infer that

B break
(8, t — at[[s,] = 1, ——— brk-to[[S]) € 8*[S].
e A prefix trace m of the empty statement list S1 ::= € is reduced to the
program label at that empty statement.

8*[s1] 2 {(mat[s1], at[s1]) | mat[s1] € T*} (7)

e A prefix trace of a statement list S1 ::= SU' S continuing an initial trace

can be a prefix trace of SU' or a finite maximal trace of S’ followed by a prefix

trace of S.

8*[s1] 2 8*[sU'] (8)
U{(my, my = m3) | (s my) € 8*[SU] A (my = 11y, m153) € 8*[S]}

Notice that if (7, = m,, ;) € $*[S] then trace m; starts at[s] = aft[s1'] so the
trace 7, in (7, m,) € $*[S1'] must end aft[s1']. Therefore 7, must be a maximal
terminating execution of SU i.e. S is executed only if SU terminates.

e The prefix finite trace semantic definition 8*[[s] (9) of an iteration statement
of the form S ::=whilet (B) S, is the C-least solution Ifp® & *[S] to the equation
X = F*[s](X). Since F*[s] € p(T*xT*)—p(T* xT*) is < monotone (if X ¢ X'
then F*[S](X) ¢ F*[s](X') and {p(T*xT"), , @, T*xT*, U, N) is a complete
lattice, Ifp® & *[s] exists by Tarski’s fixpoint theorem [30] and can be defined as
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the limit of iterates [11], which is useful to abstract into iterative static analysis
algorithms. In definition (9) of the transformer & *[S], case (9.a) corresponds
to a loop execution observation stopping on entry, (9.b) corresponds to an ob-
servation of a loop exiting after 0 or more iterations, and (9.c) corresponds to a
loop execution observation that stops anywhere in the body S, after 0 or more
iterations. This last case covers the case of an iteration terminated by a break
statement (to aft[s] after the iteration statement).

8*[s] = Ifp* F*[s] 9)
F*[whilet (B) S,](X) 2 {(m,¢, ¢) | m¥ e THAC =¢} 2 (a)

i I i _|(B) i i li
U {(m ¥, ¢mt — aft[s]) | (m, ¥, ¢m,t') € X A
RBBlo(m, t'm,t') =fFAL =2} (b)
u{(m ¥, Um,t N at[sy] = m3) | (b, Uty € XA
B[Bo(m,t'm,t') = tt A (1,0, —at[s,], 75) € S [s,] AY = ¢} (c)

e The prefix trace semantics of the other program components is similar and
given in Appendix A.2. It follows that for each program component S, we have

{(myat[s], at[s]) | m,at[s] € T*} c 8*[9] (10)

2.5 Definition of the maximal trace semantics

The maximal trace semantics 8 °[s] = $*[s]u8*°[s] is derived from the prefix
trace semantics 8 *[[S] by keeping the longest finite traces $*[s] and passing to
the limit §*°[s] of prefix-closed traces for infinite traces.

8*[s] = {{m, myt) € 8*[s] | (¢ = aft[s]) v (esc[s] At = brk-to[S])} (11)
8[s] 2 lim(8*[s]) (12)

where the limit is lim ‘T 2 {(m, ') | 7' € T° AVn e N. (m, n'[0.n]) € T}. (13)

The intuition for (13) is the following. Let S be an iteration. (7, n') € §[s] =
lim 8*[s] where 7’ is infinite if and only if, whenever we take a prefix n’[0..1]
of 7', it is a possible finite observation of the execution of s and so belongs to
the prefix trace semantics (rr, 7'[0..1]) € $*[S].

3 The semantic and syntactic liveness/deadness
abstractions

3.1 The generic liveness/deadness abstractions

Informally “a variable is (potentially /definitely) live at some point if it holds a
value that may/must be used in the future before the next time the variable is

2 A definition of the form d(¥) 2 {f(*') | P(¥', X)} has the variables X' in P(¥', %) bound
to those of f(&') whereas % is free in P(&', X) since it appears neither in f(*') nor (by
assumption) under quantifiers in P(%',%). The % of P(¥', %) is therefore bound to the
X of d(X).
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modified”. The liveness abstraction aise,mod[[s]] L,, L, {m,, m) of a program trace
m continuing an initial trace m, of a program component S is parameterized by

— use defining the set use[a]p of variables which value is used when executing
action a in environment p;

— mod defining the set modJa]p of variables which value is modified when
executing action a in environment p.

Liveness depends on the set L, of variables assumed to be live on exit of the
program component S by a break statement and L, by a normal exit after s. It
is defined inductively on a finite trace (or co-inductively for an infinite trace) as
follows

& somodS] Ly L, (g, ) 2 (x e V| (¢ = aft[S[Ax e L)V (a) (14)
(esc[[S] At = brk-to[S] A x € L)}
oo moalS] Ly Ly (s € = ¢m,) 2 {x € V| x € use[a]a(m,) v (b)

(x ¢ modfale(y) A x € agepoqlS] Ly, L, (g = &=, ¥71,))}

The potential and definite liveness are abstractions of the maximal trace seman-
tics & = §7°[s] is by merge over all traces

ol moals] 8 Ly, L, = U o oo moalS] Ly Le (7, 1) potential liveness (15)
(mg, ) € 8

ol oals] 8 Ly, L, = ﬂ e moalS] Ly, L, {1y, 1) definite liveness (16)
(mg, ) € 8

Potential and definite deadness are defined dually.

ol modls] 8 Dy, D, = ﬂoczlse modlS] 8 =Dy, =D, potential deadness (17)
¥, 0als] 8 Dy, D, = ~al, . o4S] 8 =Dy, D, definite deadness  (18)
If s and s’ have the same aft, esc, and brk to labelling, they have the same
1 1 l d
Xuse,mod> (X?Ase,mod’ aYLse,mod? “ise,mod? and (Xuse mod-
Unfolding the recursive definition (14) , we get
a; a, Ay «
Lemma 1 Ifm =¢ 2 ¢, and (my, m,) € 8*[S] then
o modlS] Ly Le (g, m) = {x € V| Jie [L,n—1] .Vje [Li-1].

a 4j-1 ! iy
x ¢ mod[a;]e(my = & — b L ) Axcusea]omy b —— b ... — &)}

Ut =aft][s] ? L, s @)U (esc[S] At. =brk-to[S] ? L, e ). O

Proof (of Lem. 1) For the basis # = 1, only the first clause (a) of (14) is applicable
with 7, = &, [1,n - 1] is empty, and o, ,,,4[S] Ly, L, (g, ;) = (& = aft[s] ?
D) U (esc[S] At = brk-to]S] ? L, ¢ @) which is precisely what is given by

Lem. 1 since [1,n— 1] = & so the first term is empty.
a a a a
For the induction step n+1 > 1, we have r; = & Ll st

and only the second clause (b) of (14) is applicable so we get

n

4

n+l
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(xise,mod[[sﬂ Ly, L, (o, 71) {assuming n+1 > 2§

= {x € V| x € usea,]o(r,) V (x ¢ mod[a,]e(my)) Ax € &y, 0alS] Ly L, (g =
! a a3

I S I B AN {(14.) when n > 1§
= {(x € V| x € use[a,]le(my)) vV (x ¢ mod]a,]e(my) ATi€[2,n] . Vje[2,i-1].x ¢

a aiy a a;_
mod[a;Je(m, = & — b —— ) Ax € use[a;]o(my bt — b ... —— L))V

(& = aft[S] @ x € L, s ff) Vv (esc[S] A tw1 = brk-to[S] ? x € L, s ff ]}

. 1 a a,
(since &yg0 moalS] Lys L, (my = & , b

a,

L)y ={x € V|
Ji € [2.n] . Vj € (20— 1] . x ¢ mod]aJo(ry -t —— ¢ . ) Axe
usela;]o(my = & —s b ... —=1, 6)} U (b = aft[s] ? L, s @) U esc[s] A
¢, = brk-to[[S] ? L, ¢ @) by ind. hyp. for Lem. 1§

a._
— [xeV|Fie[Lnl.VjeLi-1].x ¢ modaetry =t — t... —— t)Ax €

a a;_
use[a;o(y = & —— & ... —— 6)} U (s = aft[S] ? L, ¢ D) U (esc[S] A tur =
brk-to[[S] ? L, ¢ &)

{incorporating (x € V | x € use[a;]o(r,)) in the case i = 1 for which

a a;_
[1,i-1] =@ and g(7my =t —> & ... —— &) = g(7, = &) = o(11).§

This proves Lem. 1 for the induction step and we conclude by recurrence on

n. O

We also observe that potential liveness (hence dually definite deadness) can be
equivalently defined using maximal or prefix traces.

Lemma 2 o}, 4[S] (87[s]) = o [s] (S8*[s]). O

use,;mod

Proof of Lem. 2. To show that a7, ,,,4[S] (8T[S]) = ail, 0alS] (S*[S]) we
must, by (15), prove that

l l
A= U “use,mod[[s]] Lh’ Le <7-[0’ 7T> = U “use,mod[[sﬂ Lb’ Le <7'[0’ 71’,) =B.
(1o, 1) € 8T°[s] (g, ') € 8*[s]

— Assume x € A because of some (11, 1) € 8*®[s]. There are two cases.

o Either x € A follows from (14.a) and so the second alternative in (14.b)
has always been chosen before reaching the end of the trace m with a label
¢ = aft[s] or esc[s] = tt and ¢ = brk-to[S]. In both cases, 7 is maximal by
(11), (my, m) € 8*[s], and so x € B by (14).

o Otherwise, x € A follows from (14.b) where the second alternative has been
chosen finitely many times (so x is unmodified) until the first alternative
is chosen because x is used. Consider the prefix of m up to that point of
use. By (13), it is, or an extension of it, 7’ is in the prefix semantics (rm,,
n') € 8*[s] and so from this trace we derive from (14.b) that x € B.
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It follows that A € B.

— Conversely, assume x € B. Then there exists (m,, n') € &*[s] such that
x € o oalS] Ly, L, (g, m'). Consider a maximal extension of 7’ so that
there exists " with (my, ' - 7") € 8&*°[s]. There are two cases, depending
of whether x € B in (14.a) or (14.b).

e If x € B because of (14.a) then the 7' ends at aft[s] or at brk-to[S] and so
7' is maximal that is {(rry, 7') € §¥°[s] and so x € A.

o If x € B because of (14.b) then x € B is used in n’ without being modified
before and so this is also the case in (my, 7’ -7") € 8[s], " = 3, and
then x € A by (14).

In both cases, B € A.

— By antisymmetry, A = B. O

3.2 The semantic liveness/deadness abstractions

Semantically, an action a uses variable y in a given environment p if and only if
it is possible to change the value of y so as to change the effect of action a on
program execution. For an assignment, the assigned value will be changed. For
a test, which has no side effect, the branch taken will be different. For example,
y ¢ use[x =y - y] p and x ¢ use[x = x] p. Formally,

use[skip] p £ & (19)
use[x =Alp2{y | Ive V. d[A] p # A[A] ply — VI A p(x) + A[A] p}
usefa] p2{y | Iv eV .RB[a] p #+ Bla] ply < v} a € {B, ()}

Notice that x € use[a] in (19) compares two executions of action a in different
environments so that (14) is a dependency analysis involving a trace and the
abstraction of another one by a different environment [7]. An action a mod-
ifies variable x in an environment p if and only the execution of action a in
environment p changes the value of x. This corresponds to

mod[a] p 2 {x | a=(x = A) A (p(x) # A[A] p)}
So the semantic potential liveness abstract semantics is
Sal[[sﬂ 2 (xlfjlée,mod [SH (8+OO [[S]]) (20)

instantiating (15) with use as use and mod as mod (and similarly for the other
cases).

3.3 The classical syntactic liveness/deadness abstractions

Classical dataflow analysis as considered in [25] is purely syntactic i.e. approxi-
mates semantic properties by coarser syntactic ones based on the program syntax
only. The set use[a] of variables used and the set mod[a] of variables assigned
to/modified in an action a € A are postulated to be as follows (the parameter p
is useless but added for consistency with (14)).
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use[[x = A] p 2 vars[A] use[skip]p 2@ use[B]p= use[-(B)] p £ vars[B]
mod[x = A] p 2 {x} mod[skip] p £ @ mod[B] p 2 med[-(B)]p2 @  (21)

where vars[E] is the set of program variables occurring in arithmetic or boolean
expression E.
So the classical syntactic potential liveness abstract semantics is

SEHH[[SH 2 “ﬂée,m@d [[S]] (SHX)[[S]D (22)

instantiating (15) with use as use and mod as mod (and similarly for the other
cases).

3.4 Unsoundness of the syntactic liveness/deadness abstractions

One would expect soundness that is the potentially live variables determined
syntactically by [25] is a pointwise over-approximation of the potentially live
variables determined semantically but this is wrong $?[s] ¢ 8¥'[s], as shown
by Ex. 2. The problem is that

Jpekv.yecusefa] p=VpekEv.ycuse[a] p (23)

but in general, as shown by Ex. 2, 3p € Ev. x € mod[a] p A x ¢ mod[a] p.

Proof of (23). Let us first remark that if x ¢ vars[B] and Yy € V' \ {x} . p'(y) =
p(y) then @B[B]p = AB[B]p’ and similarly for arithmetic expressions.

(23) is trivial for skip since use[skip] p y = ff in (19). Otherwise, by contrapo-
sition, assume that y ¢ use[a]p.
— Ifa=x=Atheny ¢ vars[A] by (21) so Vv e V. d[A] p = A[A] ply < V],
proving —(use[x = A] p y) by (19).
— Similarly if a = B or a = =(B) then changing y does not change the value of
the boolean expression so y is not semantically used by (19). O

3.5 Soundness of the syntactic liveness/deadness abstractions
with respect to revised syntactic/semantic liveness/deadness
abstractions

To fix the problem 8¥[s] ¢ $¥[s], we can either change aZl, o4 OF a2y oq-
Changing aiée)m@d would mean changing the classical potential live variable al-
gorithm [19, 20, 18] and all compilers using it. So we change ocf,'ée,mod so as to
explain exactly in what sense the unchanged classical potential live variable al-
gorithm is sound (even if this is not the most semantically intuitive one). We
remark that we have (xﬂée)m@d < (xﬂée,m@d so the classical potential live variable
algorithm 8¥'[s] which over-approximates oz, yoa[S] (ST°[S]) is sound. How-
ever, the program transformations that preserve mod but not mod may change
the liveness analysis. Therefore we define

Saﬂﬂsﬂ = “lzjlie,ma:odl (8+OO[[S]]) (24)
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Theorem 1 If aZl, ..q[S] (87°[s]) ¢ $F'[s] then $T[s] ¢ $¥[s].

Proof of Th. 1. We have to prove that ol oqlS] € il meallS], pointwise.

We first prove that o' medlS] € ¢heemoalS]- We proceed by induction (more
precisely bi-induction [10] to account for infinite traces).

— For the basis

‘xlljse,modl [[SH Lb’ Le <7T0’ €>

= {xeV]|(t=aft[S]Ax € L,) V (esc[S] At = brk-to[S] A x € L)} {(14.2)§
< “ulﬂse,m@dl [s] Ly, L, {7y, ) {(14.a) and ¢ reflexive§
— For the induction step
‘xlljse,modl [[S]] Lb’ Le <7TO’ ¢ L’ elﬂ])
= {x € V| x € use[a]o(rry) V (x ¢ mod[a]e(ry) Ax € &g moqlS] Ly» Le (T[O?€i>3',
)} 1(14.b)§
c {x eV |x e use[ao(my)V(x ¢ mod[a]e(r) Ax € otlge moa[S] Ly Le (n()?@iﬂ’,
em )} 1235
¢ {x € V| x € use[ao(my) V(x ¢ mod[a]e(rp) Ax € & gqmoqlS] Ly Le (7=t~
v )} (ind. hyp.§
= “t{use,m@dﬂsﬂ Lb’Le (T[O’ ¢ i’ 2I7Tl> 2(14]0)3

It follows that

use mod [[SH $ Lb’

= U ‘xuse,m@d] [[S]] Ly, L, (o, 7) 2(15)3
(mg, ) € 8

< U “uﬁ]Se,m@d] [SH Lb’ Le <7TO> 7T> Z‘xﬁse,m@d [[S]] ¢ “fﬂse,m@d HSHS
(mg, M) €8

= “[U]§® m@dl[[sﬂ S Ly, L, Z(15)S

If o3l moalS] (8T®[s]) ¢ $¥[s] then al, 10qlS] (8T°[s]) &€ S¥[s] and there-
fore, by (24), 8¥[S] 2 adl moq (ST[S]) & $¥[s].

The other cases 8"'[s], 83[s], and 8Y[s] are similar.
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4 Calculational design of the structural syntactic
potential liveness static analysis

By Th. 1, a liveness inference algorithm 8¥[s] is sound whenever

use mod [[S]] ('Sﬂx’[[sﬂ) < SEH [[S]]

equivalently
use m@d][[s]] (8* [SH) < 83] [[S]]

by Lem. 2. So We can construct this algorithm 8&¥'[s] by a calculus that sim-
plifies the term o2l . 4[S] (8*[S]). Since the semantics 8*[s] is structural, we
get a structural algorithm which proceeds by elimination, without any fixpoint
iteration. We first give the result in Figure 1 and then show the systematic
calculational design [9]. Notice that although the semantics is forward, the anal-
ysis is backward (see e.g. the statement list and iteration). We omit the unused
environment parameter of use and mod.

Structural syntactic potential liveness analysis
S¥[ste L, 28¥[s1¢] @, L, (25)
Mx=A;] L, L, 2 usex = A] U (L, \ mod[x = A])
$I)L,L 2 L,
S¥[sV s] L, L, 2 8*[sV] L,,(S¥[s] L,, L,)
S¥e] L,L, 2L,
S¥[if (B) s,] Ly, L, 2 use[B] UL, uS¥[s,] L,,L,
S[if (B) s, else S,] L,, L, = use[8] US¥[s,] L,, L, US¥[s/] L, L,
8 ¥ [while (B) s,] Ly, L, = use[B] UL, US ¥'[s,] L, L,
S¥[break ;] L,, L, £ L,
S¥{s13] L, L, 2 8F[s] L, L, o

1>

Fig.1. Potential liveness

Theorem 2 8 ¥[s] defined by (25) is syntactically sound that is 8F[s] =
use mod HSH (8* [[S]]) < S EHII[[S]]

Proof of Th. 2. By structural induction on S. We provide an example of a base
case (assignment) and an inductive case (iteration), all other cases are handled
in Appendix A.4.

For the assignment S ::= ¢ x = A 3, let us calculate $¥'[s] Ly, L,
= “uﬂse m@dHSH(S*HSH) Ly, L, 2(22) and Lem. 23

= U{‘xuﬂse,m@d [SH Lb’Le <7TO> T[l) | <T[0’ 7T1> € g*[[s]]} Zdef' (15) of “iée,m@dﬂsﬂs
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= U{(x[{ﬂ§®,m®¢[ﬂ[[sﬂ Lb’Le <7TOat[[SH’ at[[s]])} U U{“t{nse,m@d[[sﬂ Lb’Le (T[Oat[[sﬂ’

atfs] — A= A IAematlsD) ey {def. (3) of 8*[3]§

— UisemoalS] Ly Ly (moat[s], at[s] —— 2= LAITRtED ooy,

{def. (14.a) of gqmoalS] Lp» L, (myat[s], at[s]) = & §

= U{y € V |y e use[x = Alo(myat[s]) vV (y ¢ mod[x = AJe(m,at[S]) Ay €
x = A = d[A]o(m,at[s]) oft[s], aft[s])}

x=h= dlematlsD | oo

‘xulme,m@d] [[S]] Lb’ Le <7TOat[[s]] - at[[S]]
{def. (14.b) of al g moq Ly Le (moat[s], at[s]
{yeV|ycuse[x=A]V(y ¢ mod[x =A] Ay € L,)}

{def. (14.a) of aligqmoq[S] Ly» L, (g, aft[S]) 2 {x € V | x € L,} = L, since
esc[S] = ff and omitting the useless parameters of use and mod §
use[x = A] U (L, \ mod[x = A]) {def. €§
= 8¥x=A3;] L L, 1(25), Q.E.D.§
¢ is never used in this derivation so 8 ¥ [x = A ;] L, L, = 8¥[x = A ;] L, L, is

the best (most precise) abstraction for the assignment.

For the iteration S ::= whilet (B) S, we apply the semi-commutation fixpoint
approximation Lem. 5 of the Appendix to the fixpoint definition (9) of the prefix
trace semantics of the iteration. For the semi-commutation where we can assume
that X is an iterate of & *[whilet (B) S,] from & and therefore X ¢ $*[s], we
have

ol [s] (F*[whilet (B) S,](X)) Ly, L,

use,mod

= U{‘Xulme,mod][sﬂ Lb’ Le <7T0’ 7-[1> | <7T0’ 7T1> € g*[[Whilee (B) SbH(X)} 2(15)3
= U{“ﬂlﬂw,mod[sﬂ Lb’ Le <7TO’ 7Tl> | <7T0’ 7T1> € {(7‘[18’, €I> | 771(7" €T Al = e}} u (a)
l 1opt ' _‘(B) '
U{‘xume,mod][[sﬂ Ly, L, (o, 1) | (g, 711) € {{my¥, €'yt — aft[s]) | (m,¢,
U,y € X A B[B]o(m,t'm,t) =AY =¢}tu (b)
Ut cemodlIS] L Le 00 1) | (g0 1) € {(my2, €yt = at[s,] = 73) | (my,
U,y € XAB[BJo(m, ¢'m,t') = A ' m,t 2, at[s,], m3) € 8*[S,]AY = t}}(c)

{95

We go on by cases.
e For the case (a), we have
U{(xtﬁlse,m@d[{sﬂ Ly, L, (g, my) | (g, ) € {(m, ) | e € THAY = ¢f}

((2)

= (JiodeemodlS] Ly L, (mt, ©) | mt € T} {where ¢ = at[whilet (B) S,]§
{x e V| (¢t =aft[S] Ax € L,)V (esc[S] At = brk-to]S] A x € L)} {(14.a)§

=@  {t=at[s] # aft[s] and ¢ = at[S] # brk-to[S] for iterationin Appendix
A1§
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e For the case (b) where X ¢ 8*[s] is a subset of the iterates, we have

N

N

~(B)
U{‘xtllme,mod][sﬂ Ly, L, (7‘[0, 7T1> | (7'[()» 7T1> € {(7712,, 8’7'[22’ Emm— aft[[S]D | <7-[1€’,
U,y € X A B[B]o(m, t'm,t) =AY =t}

-(B
Ui omoalS] LpLe (myts tmt —2s aftls]) | e, tmt) € X A

B[B]o(m,tr,t) = ff} {def. € and ¢ =¢ = at[[S]§

U{{x eV |3Jiell,n-1].Vje[l,i-1].x ¢ m@d][[aj]]/\x € usefa;J}UL,U | (7,8,
tr,8) € X A B[BJo(r, tm,t) = ff}

~(B) a, a Ay
{(by Lem. 1 where tm,t —— aft[s] = ¢, 3 6y =
a,_; = ~(B)
t 1 ¢, where 2 ¢ =¢ and ¢, = aft[s], (m¢, tm,yt) € X € 8*[3]

so (7, ¢, tm,t ﬂ aft[s]) € 8*[s], and esc[s] = ffby Appendix A.1§
JtixeVITie[l,n-2].Vje[Li-1].x ¢ mod]a;] Ax € use[a;]} Uix € V|
Vj € [1,n-2] . x ¢ med[a;[Ax € use[BJ}UL, | (m¢, tm,t) € XADRB[B]o(m,tm,t) =
ff} {(l,n-1]=[1,n-2]u{n-1}, a,; = ~(B), and use[(B)] = use[B]§

Utix e VI diel,n-2].Vje[Li-1].x ¢ mod[a] Ax € use[a] | (¢,
err,) € X}} U use[B] UL,

(ignoring the check Vj € [1,n-2] . x ¢ mod[a;] that x has not been
modified before its use in —(B), that the test B is false, and tm,t =

a,_
62 2 5 with =6 and 6 = ¢
| (s moalS] L L, (g, my) | (o> 7y) € X} U use[B] UL, {Lem. 1§
“iée,m@d [[SH (X) Lb’Le U US@[[B]] u Le 2(15)3

e For the case (c) where X € 8*[S] is a subset of the iterates, we have

B

U{“tllﬂ§e,mod [S] Ly, L, (g, 711} | {1, 1) € {{my¥, €yt — at[s,] = 73) | (my¥,
U,y € X A B[BJo(m ¥'m,t') = tt A (', 2, at[s,], m3) € S*[s] A =t}}
U{‘xulﬂse,m@d[[sﬂ Lb’Le <771e’ 87-[28 i) at[[sb]] - 7T3> | (7‘[15, 87-[22) € XA

ABB]o(m, tm,t) =t A (715, 71187,¢ L, at[s,]) € $*[s,]}
(def. € and ¢ = ¢ = at[s]§
JtixeVIie,n-1].Vje[Li-1].x ¢ mod]a] Ax € use[a]} U (¢ =
afts] 2 L, s @) U (esc[S] At = brkto[[S] 2 L, ¢ D) | (8, tmyt) € X A
BBJo(n,tm,t) = tt A (115, 1,0yt — at[s,]) € 8*[S,] Atmyt — at[s,] = 75 =

a, a, Ay

o 2 en} Zby Lem. 1 S
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U{{x eV|3Jie[l,n-1].Vje[li-1].x¢ m@d][[aj]] Ax € usefa;]} | (8,
e,y € X A B[BJo(m tmyt) = tt A (75, mpem,t i>_at[[$b]}) € 8*[sp] Atmyt =

4 a, Ay B Ay = )
I3 e, e = 8 A& — at[[Sy] = fn ——— s AT = By — >

{by decomposing the trace according to its pattern, (m;, 7,tm,¢ L
at[s,]) € 8*[s;] so & # aft[s], and esc[s] = ff§

U{{x eV]|Jie[l,m-1].Vje[l,i-1].x ¢ m@d[[aj]]/\x € usefq;J}u{x € V|
Vjiell,m-1].x ¢ mod[a, Ax € use[a,[}U{x e V|Jie[m+1n-1].Vje
(Li-1] . x ¢ mod[a;]Ax € use[a;]} | (m,¢, tmyt) € XAB[B]e(m,tm,t) = ttA (s,
T 87,8 LA at[sp]) € $*[s,] Ayt =& A .. Ny AL N

a, =B [2 a,_;
at[[Sb]] =1, LN i1 N71T3 = i1 /= . — en}

{by decomposing [1,n—1] = [I,m—-1]U{m}U [m+ 1,n-1]§

Jix e VI 3ie[L,m-1].Vje[Li-1].x ¢ moda;] Ax € use[a;]} | (m,,
a, a, A1 .
er,t) € X Atmyt = & 12 ¢} Uuse[B] U U{{x eV |die

(m+1,n-1].Vje[Li-1].x ¢ mod[a] Ax € use[a,]} | (3, mtm,t LR

Av1

a,
at[s,]) € 8*[Sp] A7z = bt ——s ... 0.}

(def. U, ignoring the check Vj € [1,m - 1] . x ¢ med[a;] that x has
not been modified before its use in a,, = B, ignoring the value of
B[B]e(m tmyt) = tt§

U{(Xt{nse,mmﬂ[sﬂ Lb’Le <7T1{7’> 871:2‘8) | (7-[18, e”zf') € X} U ru]§e[[B]] U U{{X € V | di e
[(m+Ln-1].Vje[Li-1].x ¢ mod[a] A x € use[a;]} U (& = aft]s,] ?

L, s @)U (esc[s,] At = brketos,] 2 L, : @) | (5 mmyt — at[s,]) €

a a,
S*[Sp] ATy = tus — . s 0}

e 8

{by Lem. 1 for the first term since aft[S] # ¢ and brk-to[S] # ¢ and
over-approximating the third term §

tohsemoalS]  LypL, (mt, tmty | (me, tmt) € X} U use[B] U
B B

U{“nlme,m@d][[sb]] Ly, L, (mtmyt — at[s,], m3) | (mtmyt — at[s,], m3) €

S*[s,[} {by Lem. 1§

U{‘xnlme,m@d] HSH Lb’ Le <7T0’7T1> | <7TO’7T1> € X}Uuse[[B]]UU{‘xulnse,m@dl [[Sb]] Lb’ Le<n0’
) | (g, my) € 8¥[S,]} (over-approximating the semantics X and 8*[s,]§

(‘Xﬂée,m@d [[S]] (X) Lb’ Le) U US@HB]] U ((Xiée,m@d]sb] (8* [[Sb]]) Lb’Le) 2(15)8

(aaée,m@d] [[S]] (X) Lb’ Le) u [U]S@[[B]] U ;S;Enﬂ[[sb]] Lb’Le
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{structural induction hypothesis of Th. 2§

e Gathering the three cases (a), (b), and (c), we have proved the semi-commutation
condition

“use m@dl[[s]] (9 [[whfl.ef (B) Sb]](X)) Lb’ e <

L, U (03l o moallS] (X) Ly, L, U use[B] U L,) U (agt, moa[S] (X) Ly, L,) U use[B] U
SEH Hsb]] Lb’ e

So we define
Hwhitle (B) S]] Ly, L, X 2 L, U X Uuse[B] US ¥[s,] L, L,

to get 8 ¥[while (B) ;] Ly, L, 2 Ifp® B [while (B) S,] Ly L,. The iterates
are

- X'=02

- X'= B¥[while (B) S,] Ly, L, X° = L, Uuse[B] uS ¥[s,] L,, L,

- X2 = B¥[while (B) S,] Ly, L, X* = L, Uuse[8] US¥[s,] L,, L, = X
Therefore the least fixpoint is the constant

Fwhite (B) S,] Ly, L, = L, Uuse[] u 8 ¥'[s,] L,, L,
as stated in (25), Q.E.D. o

We conclude that algorithm (25) is sound with respect to the revised syntac-
tic/semantic definition 8¥[s] of liveness in (24).

Theorem 3 8¥[s] = adl, 4 (8T[s]) € S3[s].

Proof (of Th. 3)
use mod (S'HX)[SH)

use,mod] (S*HSH) zLem' 23
¢ S¥[s] {Th. 2 and Th. 1§ O
5 Calculational design of the syntactic structural

deadness static analysis

By duality we obtain the syntactic definite deadness analysis which is the infor-
mation actually needed in compilers.
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Structural syntactic definite deadness analysis
SY[s1¢] D, = 8"[s1¢] V,D, (26)
8Y[x = A ;] D,, D, = ~use[x = A] N (D, Umod][x = A])
8Y[;] D,, D, = D,
8Yi[sV" s] D,, D, = 8Y[sU] D,, (8 "[s] D,,D,)
8Y[¢] D,, D, = D,
SY4[if (B) s,] Dy, D, = ~use[8] n D, n8§"[s,] Dy, D,
8YI[if (8) s, else S;] D, D, = ~use[8] N8 "[s,] D,, D, N8 *[s/] D,, D,
8 Y[while (B) S,] Dy, D, = ~use[8] N D, N8 [s,] D,, D,
S"[break ;] D,, D, = D,
S8Y[{ s1}] Dy, D, = 8Y[s1] D,, D, o

Theorem 4 (Structural syntactic definite deadness analysis) For
all program components S, define 8"[s] D,,D, = -8¥[s] -D,,-D,. 8"
is equivalently defined by 84 in (26).

Proof of Th. 4. The proof is by structural induction and essentially consists in
applying De Morgan laws for complement. For example,

S"4[if (B) s,] Dy, D,

= -8¥[if () s,] “D,, D, {definition of 8"¢[s] as dual of S¥[s]§
= -(use[B] U-D,u 8¥[s,] ~D,,-D,) 1(25)§
= -use[B] N =D, N -8¥[s,] ~D,,~D,) {De Morgan laws§
= -use[B] nD,n 8¥[s,] D,, D, {structural induction hypothesis§
All other cases are similar. O

6 Is liveness analysis correctly used for code optimization?

6.1 Liveness specification

We have considered three possible specifications of liveness. A purely semantic
one 87 in (20) with respect to which the liveness analysis algorithm (25) is
unsound and a syntactic one 8@ in (22) as well as a revised syntactic/semantic
liveness specification ¥ in (24) for which, by Th. 1 and 2, the liveness analysis
algorithm (25) is sound. The problem is that, as shown in Section 3.4, the
syntactic specification of liveness ¥ in (22) is unsound with respect to the
purely semantic specification §¥ in (20). This is problematic since applications
of the liveness analysis algorithm (25) are not designed with respect to what the
algorithm does, but with respect to the specification of what it is supposed to
do. Therefore, a potential problem is in the use of the liveness analysis algorithm
(25) with a semantic definition 8 in (20) of soundness for which it is incorrect.


https://en.wikipedia.org/wiki/De_Morgan's_laws
https://en.wikipedia.org/wiki/De_Morgan's_laws

Syntactic and Semantic Soundness of Structural Dataflow Analysis 19
6.2 What could go wrong when optimizing programs?
Consider a compiler that successively performs

1. a (syntactic) liveness analysis 8¥;
2. next, a code optimization by removal

(a) of assignments to variables that are dead after this assignment,

(b) of assignments to variables that do not change the value of this vari-
able (using Kildall’s constancy analysis [21] or a more precise symbolic
constancy analysis [17, 31]);

3. next, a register allocation such that

(a) simultaneously live variables are stored in different registers,

(b) when no register is left and one is needed, one of those containing the
value of a dead variable is preferred (to avoid saving the value of the
variable to its memory location as would be needed for live variables).

For the following program (where all variables are dead on exit)

semantically syntactically
live dead live dead
x=03; scanf(y);
if (x==0){
& ... x and y neither used nor modified ... & {x} {y} {y} {x}
bx=y-y;} & {x} {y} {y} {x}
else {
X=42;
}
& print(x); & {x} {y} {x} {y}

x is semantically live at &, &, and & since it is never modified (in particular
not modified at &) before being used at t. However it is syntactically dead at
¢, and & since it is not used before being assigned at &. Code elimination (2b)
will suppress the assignment at ¢ since the value of x is unchanged. Assume x
is in a register at & and a fresh register is needed but none is left available. By
(3b) the register containing x may be selected since its value need not be saved
to memory because x is syntactically dead at &. Then the value of x is lost at
¢, a compilation bug. The problem is the notion of modification assimilated to
an assignment in (21) and syntactic liveness 8¥ in (22) when this assignment
is redundant and may be eliminated from the object program.

This error does not occur with semantic liveness 87 in (20) which declares
x live at & so the register containing its value will be saved to memory (and
reloaded at ¢&).
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6.3 Why does it not go wrong?

One solution is to prevent program transformations (such as (2b) and (3b) above)
that do not preserve the soundness of the semantic liveness 87 in (20). Since
(2b) does not depend on the liveness analysis, it can be moved before. Another
solution is to redo the liveness analysis after any program transformation that
does not preserve the information. A better solution is adopted in CompCert [22]:
the liveness analysis and code elimination are performed simultaneously and the
liveness analysis is designed to be valid after code elimination. The soundness of
the liveness analysis is stated and proved as “after code elimination, the program
execution does not depend on the values of the variables declared dead by the
analysis”. More generally, a program transformation based on a sound static
program analysis must be formally proved to be correct. This can be done in the
framework of abstract interpretation [13].

7 Conclusion

We have shown that Gary Kildall approach to data flow analysis by abstrac-
tion over a path and merge over all paths [21] as well as Bernhard Steffen’s
approach “Data Flow Analysis is Model Checking” [28, 29] (requiring finite ab-
stract domains) formalized by David Schmidt as “Data Flow Analysis is Model
Checking of Abstract Interpretations” [25], (including its recent reformulation
[5]), hide subtleties in the definition of soundness, which may lead to incorrect
semantics-based compiler optimizations.

Moreover, the use of transition systems in model checking forgets about the
program structure and so cannot be used directly to formally derive structural
elimination algorithms which may be more efficient than fixpoint algorithms.
Of course elimination would not be necessarily feasible in presence of arbitrary
branching in or out of loops. But nevertheless, by the chaotic iteration theorem
[8], the result remains valid for all loops with forward branching only.

We have argued that “Data Flow Analysis is an Abstract Interpretation of
a Trace Semantics”, as first propounded by [12, Section 7.2.0.6.3] solves the
soundness and design problems thanks to a not so natural replacement of “se-
mantically modified” by “syntactically assigned to”. Therefore liveness analysis
must be performed after program assignment transformations.

Since the program cannot be modified after the classical syntactic liveness
analysis since the analysis can become wrong after the transformation, an alter-
native, & la CompCert [22], is to use dependency: the soundness of the liveness
analysis is stated and proved as “the program execution does not depend on the
values of the variables declared dead by the analysis”.

More generally, this is another illustration that program property specifica-
tion is better performed directly on a semantics rather than, as is the case in
dataflow analysis, on any of its abstractions.

Let us leave the conclusion to an anonymous reviewer. “It is an old story
that the dataflow analysis framework ("syntactic” dataflow analysis in paper’s
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characterization) is way too weak. For modern programming languages, control
flow is not syntactic but a part of semantics. Dataflow analysis assumes the
control flow to be available before the analysis hence a stalemate for modern
languages with higher order functions, dynamic bindings, or dynamic gotos;
dataflow analysis has neither a systematic guide to prove the correctness of an
analysis nor systematic approach to manage the precision of the analysis. On
the other hand, the semantics-based design theory (abstract interpretation) is
general enough to handle any kind of source languages and powerful enough to
prove the correctness and to manage its precision.”
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A Appendix of “Syntactic and Semantic Soundness
of Structural Dataflow Analysis” by Patrick Cousot

A

.1 Program labels

at[s] is the program point at which execution of a program component S starts.
aft[s] is the program point at which execution of S is supposed to terminate,
if ever. esc[S] is true (it ff) if and only if the program component S contains
a break ; statement escaping out of that component S (so that this break ;
statement is not inside an iteration within S). brk-to[S] is the program point
at which execution of the program component S goes to when a break ; state-
ment escapes out of that component S. It is well-defined only when esc[[S] = tt;
brks-of [S] collects the labels of all break ; statements that can escape out of S
(so excluding break ; statements inside an iteration statement within S).

P::=S1

Si

Si

at[P] = at[s1]
aft[p] = aft[s1]

esc[P] =ff, esc[s1] = ff
brks-of[P] = &, brks-of[S1] = &
in[P] =in[s1], aft[s1] ¢ in[s1]
n=sUs

at[s1] = at[sl']
aft[sU'] = at[s], aft[s] = aft[s1]
esc[S1] = esc[SU'] V esc[9]
brk-to[S1'] = brk-to[[S] = brk-to[[S1]
brks-of [S1] = brks-of [SU'] U brks-of[S]
in[s1] = in[sU'] uin[s]
in[sU] nin[s] =@

when sU #{..{e}..}

a.t.[[_sl]] = aft[s1]
esc[s1] = ff

brks-of [S1] = &
in[s1] = {at[s1]}

n=X=A

esc[s] = ff
brks-of [S] = @
in[s] = {at[s]}

S

es_c[ES]] =ff
brks-of [S] = &
in[s] = {at[s]}

nw=1if (B) S;

aft[s,] = aft[s]
esc[s] = esc[[s;]
brks-of [S] = brks-of[[S,]
in[s] = {at[s]} vin[s,]
at[s] ¢ in[s,]

nw=1if (B) S; else Sf

aft[s,] = aft[s/] = aft[s]

esc[s] = esc[s,] v esc[s/]
brk-to[S,] = brk-to[[Sf]] = brk-to[S]
brks-of[[s,] U brks-of [s/]

in[s] = {at[s[} vin[s,] Uin[s/]
at[s] ¢ in[s,] Uin[s/]

in[s,] nin[s;] =&

::= break ;

esc[s] = tt
brks-of [S] = {at[S]}
in[s] = {at[s]}

brk-to[[S,]] = brk-to[S]



Syntactic and Semantic Soundness of Structural Dataflow Analysis 25

S ::=while (B) S, S::={Sl}
aft[s,] = at[s] at[s] = at[s1]
esc[s] = ff aft[s1] = aft[s]
brk-to[[S, ]| = aft[s] esc[s] = esc[s1]
brks-of [S] = @ brk-to[[S1] = brk-to[S]
in[s] = {at[s]} uin[s,] brks-of [S] = brks-of[S1]
at[s] ¢ in[s,] in[s] = in[s]

The above specification of labelling leave the choice of labels free. For example, a
label can be represented by the program component that remains to be executed
when execution is at this label, as in [23]. When explicitly decorating programs
with labels, we should have

Su=tx=A; at[s] 2 ¢ Su=1ift (B) S, elses; at[s]=¢
S =¢; at[s] = ¢ S::=whilet (B) S, ats] ¢
Su=1ift (B)S, at[s]2¢ S ::=¢ break ; at[s] = ¢

P:=Sl¢ aft[p] 2 aft[s1] 2 ¢

For all program components S of a program P, at[s] € in[s], if S# {...{ € }... }
then aft[s] ¢ in[s], and esc[S] = (brk-to[S] ¢ in[S]) A (brk-to[[S] # aft[S]).

labs[s] is the set of potentially reachable program points while executing S
either in or after the statement or by a break.

labs[[s] £ in[S] uU {aft[S]} U (esc[S] 2 {brk-to[S]} : &)
Lemma 3 For all program components S € [Pc of a program P, at[S] € in[S].

Proof (of Lem. 3) By structural induction on S.

In the base case, for example, if SU::= € then in[S1] 2 {at[S1]} so at[s1] €
in[s1] and for S ::= ¢ x = A ; then in[S] £ {¢} where at[s] £ ¢. Similarly
for the other base cases S ::= ;, S ::= if (B) S,, S ::= if (B) S, else St
S ::=while (B) Sy, and S ::= break ;.

For the induction cases, if S ::= { S1 } then at[s] = at[s1] € in[S1] = in[S]
by def. at, in, and induction hypothesis. If S1 ::= SU' S then at[s1] = at[sl] €
in[sU'] < in[s1] by def. at, in, and induction hypothesis. Otherwise, P ::= S1 ¢
and at[P] = at[s1] € in[S1] < in[P] by def. at, in, and induction hypothesis.
Lemma 4 For all program mon-empty components S # { ...{ € }... } of a
program P, aft[s] ¢ in[s].

Proof (of Lem. 4) The proof is by induction on the distance §(S) of S to the root

of the abstract syntax tree of P.

— For the basis P ::= Sl ¢, where 8(P) = 0, we have aft[P] £ aft[s1] £ ¢ and
in[P] £ in[s1] with ¢ ¢ in[S1] so aft[P] ¢ in[P] and aft[s1] ¢ in[s1].
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— For st ::= sU' s where 8(SU) = 8(S) = 8(S1) + 1, we have aft[sU'] £ at[s],
aft[s] 2 aft[si], in[s1] 2 in[SU'] Uin[S], in[SU] nin[S] = @ since SU # ¢
and, by Lem. 3, at[s] € in[S] so aft[sU'] = at[s] ¢ in[sU']. Moreover, aft[s] =
aft[s1] ¢ in[s1] by induction hypothesis hence aft[s] ¢ in[s].

— If s ::=if ¢t (B) S, then aft[s,] 2 aft[s], aft[s] ¢ in[S] by induction hypothesis
since 8(S;) = 8(S) + 1, so aft[s,] ¢ in[s,] since in[s,] < in[S].

— By a similar argument, aft[s,] ¢ in[s,] and aft[s;] ¢ in[S;] when s ::=
if ¢t (B) S, else Sf.

— If s::=whilet (B) S, then aft[s,] 2 ¢ and ¢ ¢ in[S,] by def. in[S].

—Ifsu={st}and SL+#{ ...{ € }... } then aft[s1] £ aft[s], in[s] £ in[s1],
and 8(S1) = 8(S) + 1 so aft[s] ¢ in[s] by induction hypothesis since S # €,
proving aft[s1] ¢ in[S1]. o

A.2 Complements on the definition of the trace semantics

e If P ::= Sl ¢ then the prefix continuations of the traces m;at[S1] arriving at
program entry at[P] = at[S1] are the continuations of the statement list S1.

S*[p] 2 8*[s1] (27)

e A prefix (and indeed maximal) finite trace of a skip statement ¢; continuing
an initial trace 7t arriving at € is just continuing after the skip statement.

ki
S*[s] 2 {(nt, ¥ i) aft[s]) | mt' e T" A€ = ¢} (28)

o A prefix finite trace of a conditional statement if ¢ (B) S, else S, continuing
an initial trace 7,¢ is the test event B (respectively —(B)) at ¢ followed by a prefix
trace of S, (respectively S;) when boolean expression B is tt (respectively ff) on
7, in case (29.b) (respectively (29.c)).
$*[s] 2 {(me, &) |mteT) (a) (29)
B
U {(me, ¢ — atf[s,] = m,) | . (b)
ABB]o(m,t) = tt A (mt— at[[S,], m,) € $*[S,]}
-(B
Uiyt t —2 atls] - my) B ()
B[B]o(m,t) = ff A (mt——at[s/], m,) € $™[s7]}

Since brk-to[[S] = brk-to[s,]| = brk-to[S], definitions (29.b) and (29.c) include the
cases of breaks respectively from s, and S; to brk-to[S].

e A prefix trace of a compound statement { S1 } is that of its statement list
S1.

S*[s] = 8*[s1] (30)
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A.3 Fixpoint lemmata

Lemma 5 (fixpoint approximation) Assume that (C, E, L, U) and {4, %, 0,
Y) are cpos, (C, C) = (A, %), f € C =5 C is upper continuous, 7 €A is
increasing, X € p(C) contains the iterates of f (i.e. L€ X AVx e X . f(x) € X),
and Vx € X . a(f(x)) < fF(@(X)). Then a(fp® f) < Y f (0) (which is \fp* f when
7 is upper continuous).

Proof of Lem. 5. Let (f", n € N) and (Tn, n € N) be the iterates of f and f.
By recurrence, (ffmeN)c X. 1= fO(J_) C y(TO(O)). éssume7 by ind._th. that
a(f"(1) < f (0). Then a(f™1(L)) = a(f(f"(L) < fla(f"(L)) < f(f (0) =

—n+1 —
fnJr (0) by def. iterates, semicommutation for elements of X, f increasing, and
def. iterates. Passing to the limit for increasing chains a(Ifp® f) = (| | (1)) =

Y a(f"(1)) < Y 7 (0). o

A.4 Complements on the proof of Th. 2
Proof of Th. 2. Let us consider the missing cases.

— For the empty statement list S1 ::= €.
S¥[s1] L, L,

= “ﬂée,m@d}[[S]](s*[[51]]) Ly, L, {(22) and Lem. 2§
= U{aulJISe,mmﬂ[[Sl]] Ly, L, (mg, m1) | (o, ;) € S*[S1]} ((15)§
= (JldsemodlSU Ly L, (o, 1) | (s 1,) € {(met, ©)}} {def. (7) of 8*[S1]§
= “aée,mmﬂ [[51]] Lb’Le (7'[08, t) Zdef. € and US
= {xeV|(=aft[sAx € L,)V(esc[SI] At = brk-to[SL] Ax € L)} {(15)§
=1L

e
{t = at[s] = aft[s1] in Appendix A.1 and esc[s1] = ff in Appendix
A.1 when S1= ¢€§
SH[s1] L, L, 8}

— For the statement list S1 ::= SU' S,
e A first case is when S1' = € is empty. Then,
S¥[s1] L, L,
= o2y moa[SI(S*[S1]) Ly, L, {(22) and Lem. 2§
= Uleisemoall € S L L, (19, m) | 1, 1) € 87[ e ]}
{def. (15) of a! [s] for Sl ::= € S§

use,mod

= (Jldcemon Ly Le (mots 1) | (mots my) € 8*[e] U {(mgt, my = 713) | (gt
m,) € S*[e] A (mpt =7, m3) € S¥[S]}}  {def. (7) and (8) of 8*[€ S]§

= U{aénse,m@d] Ly, L, (g, 1) | (g, 1) € S™[S]}}
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{(7) so that 8*[ €] = {(myat[s], at[S]) | mpat[s] € T} and (m,yat[s],
at[s]) € $*[s] by (10)§

= use mod [[51]] (8" [SH) Ly, L, Zdef' (15) of ‘xiée,m@d [[SHS
= u§e mod [[S]] (8* HSH) Lb’

{(15) since aft[sl] = aft[s], esc[s1] = esc[s], and brk-to[S1] =
brk-to[S] when S1' = € §
< $¥[s] L, L, {ind. hyp. for Th. 2§

= 8¥[s] Ly, (8 ¥'[ e] Ly, L,) (since §¥[e] Ly, L, 2 L, by (25)§

proving (25) when Sl = €.

e A second case is when SU # € and S = { ...{ € } .} is empty.
Then, as required by (25), we have 8¥[s1] L,,L, = ail, oqlSU) Ly L,
= (Xun§em®dl[[51/ﬂ)[’b’ gam[[svﬂ Lb’Le = 83”[[51,]} Lb’(SEH HSH Lb’Le) by
ind. hyp. and 8§ ¥ [S] Ly, L, = L, when S is empty.

e Otherwise, SU # € and S# { ...{ € }... } so, by Lem. 4, aft[s] ¢ in[S]. In
that case, let us calculate
83’” [s1] Ly, L,

= us@ modIS1(S *[S1]) L, L, {(22) and Lem. 2§

= U{“use,mud[[SI]] Lb>Le <7T0’ ”1> I <7T0’ T[l> € 8*[[51]]}

Zdef' ( ) of “uﬂ§e mod [[SHS

=Jlix e VI 3ielLn-1].Vje[Li-1] .x ¢ modfa] Ax €
use[aq;]} U (& = aft[sl] ? L, s D) U (esc[S1] A t. = brk-to[S1] 7 L,

a a a,_
D) | (g, 1) € S*[SUAT, =t — & — ... = e,}

{By Lem. 1, omitting the useless parameters of use and mod §

= U{{x eV|Jiel[l,n-1].Vje[l,i-1].x ¢ m@d][[aj]}/\x € usefa;]} U (.

aft[s] ? L, s @]) (esc[SU'] A, = brk-to[[SU'] 2 L, s @) U (esc[S] A ¢,

brk-to[S] ? L, s @) | (my, my) € S*[st']u {{my = my, my = 113) | (7,

T,) € 8*[[51’]} Ay =1y, 715) € 8*[S}Am, =4 SN B €}

{def. 8*[s1], aft[s1] = aft[s] in Section A.1, esc[s1] 2 esc[sU']V
esc[[s], and brk-to[[S1'] £ brk-to[[S] £ brk-to[S1] in Section A.1 §

= JixeVIdiel,n-1].Vje[Li-1].x ¢ mod[a] Ax € use[a]} U (.

aft[[s] ? L, s @) U (esc[SU'] A, = brk-toSU'] ? Lb s @)U (esc[S] At
a a a
brk-to[S] 2 Ly, s @) | (g, ) € S*[SUJ AT, =t —> & — ...

e}u

Utxe VI Fiel,n-1].Vj e [1,i-1]. x ¢ mod[a;] Ax € use[a]} U (.
aft[s] 2 L, s @) U (esc[SU] A&, = brk-to[[SU'] ? Lb s D) U (esc[S] At
brk-to[[S] 2 Ly, s @) | (g, 7,) € ST[SU] Ay =75, 713) € S*[S]AT, =714

a a, Ay
€ €, ... e,}

n—1
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{def. U and def. € so (m, m;) = {7y = 71,5, 7, 7 713)§
¢ JlixeVITiell,m-1].Vje[Li-1].x ¢ moda] Ax € use[a;]} U
esc[SU] A ¢, = brk-to[[SU] 2 L, s @) | {my, m;) € S*[sU] AR =€1L
b 0 M 1
a, Ay

6 — ... —>€m}U

Jttxe VI Fiell,n-1].Vje [1,i-1]. x ¢ mod[a;] Ax € use[a]} U (.

aft[s] 2 L, s @) U (esc[S] At = brk-to[S] 2 L, s @) | (my, my) €
a a a,,
STSUI Al m3) € S*[s]Am =6 —= & — ...~ 4 AR, =
am am+l an—l
aft[[Sll]] /\7T3 = em em+1 e en}

(— For the first term, (my, m;) € &*[SU], m; ends in ¢, and
¢, = aft[S] is impossible since SU' and S are not empty. Moreover,
if ¢, = brk-to[S] = brk-to[SU'] then a,,_, is a break, so esc[Sl'] holds.
L, is included in (esc[SU] A & = brk-to[SU] ? L, s @) and so
(esc[[S] A . = brk-to[[S] ? L, ¢ @) is redundant. Finally, renaming
ne—m.§

— For the second term, if ¢, = brk-to[S1'] = brk-to[S] then a,,_, is
a break, so esc[s] holds. L, is included in (esc[S] At = brk-to[[S] ?
L, s @) and so (esc[SU] At = brk-to[SU'] ? L, s @) is redundant.

a a, A1

1 . .
Moreover, m, = 3 = & & ¢, is decomposed into
a, a, a,,_q a Qi1
m, =4 6 o — > by and 5 = by —— by ———
ap-1

.. — ¢, where, by {7y, m,) € 8T[sU] and (7, ~7,, m3) € $*[3],
t, = aft[S1'] = at[s]. Moreover, 7, =, is generalized to nfy (whence
inclusion) and 7, is renamed into 7. §

= JixeVITiell,m-1].Vje[Li-1].x ¢ mod[a] Ax € use[a;]} U

a
(esc[SU] At = brk-to[SU] 2 L, 2 @) | {7y, ;) € S*[SU]Am, =t ——
& i’ h’ g} U
Jix e V1 3i € [m,n-1] . ¥j € [Li-1] . x ¢ mod[a;] Ax € use[a;J}u (e =
aft[s] 2 L, s @) U (esc[S] At = brkto[S] 7 L, ¢ &) | (my, m;) €

a a a,,_
ST[SUI Ay, m3) € S*[s]Am =66 —5 & —5 ... 5 4, AL, =

am am+1 an—l
aft[[Sl/]] N 7'[3 S em em+1 cee en}
{since the case i € [1,m — 1] of the second term is already incorpo-
rated in the first term§
= U{{x €eV|3ie[l,m-1].Vje[Li-1].x ¢ mod]a;] Ax € use[a;J}u(t. =
aft[slU'] ? (U{{x eVi]diemn-1].Vje[li-1].x¢ m@d][[aj]] AX €
use[a;]} U (& = aft[s] ? L, s @) U (esc[S] At. = brk-to[[S] ? L, s @) | {mh,

am am+1

a,
- o)) s @) uescsU] AL, =

73) € 8*[S]Amy =t

a a a
brk-to[SU] 2 L, ¢ @) | (g, ;) € S*[SU]AmR, =t — & —

tn}
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{incorporating the second term in the first term, in case . = aft[S1']§

¢ JlixeVITiell,m-1].Vje[Li-1].x ¢ modfa] Ax € uge[[a,}]}u
(b = aft[sU] 2 ((Jix e V| 3iemn-1].Vje [mi-1].
mod[a;] A x € use[a;[} U (& = aft[s] ? L, s @) U (esc[s] At. = brk—to[[sﬂ ?

am am a’l
Ly, ¢ @) | (7)€ S*[s] Amy = ¢ bt —— ... — &,}) 3
D) U (esc[SU] A tw = brk-to[SV'] 3 L, s @) | (my, ;) € S*[[Sl IAnm =
a, &) An-1
& ¢ em}

{dropping the test Vj € [1,m - 1] . x ¢ mod[a,]§

= JlixeV Tiel,m-1].Vje[Li-1].x ¢ mod[a] A x euseﬂa,ﬂ}u

(tn = aft[sU] 2 (JloheomoallS] Ly Lo (mhy m3) | (mhy, m3) € S*[S]})

D) U (esc[SU] Atw = brk-to[SU'] 2 L, s D) | (g, 1) € S*[sU] /\7'[1 =

€ 4 ¢, e Bt m} ZLem 1S
= Jlodeemoall SV 1 Ly (SM[] Ly L) (g0 7 | (s 7y} € S°[SU}

{(Lem. 1 and (15)§

¢ UtedsemoalsUl Ly S F[S] Ly L) (mo, m) | (50 7,) € 8*[SU])
lind. hyp. of Th. 2 and o, 1og[SU'] Ly, L, in (15) is C-monotone in
L.
= use m@aﬁl[[51,]](8 [[Sl/]]) Lb’('Sﬂ [SH Lb’L ) zdef ( ) of (xuse m@dls
¢ 8¥[sV] L, S¥[s] Ly, L,)
Zlnd hyp of Th. 2: S SP[sV] L, (§3”[Sﬂ Ly, L,)

0l e moa[SUIS*[SV]D) Ly (8¥[s] L, L,) c
S¥[sV] L,, (S ¥[s] L,,L,) , Q.E.D.§

— For the conditional S ::=if ¢ (B) S,, let us calculate

83’”[[5]] L L,

use m@d][[s]](s* [[S]]) Lb’ 2(22) and Lem. 23
= U{cxm modlS] Lp» Le (o> 1) | (g, 711) € 8™[s]} {def. (15) of

u§e mod [[S]]S

~(B)
= U{“fnse,mud[[s]] Ly, L, <7T0€’ Hu U{‘xulm@,m@d] [[S]] Ly, L, <7Toat[[5]] t—

aft[[Sﬂ> | %[[BHQ(T[OE) = ff} u U{‘Xulme,m@d] [[S]] Lh’Le <7TOat[[S]]’ t _) at[[stﬂ ©

) | BBJo(md) = tt A (11, 7yt — at[s,]) € 8*[s,]} Ldef. (6) of
S [s](myat]s])§



N

N

All other cases are similar and simple.
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1 ﬂ(B)
U{‘xuse,m@:d][[s]] Lb’Le <7T03t[[sﬂ’ t — aft[[S]]) | %HBHQ(TIOZ) = 1:F} u
B
U{(xul‘nse,m@d][[s]] Lb’Le <ﬂoat[[SH, t— at[[st]] - 7T2> | %[[B]]Q(T[Oe) =tA <7T2’

7ot —— at[s,]) € 8*[s,]}
{t = at[s] and def. (15) of &’ moallS] Ly L. (mat[s], at[s]) = & §

Ux ¢ v | x e (Bt)w§e[[—|(B)]] V (x ¢ mod[~(B)] A x ¢
hsemod[S] Ly L, (mot———aft[s], aft[s])) | B[sle(ryt) = ff} U
U{“ulnse,m@d][[s]] Lb’Le <710f’> ¢ i’ at[[stﬂ : 772) | %HB}]Q(TIOR) =tA (77:2)

mot — at[s,]) € 8*[s,]) 1(15)$

(use[8] U L) U|JiotuemoalS] Ly Le (mot, ¢ = atls] = my) | B[elelmot) =
tt A (m,, 7ot LR at[s,]) € $*[s.]}
{use[-(B)] = use[B], mod[-~(B)] = &, ignoring the condition
1 —(B)
RB[B]o(myt) = ff, and ayge moa[S] Ly L, (mot——aft[s], aft[s]) = L,
by (15)§
use[B] UL Ui{x € V | x € use[B] V(x ¢ mod[B] A x €
oo moalS] Ly L (mot—at[s,], m)) A BBlelret) = tt A (my, mot —

at[s,]) € $*[s,]} ((15)§

use[BJUL,U{x € ¥ | x € a g moq[S] Ly, Le (11, 7,) A (115, 10t L, at[s,]) €
8°[s]) i
{(mod[B] = &, letting 7, = myt—>at[s,], and ignoring the condition
B[Ble(myt) = tt§
use[BJ UL, U U{ocfﬂge’m@d[[s]} Ly, L, (g, m1) | (g, my) € 8*[S,]} {def. US
USQ[[B]] u Le U U{‘xtﬁ]se,m@d [[st]] Lb’ Le <7T0’ 7T1> | <7T0’ 7T1> S [[st]]}
{(15) since aft[s,] = aft[s], esc[s,] = esc[s], and brk-to[s,] =
brk-to[[S]] by Sections A.1 and A.1§

M]S@[[B]] u Le U “3ée,m@d [[St]](S* [[St]]) Lb’ Le Zdef' (15) of ‘xiée,m@d [[SHS
use[B] UL, U S¥[s,] L, L, {ind. hyp. of Th. 2§
8¥[s] Ly, L, 1(25)§



