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Abstract. In engineering practice not always is possible the measure-
ments of temperature on both side of wall (for example turbine casing or
combustion chamber). On the other hand it is possible measurement both
temperature and heat flux on outside wall. For transient heat conduction
equation the measurements temperature and heat flux supplemented by
initial condition states Cauchy problem which is ill conditioned. In pa-
per the stable solution is obtained for Cauchy problem by using Laplace
transformation and minimisation of continuity in process of integration
of convolution. Test examples confirm proposed algorithm of solution of
inverse problem.
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1 Introduction

In thermal problems, the coefficients of governing equations such as the thermal
conductivity, density and specific heat, as well as the intensity and location
of internal heat sources, if they exist, and appropriate boundary and initial
conditions should be specified. Such problems are referred to as ‘direct thermal
problems’ and may be accurately solved by standard numerical meth-ods since
they are well posed. However, in many practical applications which arise in
engineering, a part of the boundary is not accessible for heat flux or temperature
measurements. For example, the temperature or the heat flux may be serious
affected by the presence of a sensor and, hence, there is a loss of accuracy in
measurement or, more simply, the surface of the body may be unsuitable for
attaching a sensor to measure the temperature or the heat flux. As examples
can be inner surface of turbine casing or combustion chamber. The situation
when neither the heat flux nor temperature can be determined on a portion of
the boundary, while both of them are prescribed on the remaining portion, leads
to an ill-posed problem termed the ‘Cauchy problem’. The Cauchy problem
is an ill-posed problem and it is more difficult to solve both analytically and
numerically.
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The Cauchy problem is not new in literature [1–7]. Due to its ill-posed char-
acter many approximate method was used. In paper [1] problem is reduced to
a linear integral Volterra equation of II type which admits a unique solution.
Method of fundamental solution was used in paper [2] for solution steady Cauchy
problem. In papers [3, 4] method of finite deference with Fourier transform tech-
niques was used. Legandre polynomials was used in paper [5] for solution 1-D
Cauchy problem. Wavelet-Galerkin method with Fourier transform was used in
paper [6]. The unique of solution of Cauchy problem was considered in paper
[7].

The purpose of this paper is proposition of the stable solution is obtained for
Cauchy problem by using Laplace transformation and minimisation of continuity
in process of integration of splice. Test examples confirm proposed algorithm of
solution of inverse problem.

2 Fundamental Equation

For region shown on Fig. 1 the governing equation and conditions describing
heat flow are the following:

- heat conduction equation:

ρc · ∂T
∂t

=
∂

∂x

(
λ
∂T

∂x

)
, x ∈ (0, δ), t > 0 (1)

- initial condition:

T (x, 0) = T0(x) (2)

- boundary conditions:

T (x = δ, t) = H(t) (3)

−λ∂T
∂x

∣∣∣∣
x=δ

= Q(t) (4)

T (x = 0, t) = F (t) (5)
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Fig. 1. Calculation area

In consideration of the boundary conditions [3] and [4] the problem formu-
lated by [1–4] is Cauchy problem. For the next considerations the following
non-dimensional variables are introduced:

Tmax = max
x∈〈0,1〉,t≥0

(T (x, t)) , ϑ =
T

Tmax
, ξ =

x

δ
, τ =

λ

ρc
· t
δ2

(6)

and now non-dimensional formulation of problem is the following:

- heat conduction equation

∂ϑ

∂τ
=
∂2ϑ

∂ξ2
, ξ ∈ (0, 1), τ > 0 (7)

- initial condition

ϑ(ξ, 0) = ϑ0(ξ), ξ ∈< 0, 1 > (8)

- boundary condition at surface ξ = 1

ϑ(1, τ) = h(τ), h = H · Tmax, τ > 0 (9)

−∂ϑ(1, τ)

∂ξ
= q(τ), q =

δ

λ · Tmax
·Q, τ > 0 (10)

- unknown boundary condition at surface ξ = 0

ϑ(0, τ) = χ(τ), τ > 0 (11)

In consideration of linearity of equations (6-9) for their solution will be used
Laplace transformation. Let

Lϑ(ξ, τ) = ϑ̄(ξ, s) =

∞∫
0

ϑ(ξ, τ) · e−sτdτ (12)
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then system of equations (6-9) is transformed to form:
- heat conduction equation with initial condition:

ϑ̄(ξ, s)− s · ϑ(ξ, 0) =
d2ϑ̄

dξ2
, ϑ(ξ, 0) = ϑ0(ξ) (13)

- boundary conditions at surface ξ = 1:

ϑ̄(1, s) = h(s) (14)

−dϑ̄(ξ, s)

dξ
= q̄(s) (15)

- unknown boundary condition at surface ξ = 0:

ϑ̄(0, s) = χ̄(s) (16)

Idea of determination of unknown distribution (14) is based on determination
of direct problem, namely solution of equation (11) with condition (13) and (14)
and in the next determination relation between functions f(t) and g(t).

For simplicity it is assumed ϑ0(ξ) = ϑ0 = const, then solution of direct
problem has form:

ϑ̄(ξ, s) = χ̄(s) · cosh
√
s(1− ξ)

cosh
√
s

+

+q̄(s) · sinh
√
sξ√

s · cosh
√
s

+
ϑ0
s
·
(

1− cosh
√
s(1− ξ)

cosh
√
s

) (17)

For ξ = 1:

ϑ̄(1, s) = χ̄(s) · 1

cosh
√
s

+ q̄(s)
tanh

√
s√

s
+
ϑ0
s

(
1− 1

cosh
√
s

)
(18)

Unknown function χ̄(s) we will search on the base known distribution (9),
namely

ϑ̄(1, s) = s · χ̄(s) · 1

s · cosh
√
s

+ q̄(s)
tanh

√
s√

s
+
ϑ0
s

(
1− 1

cosh
√
s

)
= h̄(s)

In this way we have Volterra integral equation second kind for determination
of function χ(τ) in form

L−1 [s · χ̄(s)] ∗ L−1
[

1

s cosh
√
s

]
+ L−1 [sq̄(s)] ∗ L−1

[
tanh

√
s

s
√
s

]
+

+ϑ0

{
η(τ)− L−1

[
1

s cosh
√
s

]}
= h(τ))

Therefore solution in transformation region

ϑ̄(ξ, s) = s · χ̄(s) · cosh
√
s(1− ξ)

s · cosh
√
s

+

+s · q̄(s) · 1

s
· sinh

√
sξ√

s · cosh
√
s

+ ϑ0

(
1

s
− 1

s · cosh
√
s

)
, ξ ∈ 〈0, 1〉

(19)
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Poles of transform (19) are given by equations

s = 0 and cosh
√
s = 0 (20)

Therefore putting
√
s = i · µ we have equation

cosh
√
s = cosh i · µ = cos µ = 0

then

µn = (2n− 1) · π
2
, n = 1, 2, ... (21)

In this way

L−1
[

cosh
√
s(1− ξ)

s · cosh
√
s

]
=

= res
s=0

cosh
√
s(1− ξ)

s · cosh
√
s

+

∞∑
n=1

res
s=sn

cosh
√
s(1− ξ)

s · cosh
√
s
· es·τ =

= 1 +

∞∑
n=1

lim
s=sn

(s− sn) · cosh
√
s(1− ξ)

s · cosh
√
s

· esτ =

= 1− 2

∞∑
n=1

2 coshµn(1− ξ)
µn · sinµn

· e−µ
2
n·τ =

= 1− 4

µ

∞∑
n=1

sinµnξ

2n− 1
· e−µ

2
n·τ =

L−1
[

1

s
· sin

√
sξ√

s · cos 2

]
= ξ − 2

∞∑
n=1

(−1)n−1 · sinµnξ

µ2
n

· e−µ
2
n·τ

(22)

Since

L[q′(τ)] = s · q(s)− q(0) and L−1[sq(s)] = q′(τ) + q0 · δ(τ)
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accordingly

ϑ(ξ, τ) = L−1
[
ϑ̄(ξ, s)

]
= ϑ0

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+

+L−1 [s · χ(s)] ∗

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+

+L−1 [sq(s)] ∗

(
ξ − 8

π2

∞∑
n=1

(−1)n−1
sin(2n− 1)π2 ξ

(2n− 1)2
· e−µ

2
n·τ

)
=

= ϑ0

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+ [χ′(τ) + χ0 · δ(τ)] ∗ η(τ)−

−1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ ·

τ∫
0

[χ′(p) + χ0 · δ(p)] · e−µ
2
n·p · dp+

+ [q′(τ) + q0 · δ(τ)] ∗ η(τ) · ξ−

− 8

π2

∞∑
n=1

(−1)n−1
sin(2n− 1)π2 ξ

(2n− 1)2
· e−µ

2
n·τ ·

τ∫
0

[q′(p) + q0 · δ(p)] · e−µ
2
n·p · dp =

= ϑ0

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
· e−µ

2
n·τ

]
+ χ(τ) ·

[
1− 4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1

]
+

+π ·
∞∑
n=1

(2n− 1) · sin(2n− 1)
π

2
ξ · e−µ

2
n·τ ·

τ∫
0

χ(p) · e−µ
2
n·p · dp+

+

∞∑
n=1

sin(2n− 1)
π

2
ξ · e−µ

2
n·τ ·

τ∫
0

q(p) · e−µ
2
n·p · dp

(23)

For ξ > 0

4

π

∞∑
n=1

sin(2n− 1)π2 ξ

2n− 1
= 1

then square bracket in (23) at function χ(τ) is equal zero for ξ = 0, ϑ(0, τ) =
χ(τ).
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The next consideration is carried out for case when q(τ) = 0 and ϑ0 = 0, at
that time the form of solution (23) can be written in the following form

ϑ(ξ, τ) =

τ∫
0

χ(p) · 2
∞∑
n=1

µn · sinµnξ · e−µ
2
n(τ−p) · dp =

=

τ∫
0

χ(p) · ψ(ξ, τ, p) · dp, ξ ∈ (0, 1〉

(24)

where

ψ(ξ, τ, p) = 2

∞∑
n=1

µn · sinµn · e−µ
2
n(τ−p)

From condition (9) on the base (24) we obtained equation for determination
function χ(τ)

ϑ(1, τ) =

τ∫
0

χ(p) · ψ(ξ, τ, p) · dp = h(τ) (25)

or
τ∫

0

χ(p) · ψ(1, τ, p) · dp = h(τ) (25a)

The equation is an integral equation of Volterra kind.

Solution of integral equation (25a)
Function h(t) is temperature at the boundary ξ = 1 and in practice is

known from the measurements, then is given in the following time steps τk =
k ·∆τ, k = 0, 1, 2, ..., then equation (25a) takes form:

τk∫
0

χ(p) · ψ(1, τk, p) · dp = h(τk) or

τk∫
0

χ(p) · ψk(1, p) · dp = h(τk) = hk (26)

Because

τk∫
0

χ(p) · ψk(ξ, p) · dp =

k∑
j=1

τj∫
τj−1

χ(p) · ψk(ξ, p) · dp =

k∑
j=0

χj · ψkj(ξ) (27)

consequently equation (26) for succeeding time while takes form:
k = 1 : χ0 · ψ10 + χ1 · ψ11 = h1
k = 2 : χ0 · ψ20 + χ1 · ψ21 + χ2 · ψ22 = h2
k = 3 : χ0 · ψ30 + χ1 · ψ31 + χ2 · ψ32 + χ3 · ψ33 = h3
................................................................

(28)
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then for χ0 = 0 system of equation (28) has solution

χ1 = (h1/ψ11) χk =

hk − k−1∑
j=1

ψkj(ξ = 1) · ϕj

 /ψkk, k ≥ 2 (29)

Let determine elements ψkj matrix [ψ]. These elements ψkj essentially de-
pendent from way of integration of function χ(p); the simplest way of integration
in (27) can be expressed as

τk∫
0

χ(p) · ψk(ξ, p) · dp =

k∑
j=1

τj∫
τj−1

χ(p) · ψk(ξ, p) · dp =

=
k∑
j=1

τj∫
τj−1

[Θ · χj−1 + (1−Θ) · χj ] · ψk(ξ, p) · dp =

=

k∑
j=1

[Θ · χj−1 · rj + (1−Θ) · χj · rj ] = Θ · χ0 · rk1+

+

k∑
j=1

χj [Θ · rkj+1 + (1−Θ) · rkj ] + (1−Θ)χk · rkk =

k∑
j=0

χjψkj

rkj =

τj∫
τj−1

ψk(ξ, p) · dp (30)

χk0 = Θ · rk1, χkj = Θ · rkj+1 + (1−Θ)rkj

j = 1, ..., k − 1, χkk = (1−Θ)rkk, Θ ∈ (0, 1)

System of equation (28) can be written in matrix form

[ψ] {χ} = {h} , dim[ψ] = M ×M, dim {h} = M (31)

Since

ψ(ξ, τ, p) = 2

∞∑
n=1

µn · sinµnξ · e−µ
2
n(τ−p)

then for τk = k ·∆τ

rkj =

τj∫
τj−1

ψ(ξ, τ, p) · dp = 2

∞∑
n=1

µn · sinµnξ ·
τj∫

τj−1

e−µ
2
n(τ−p) · dp =

= 2

∞∑
n=1

sinµnξ

µn
·
(
e−µ

2
n(τk−τj) − e−µ

2
n(τk−τj−1)

)
=

= 2

∞∑
n=1

sinµnξ

µn
·
(
e−µ

2
n∆τ(k−j) − e−µ

2
n∆τ(k−j+1)

)
(32)
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It must be noted, that rkj = rk+1,j+1 then ψkj = ψk+1,j+1. This property
safes time of calculation in the determination the following matrix elements [ψ].

3 Numerical Calculations

In order to test solution of integral equation (26) we will compare numerical
solution with analytical solution. Analytical solution equation (7) with initial
condition ϑ(ξ, 0) = 0 and the following boundary conditions

ϑ (ξ = 0, τ) = Tb ·
(
1− e−βτ

)
, −∂ϑ (ξ = 1, τ)

∂ξ
= Bi · ϑ (ξ = 1, τ) (33)

has form

ϑ (ξ, τ) = Tb ·
(

1− Bi

Bi+ 1
· ξ
)(

1− e−βτ
)

+

+2Tb · β · e−βτ ·
∞∑
n=1

wn(ξ) · 1

p2n − β
−

−2Tb · β ·
∞∑
n=1

wn(ξ)− 1

p2n − β
· e−p

2
nτ ,

wn(ξ) = − sin pnξ

pn
·
(

1− Bi

Bi2 +Bi+ p2n

)
(34)

where numbers pn are the following roots of equation

tan pn = − pn
Bi
, n = 1, 2, ..., and for Bi→ 0, pn =

π

2
(2n− 1)

and

lim
τ→∞

ϑ (ξ, τ) = Tb ·
(

1− Bi

Bi+ 1
· ξ
)

Solution (34) is used for determination of functions h(t) and q(t) given by
formulas (9) and (10).

System (28) is numerical unstable and determination solution from (31) for
relatively low values M leads to solution system of equation of order M − 1.
Then regularization is needed. Oscillations of vector {χ} are appeared at the
end of region 〈0,M ·∆τ〉, Fig.2.

Regularization of solution of system of equations (31)

At each segment 〈τj−1, τj〉 , j = 1, ..., M function χ(τ) in (30) is approximate
by constant Θ = Θj−1 + Θj · (1 − Θ), 0 < Θ < 1 , therefore between segments
function χ(τ) is not differentiate and appear jump of first derivative.

Leading first parabola χj−2,j−1,1 through following points (τj−2, χj−2), (τj−1,
χj−1), (τj , χj) and second parabola χj−1,j,j+1 through points (τj−1, χj−1),
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Fig. 2. Oscillations of solution of system of equations (31)

Fig. 3. Idea of parabolic regularization of solution χ(τ)

Fig. 4. Idea of linear regularization of solution χ(τ)
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(τj , χj), (τj+1, χj+1) we require that difference between first derivative in com-
mon points both parabolas must be equal zero, what in case uniform net τj−1 and
τj τk − τk−1 = h, k = 1, 2, ..., M leads to one equation on region 〈τj−2, τj+1〉

χj−2 − 3χj−1 + 3χj − χj+1 = 0, j = 2, ...,M − 2 (35)

In case of linear regularization, as shown in Fig. 4, the conditions that lead
to reduction of jump of first derivation are

χj−1 − 2χj + χj+1 = 0, j = 1, 2, ...,M − 1 (36)

Dimension of matrix [ψ] is equal dim[ψ] = (M+1)×(M+1), whereas for not
large values M , rank[ψ] = M , then it is sufficient to add to system of equation
(28) condition (35) for j = M−1. Let consider more general case, namely added
condition (35) or (36) to system (28) with internal knot in number M − 3. The
system of equation is a follown or M − 1[

[ψ]
[w]

]
{χ} =

{
{h}
{0}

}
, dim[ψ] = (M + 1)× (M + 1) (37)

Where matrix [w] related with condition (35) has form, I Matrix Reg = 1

[w] =

 1 −3 3 −1 ... 0
... ... ... ... ... ...
0 ... 1 −3 3 −1

 , dim[w] = (M − 3)× (M + 1) (38)

and for condition (36) we have, I Matrix Reg = 0

[w] =

 1 −2 1 ... 0
... ... ... ... ...
0 ... 1 −2 1

 , dim[w] = (M − 1)× (M + 1) (39)

Solution of over-determined system of equations (37) can be considered as
minimization of functional

J ({χ}) = ‖[ψ] {χ} − {h}‖2 + α2
reg ‖[w] {χ}‖2 (40)

For αreg = 1 minimization of functional (40) is identical with solution of
system of equation (36). If exact solution

{
χ0
}

is known then minimization of
functional

J
(
{χ} ,

{
χ0
})

= ‖[ψ] {χ} − {h}‖2 + α2
reg

∥∥[w]
(
{χ} −

{
χ0
})∥∥2 (41)

is identical with solution of system of equation for each values of parameter αreg
what leads to system of equations[

[χ]
αreg [w]

]
{χ} =

{
{h}

αreg [w]
{
χ0
}} =

{
{h}
{0}

}
+

[
[0]

αreg [w]

]{
χ0
}

(42)
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or

[ψα] {χ} = {F1}+ [Pα]
{
χ0
}
,

dim [ψα] = dim [Pα] = (M + 1 +M − 2)× (M + 1)
(43)

then

{χ} = [ψα]
+ · {F}+ [ψα]

+ · [Pα]
{
χ0
}

= {Gα}+ [Qα]
{
χ0
}

dim [Qα] = (M + 1)× (M + 1)
(44)

In general case vector
{
χ0
}

is unknown, then created iteration process

{
χn+1

}
= {Gα}+ [Qα] {χn} , n = 0, 1, 2, ... (45)

we have

{
χn+1

}
=

n∑
j=0

[Qα]
j · {Gα}+ [Qα]

n+1 {
χ0
}

(46)

If spectral radius ρs of matrix [Qα] , ρs([Qα]) < 1, then Neumann series in w
(46) is convergent.

In case considered in the paper the spectral radius ρs = 1.

For determination of regularization parameter αreg a modification of L-curve
[8] is used. As regularization matrix [w] the matrix (36) resulting from condition
(36) is taken. Classic L-curve is presented on Fig. 5, which correspond matrix
[w] = [I]. For matrix [w] determined according (39) this curve has shape given on
Fig. 6. For acquisition explicit relationship with respect regularization parameter
αreg the function ‖w ·X‖ / ‖A ·X − h‖ = f(α) is introduced and presented on
Fig. 7. The corner points on Figs 6 and 7 correspond the same value parameter
αreg. This value of parameter αreg correspond the minimum non-dimensional
function ‖R ·X‖ /max (‖R ·X − h‖) = f (‖A ·X − h‖ /max(‖A ·X − h‖)) on
Fig. 8, [R] = bαreg · wc. On Fig. 8 non-dimensional values ‖X‖ /max(‖X‖) =
f (‖A ·X − h‖ /max(‖A ·X − h‖)), αreg/αreg−max , as a function of
f (‖A ·X − h‖ /max(‖A ·X − h‖)) are given. The point of extreme on curve
correspond the inflexion of curves. For optimal values regularization parameter
αReg the inverse determination of temperature at points ξ = 0 and ξ = 1 and
comparison with exact data was done. Obtained results confirm appropriate
choice the curve ‖R ·X‖ /max(‖R ·X‖) = f (‖A ·X − h‖ /max(‖A ·X − h‖)).
This curve can be modified for obtained relationship ‖R ·X‖ /max(‖R ·X − h‖)
/max(‖R ·X‖ / ‖A ·X − h‖) = f(α), what is presented on Fig. 9.
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Fig. 5. Classic L - curve (Hansen[8]), |λrandom| = 10%, I Matrix Reg = 0, min ‖X‖
is for α = 1.57

Fig. 6. L w - curve, |λrandom| = 10%, I Matrix Reg = 0, αcorner = 110
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Fig. 7. L w α- curve, |λrandom| = 10%, I Matrix Reg = 0
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Fig. 8. Dimensionless distributions of: ‖R(α) ·X‖ /max (‖R(α)‖) , α/αmax,
‖X‖ /max ‖X‖ , condn/condnmax, |λrandom| = 10%, I Matrix Reg = 0
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Fig. 9. L R α- curve, |λrandom| = 10%, I Matrix Reg = 0 Nt = 200, αreg opt = 74.5
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Fig. 10. Comparision of solution of inverse problem with given data, I Matrix Reg =
0, boundary ξ = 1.0, αreg = 110, αreg opt = 74.5

Fig. 11. Comparision of solution of inverse problem with exact data, |λrandom| =
10%, I Matrix Reg = 0, boundary ξ = 1.0, αreg = 110, αreg opt = 74.5



18 M. Cia lkowski, N. Botkin et al.

4 Final Remarks

Consideration given in paper permit on replacement of classic L-curve (Han-
son [8]) it’s modification version L-w-curve, where matrix of regularization w
is taking account (for w = I the curve L-w is the same as L-curve). Opti-
mal point for L-w-curve is very near of extremal point on L-R-curve (see Fig.
9). L-R-curve is function of parameter α and permit to keep track of change
of ‖R(α) ·X‖ / ‖A ·X − h‖ as function of parameter α. Optimal point on L-
R-curve corresponds point of inflexion of function ‖X‖ and condition number
condn of function ‖A ·X − h‖, Fig. 8.

Tested in paper way of regularization given by (39) permit to obtained good
results of Cauchy problem even if the error of measurement is big and equal
|λrandom| = 10.0% it results from fact that chosen way of regularization to force
smoothness of solution neat to physical distribution.
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