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Abstract—Mapping and path planning in disaster scenarios is
an area that has benefited from aerial imaging and unmanned
aerial (UAV) and surface vehicles (USV). Nowadays, there are
many application areas of UAV and USV which consist of
environmental monitoring, victim recovery and river mapping
in the purpose of rescue operations. There are many challenges
for flood rescue operations with existing systems where the time
response is critical. The environment is completely changing
under flood conditions and it causes a dangerous environment for
victims and rescue operators. Rescue boats are widely used for
searching and rescuing the victims in the flooded areas. However,
rescue boats have a limited view while searching and rescuing
the victims. By using UAVs, an aerial image can be taken off the
flooded environment and this aerial image can provide global
information such as the location of victims and landmarks. The
rescue operations can be organized based on a generated flood
environment map by using this global information. Here we
propose a ground map generation and path planning algorithms,
which makes use of aerial imaging provided by a UAV in
flooded urban environments. Based on the generated ground
map, we used the concept of mobile robot path planning to
represent our proposed approach in rescue boat path planning.
In this purpose, A*, GA and PRM path planning algorithms are
used and analyzed to find near-optimal paths for rescue boat
between initial and target locations. Experiments are performed
to evaluate the performance of the system algorithms to find out
the most suitable algorithm in flooded urban environments.

Keywords—path planning, unmanned aerial vehicle, map
building, flood rescue operations, rescue boat

I. INTRODUCTION

Natural disasters have serious impacts on human lives in
terms of both losses of life and property. One of nature’s
most turbulent years was 1998. Floods wreaked havoc in
Asia, Europe, North America and South America. Many
people suffered from these heavy floods which had cost great
casualties and losses. USVs and UAVs have seen recent use
in helping with various rescue operations. There are many
application areas of USVs which consist of environmental
monitoring [1], hazardous spill detection [2], victim recovery
[3], river mapping [4], surveillance of shipwreck survivors
at sea [5] and object recovery on the sea surface [6]. In
Hurricane Wilma, 2005, UAVs and USVs were used for the
first time as a cooperation system for the recovery phase of
disaster management by detecting damage to seawalls and
piers, locating submerged debris and determining safe lanes for

sea navigation [2]. There are many challenges for flood rescue
operations with existing systems where the time response is
critical. The environment is completely changing under flood
conditions, especially when some chemical substances spill
into the flood areas and it causes a dangerous environment
for victims and as well as rescue operators. Rescue boats
are widely used for searching and rescuing the victims in
the flooded areas. However, rescue boats have a limited view
while searching and rescuing the victims. By using UAVs, an
aerial image can be taken off the flooded environment and
this aerial image can provide global information such as the
location of victims and landmarks. The rescue operations can
be organized based on a generated flood environment map by
using this global information.

Fig. 1. Aerial view of a flooded environment. The rescue boat has a limited
view to reaching the destination point. By using a UAV, the global information
of the flooded environment can be used to model a ground for rescue boat
path planning.

Fig. 1 displays a typical urban flood scenario where the
aerial image can provide global information for rescue boat
path planning. This research mainly aims at a map generation
of the flooded area by using global information from UAV for
rescue boat path planning. To the authors’ knowledge, this is
the first known study of rescue boat path planning by using
aerial imaging in flooded urban environments.

Main system processes

In this research, we consider a flood rescue application
where the main goal is to build a ground map and plan near-



optimal paths for a rescue boat. The main system processes
of this research are as follows:

1) Using the UAV, a ground image is obtained from above,
and then processed to segment obstacles. The segmenta-
tion of the obstacles is done by using image processing
algorithms such as image denoising and obstacle recog-
nition techniques. This creates a ground map based on
the locations of obstacles and the feasible paths.

2) Based on the generated ground map, we analyzed differ-
ent path planning algorithms such as A*, GA and PRM
to find near-optimal paths for the rescue boat.

3) Map building process is performed by using OpenCV
tools and path planning algorithms are performed by
MATLAB generated codes to validate the performance
of the proposed approach.

The remainder of this paper is organized as follows. Section
II discusses previous work. Section III describes our system
design and explains its main components. Section IV provides
the experimental results of our system algorithms along with
a performance analysis. Section V concludes the paper.

II. RELATED WORKS

Using unmanned vehicles in rescue operations is not a brand
new topic. Deng et al. [7] studied automatic ground map
building and path planning in a UAV/UGV cooperative system
for ground disaster rescue operations. More recently, Lakas
et al. [8] introduced a framework for cooperative mission
planning where a UAV and a UGV work cooperatively for
a rescue task. Zhang et al. [9] introduced a new system
which consists of a USV, a UAV, and a take-off and landing
system. In 2017, Xiao et al. [10] present the first known
implementation of a small UAV visually navigating a USV
to rescue problems by extending the rescuers victims in an
efficient manner.

In the field of map building, many computer vision al-
gorithms have been developed in the literature. Costea et
al. [11] proposed a system for geo-localization from aerial
images in the absence of GPS information. This research
includes the development of computer vision algorithms for
the recognition of road, intersections, buildings and landmarks.
Zhou et al. [12] present an efficient road detection and tracking
framework in UAV videos is proposed. Li et al. [7] proposed a
ground map construction by the aerial image from UAV which
was processed with image denoising, correction and obstacle
detection techniques in UAV/UGV cooperation system. A
survey on computer-vision algorithms for obstacle detection in
aerial images which are produced by UAV is analyzed in [13].
More recently, Gunasekaran et al. proposed a map generation
in a static unknown environment by using a mobile robot [14].

In the field of path planning, it has become one of the
fundamental study areas in unmanned vehicle systems. Cheng
et al. [15] proposed an improved hierarchical A* algorithm
to solve parking path planning issues of a large park. In
[16], a heuristic-based method is proposed to search the
feasible initial path efficiently to solve the problem of dynamic
environments. Li et al. [7] proposed a hybrid path planning

method which consisted of genetic algorithm and local rolling
optimization methods. Kurdi et al. [17] presented probabilistic
roadmap (PRM) path planning method for UGV by using
digital map of UAV/UGV cooperative system. However, the
existing UAV and USV cooperation systems have not had
much intention than UAV/UGV cooperation systems in the re-
search area of path planning. Line-of-sight control is the most
widely used control strategy for path planning of UAV/USV
system. Nizami et al. [18] presented the first known imple-
mentation of rescue boat path planning by using A*, Dijkstra
and Breadth-first algorithms in 2012. However, this proposed
system has some limitations. For example, the environment is
defined as a marine with fully certain islands but a flooded
urban environment is not tested with the proposed approach.
Therefore, further study is needed to improve the performance
of path planning in complex scenarios.

III. SYSTEM DESCRIPTION

In this paper, we address the problem of mapping an
unknown flood environment by recognizing obstacles and
roads in the aerial images which are captured by a UAV. We
consider a typical flood disaster scenario where the rescue
boat can plan optimal trajectories by using an aerial view of
the flooded environment for reaching the victims in the most
efficient manner.

Fig. 2 shows the general system design of the proposed
approach. When the UAV captures the aerial image, the first
step is image denoising to recover the aerial image to remove
present noise in the aerial image because the noise will affect
the performance of the following steps. After image denoising,
obstacles are extracted and a ground map model is generated.
Based on the generated ground map, the rescue boat can plan
a path to reach destination points. In path planning, we applied
A*, GA and PRM path planning algorithms to find near-
optimal paths on the generated ground map. These processes
are detailed in the following sections.

Fig. 2. General system design.



A. Map Building

Map building is the foundation of path planning, which is
critical for a rescue boat to reach its destinations accurately.
For the rescue boat, the map will be changed dynamically
when the vehicle is moving. By contrast, for a UAV, the ground
environmental information is nearly unchanging. Therefore,
after the UAV has collected the aerial image, image processing
is necessary to extract obstacles for building a ground map.
Fig. 3 shows the general process of image processing for map
building. The process of building the ground map by using
image processing algorithms illustrated in the following main
steps:

1) Image Denoising: In the step of image denoising, Gaus-
sian filtering technique is applied to blur images and filter
possible noise in the aerial image. The results in a blur that
preserves boundaries and edges better than the original image.

2) Image Segmentation: In this step, the filtered image
is converted to grayscale and then canny edge detection
technique is applied to extract contours accurately by trans-
forming the grayscale image to binary image. After extracting
the contours, erosion and dilation morphological operation
techniques are applied to model a ground map by using square
structuring elements.

B. Path Planning

In this section, we utilize the generated maps and introduce
path planning algorithms. In flood rescue application, one
critical issue is making sure rescue vehicles will not collide
with the obstacles in the path. In our system, the rescue boat
should avoid collision with the obstacles while performing
their tasks. In order to solve the obstacle avoidance problem,
we analyzed A*, GA and PRM path planning to find collision-
free paths.

1) A*: A* path planning algorithm is a standard graph
search based technique. The A* algorithm takes a graph
as input and explores all the regions to find the shortest
path from the initial point to the destination points in the
explored regions [19]. The A* algorithm is heuristic based
and works hierarchically which means that all the near regions
are explored before the further ones while the exploration is
also biased towards the regions closer to the destination points
[20].

In general, a graph consists of vertices and edges. Each
pixel of the map is taken as a vertex in this algorithm and
each vertex has a number of connections which act as edges.
In Fig. 4, the possible connections are given for any general
position of the vehicle which is represented as a connection
matrix as shown. In the connection matrix, the current position
of the vehicle is marked as ’2’. There needs to be only one
current position of the robot which means that only one ’2’
should be in the matrix. All possible moves are represented
by 1 and all impossible moves are represented by 0.

The connection matrix is an input parameter of the A* algo-
rithm and we can create our own matrices to test the efficiency
of the system. There are three typical connection matrices
which are shown in Fig. 5 [21]. Fig. 5(a) only allows the

Fig. 3. Ground map model building process.

Fig. 4. A* algorithm connection matrix.

vehicle to take linear moves such as up, down, left and right.
Fig. 5(b) allows the vehicle to take four different diagonal
moves together with the four linear moves. Fig. 5(c) allows
the vehicle to make more moves while adding connections
between the diagonal moves. Allowing more movements for
the vehicle by adding more connections can help to generate a
better path. However, adding more connections may result in
excessive computation time. Another design specification of
the algorithm is a cost function. The cost function consists
of heuristic and historic functions. The heuristic function,



Fig. 5. A* algorithm connection matrices.

H , stores the weights of the edges, which are taken as the
Euclidean distance between the connecting points, as shown
in equation (1):

H(xi, yi, xj , yj) =
√
(xi − xj)2 + (yi − yj)2 (1)

The historic nearness function, N , which determines the
nearness of the point to the goal while finding the Euclidean
distance between a point and the goal, as shown in equa-
tion (2):

N(xi, yi, Gxj
, Gyj

) =
√
(xi −Gxj

)2 + (yi −Gyj
)2 (2)

The cost function, C, is summation of heuristic and historic
functions which is show in equation (3):

C = H(xi, yi, xj , yj) +N(xi, yi, Gxj
, Gyj

) (3)

2) GA: GA is a meta-heuristic search algorithm which
applies Darwin’s principle of natural selection to model path
planning problems. The goal is to find a solution path (se-
quence of waypoints) that minimizes the distance of the path
while remaining collision-free. A collision-free path is called
a feasible solution and the feasible solution with minimum
distance is an optimal solution for the path planning problem.
GA was used in the research to find solutions paths as a
waypoint sequence. Waypoints are coordinate values in the
GA search space. The solution is stored in an array of size
2 times the number of waypoints where each pair of array
values is waypoint (equation 4).

path = ((X1, Y 1), (X2, Y 2), ..., (Xn, Y n)) (4)

In order to make some path from this set of waypoints, we
start from the source and connect it to the first waypoint by
a straight line. The first waypoint is connected to the second
waypoint by a straight line, and so on. In the end, the last
waypoint is connected to the goal.

Fitness function

In problem modeling, we need a fitness function and specifi-
cation of variables of that fitness function. Distance minimiza-
tion is computed using the Euclidean distance (equation 5)
between each pair of waypoints to measure the paths length
(equation 6) is sub-path between adjacent waypoints.

D(xi, yi, xj , yj) =
√
(xi − xj)2 + (yi − yj)2 (5)

PathD =

n−1∑
i=1

D(< xi, yi >,< xi+1, yi+1 >) (6)

Collision avoidance is implemented by having an obstacle
presence along a path. This impacts the individual’s fitness
value. The fitness function includes a component for penaliz-
ing infeasible solutions in the search space. The Penalty (P) is
set to an arbitrarily high value. In our problem scenarios, we
have set the penalty to 1000000. The SINF is defined as the
length of the infeasible portion on the map. In this approach,
the infeasible portion is identified based on the color of an
obstacle which is lying between each pair of waypoints. The
binary image has pixels which are filled in black. The black
pixels are the evidence of the presence of obstacles and it is
infeasible for the rescue boat to move over it. Thus a heavy
penalty (P) is added to infeasible segments SINF as shown in
equation 7.

The fitness function is comprised of the distance minimiza-
tion and obstacle avoidance functions as shown in equation 8.

PathO = SINF ∗ P (7)

Fitnesspath = PathD + PathO (8)

The locations of each of these fixed number of points in x
and y coordinates are the optimization variables. The variable
bounds are such that the waypoint lies inside the map (lower
bound 1 and upper bound as the length/width of the map for
the X/Y axis). All points put one by one makes the genetic
individual used for optimization.

Each waypoint in the path marks a waypoint of turn. The
total number of points is an algorithm parameter and should
be equal to the maximum number of turns a robot is expected
to make in the robot map. Setting this number too high
would result in very large computational requirements. If the
algorithm is not allowed a large computational time, random
results may be the output. Setting a large value in simple
scenarios will result in useless turns and hence a high path
length. A too small value of the parameter may not give
enough flexibility to the algorithm to model the optimal path,
thus resulting in collision-prone paths.

3) PRM: Probabilistic roadmap path planning algorithm is
a sampling-based path planning technique which consists of
two stages: a construction and a query stage. The goal of
the construction stage is to randomly draw a graph (roadmap)
across the environment. The roadmap is a graph which consists
of vertices and edges. All edges and vertices of the roadmap
should be collision-free so that the rescue boat can use the
roadmap for their task planning. The PRM selects a number
of random nodes in the work-space as the vertices where the
nodes must not lie inside of the obstacles. Then, the algorithm
connects all pairs of randomly selected vertices. If any two
vertices can be connected by a straight line, the straight line
becomes an edge which is shown in Fig. 6.

The goal of the query stage is to use the roadmap which is
developed earlier for finding the shortest path for the rescue
boat. The distance between each node and the position of the
nodes should be considered to find the shortest path. Therefore,
a cost function which is the same as in the A* algorithm (see
equation (1), equation (2) and equation (3)) should be applied
in this purpose.



(a) (b)

Fig. 6. (a) Roadmap (b) Path Derived

IV. EXPERIMENTAL RESULTS

In this section, we present the experimental results to show
the effectiveness of the proposed algorithms. In our experi-
ment, we used an aerial image which is taken from Houston in
Hurricane Harvey (2017) [22]. Then, the image is segmented
by using proposed image processing techniques to model a
ground map. Fig. 7 shows the general process of a ground map
model generation in the flooded urban environment image.
After building the ground map, path planning algorithms are
applied to find near-optimal paths for rescue boat between
source and destination points. The parameters used for each
algorithm in our experiments are shown in Table I. The starting
point is defined as (50, 1100) and the destination point is
defined as (2300, 1100) in x and y coordinates for all the
algorithms. The planning paths are indicated by the blue curve.

TABLE I
ALGORITHM PARAMETERS

Algorithm Source(x,y) Destination(x,y)
A* (50, 1100) (2300, 1100)
GA (50, 1100) (2300, 1100)

PRM (50, 1100) (2300, 1100)

In A* path planning algorithm experiments, we analyzed
three connection matrix (see Fig. 4 (a), (b) and (c)) which are
shown in Fig. 8 (a), (b) and (c) respectively in the generated
ground map. According to the path planning results in Table II,
increasing the flexibility of the movement in the connection
matrix can produce a shorter path and less computation time.

TABLE II
A* ALGORITHM COMPARISONS

Connection Matrix Path Length(m) Computation time(sec)
1 2604 288
2 2432 277
3 2386 209

In GA path planning experiments, we analyzed three dif-
ferent paths which are generated with the different number
of waypoints which are shown in Fig. 12 (a), (b) and (c)
respectively. In these experiments, the same population size
and number of iterations are applied as input parameters. In

Fig. 7. A ground map model generation.



(a)

(b)

(c)

Fig. 8. (a) A* with Connection Matrix 1 (b) A* with Connection Matrix 2
(c) A* with Connection Matrix 3

addition, the fitness function results vs. the number of gener-
ations of these three paths are shown in Fig. 10. According
to the results in Table III, increasing the number of waypoints
can produce larger path and more computation time.

TABLE III
GA ALGORITHM COMPARISONS

Num. of waypoints Pop. size Num. of iterations Path Length(m) Comp. time(sec)
3 80 60 2522 98
4 80 60 2730 106
5 80 60 2821 138

In PRM path planning experiments, we analyzed three
different paths which are generated with the different number
of nodes. Firstly, nodes are generated randomly into the ground
map and the possible connection between each node are
generated to produce roadmaps in the construction stage which
are shown in Fig. 11. Then, near-optimal paths are generated
in the query stage which is shown in Fig. 12. According to
the results in Table IV, increasing the number of nodes can
produce a shorter path and but more computation time.

TABLE IV
PRM ALGORITHM COMPARISONS

Number of nodes Path Length(m) Computation time(sec)
100 2427 17
150 2383 27
200 2360 35

V. CONCLUSIONS AND FUTURE WORK

In this research, we proposed a flood rescue application
where the main goal was building a ground map and plan near-
optimal paths for a rescue boat in a flooded urban environment.
Map building and path planning algorithms are expected to
greatly enhance the function of the rescue boat to handle flood
rescue operations.

A* path planning algorithm is simple and efficient, and
increasing the flexibility of the movement in the connection
matrix can produce a shorter path and less computation time.
However, A* star algorithm is too slow in complex scenes.

GA path planning algorithm is easy to understand and com-
plete method. However, increasing the number of waypoints,
population size and number of iterations can produce larger
path and more computation time.

PRM path planning algorithm is simple and fast. However,
computation time increases with the number of nodes. Accord-
ing to the path planning algorithm results, PRM path planning
algorithm gives a shorter path and better computation time
than A* and GA algorithms.

The proposed research does not address all issues, but it is
a step towards enhanced flood rescue operations. Rather than
focus on hardware building, the research was the focus on
testing system algorithms. Our next step will focus on the real
world application to test system algorithms by using UAV/RB
cooperative system.
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Fig. 9. (a) GA path with 3 waypoints (b) GA path with 4 waypoints (c) GA
path with 5 waypoints

(a)

(b)

(c)

Fig. 10. (a) Fitness function graph with 3 waypoints (b) Fitness function
graph with 4 waypoints (c) Fitness function graph with 5 waypoints
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