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Abstract—This paper proposes a robust model that 

optimizes the joint cooperation between the distribution system 

operator (DSO) and the electric vehicle aggregators (EVAs) 

considering the forecasting uncertainties. The developed 

cooperation model considers electric vehicles (EVs) in a 

vehicle-to-grid operation, fuel-based distributed generators, 

and wind generators. The purpose of the proposed model is to 

optimize the operational planning that simultaneously 

minimizes the DSO’s energy cost and maximizes the revenue of 

each EVA. The proposed model is applied to a 14-bus 
distribution system to verify its effectiveness and robustness.    
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NOMENCLATURE 

A. Sets  

N  Set of system buses, indexed by i  

L  Set of distribution lines, indexed by ij  

DG  Set of fuel-based distributed generators 
(DGs), indexed by k 

 

WG  Set of wind generators (WGs), indexed by wg  

EVA  Set of electric vehicle aggregators (EVAs), 

indexed by ag 

 

EV  Set of electric vehicles (EVs), indexed by ev  

( )EV ag  Set of EVs controlled by EVA ag  

T  Number of time-intervals, indexed by t  

B. Parameters 

, ,k k ka b c  Coefficients of production cost of DG k 

ijB  Susceptance of line ij 

,B inv

ev
C  Cost of battery of EV ev 

wgC  Cost of production of WG wg  

ev
d  Travel distance of EV ev since its last 

charging 
max

ev
d  Maximum travel distance of EV ev 

kDR  Ramp-down limit of DG k 

kDT  Minimum down-time of DG k 

,maxB

ev
E  Maximum stored energy of battery of EV ev 

,minB

ev
E  Minimum stored energy of battery of EV ev 

con

ev
E  Required energy stored in battery of EV ev at 

departure time 

,con prev

ev
E  Required energy stored in battery of EV ev at 

previous departure time 

ijG  Conductance of line ij 

max

ijP  Thermal limit of line ij 

ev
LT  Life cycle of battery of EV ev 

,maxCh

ev
P  Maximum charging power of EV ev 

,maxDch

ev
P  Maximum discharging power of EV ev 

,maxDG

k
P  Maximum production of DG k 

,minDG

k
P  Technical minimum of production of DG k 

( )wgP v  The power curve (S-curve) of WG wg 

,

frc

wg tP  Forecasted active power output of WG wg at 

time-interval t 
max

wgP  Maximum active power output of WG wg 

kSDC  Shut-down cost of DG k 

kSUC  Start-up cost of DG k 

arr

ev
T  Arrival time of EV ev 

dep

ev
T  Departure time of EV ev 

kUR  Ramp-up limit of DG k 

kUT  Minimum up-time of DG k 

in

wgv  Cut-in wind speed of WG wg 

out

wgv  Cut-out wind speed of WG wg 

t
v  Forecasted wind speed at time-interval t 

max

,WS t  Maximum deviation from the forecasted 

wholesale market price at time-interval t 
max

,wg t  Maximum deviation from the forecasted 

production of WG wg at time-interval t 

0
  Budget of uncertainty of forecasted value of 

wholesale market price 

wg  Budget of uncertainty of forecasted active 

power output of WG wg 

ev
  Charging/discharging efficiency of EV ev 

WS

t
  Forecasted value of wholesale market price at 

time-interval t 

C. Continuous Variables 

RCO

DSO
C  Energy cost of distribution system operator 

(DSO) according to the robust coordinated 

optimization (RCO) model  
noEVA

DSO
C  DSO’s energy cost solving the DSO’s sub-



problem model without EVAs 
,RO noEVA

DSO
C

 

DSO’s energy cost solving the DSO’s sub-

problem model with robust optimization (RO) 

without EVAs 
,RO EVA

DSO
C  DSO’s energy cost solving the DSO’s sub-

problem model with RO with EVAs 

,

B

ev tE  Energy of battery of EV ev at time-interval t 

,ag tP  Active power of EVA ag at time-interval t 

,

Ch

ev tP   Charging active power of EV ev at time-

interval t 

,

Dch

ev tP   Discharging power of EV ev at time-interval t 

,

DG

k tP  Active power output of DG k at time-interval t 

,

flow

ij tP  Active power flow of line ij 

,

D

i tP  Total active power demand at bus i at time-

interval t 

,

G

i tP  Total active power generation at bus i at time-

interval t 
WS

t
P  Power imported from the wholesale market at 

time-interval t 
RCO

agR  Revenue of EVA ag solving the RCO model 

max

agR  Revenue of EVA solving the sub-problem 

model of EVA ag 
,maxRO

agR  Revenue of EVA solving the sub-problem 

model of EVA ag with RO 

0 0, tw z  Auxiliary variables for RO concerning 

uncertainty of 
WS

t
  

1 1 ,,wg wg tw z

 

Auxiliary variables for RO concerning 

uncertainty of ,

frc

wg tP  

,i t  Voltage angle of bus i at time-interval t 

,i tV  Voltage deviation of bus i at time-interval t  

D. Binary Variables 

,

Ch

ev tu  Charging status of EV ev at time-interval t 

,

Dch

ev tu  Discharging status of EV ev at time-interval t 

,k tu  Commitment status of DG k at time-interval t 

,

OFF

k tu  Shut-down status of DG k at time-interval t 

,

ON

k tu  Start-up status of DG k at time-interval t 

I. INTRODUCTION 

The electrification of transportation, which would 
otherwise be powered by fossil fuel, has the potential to 
produce significant public health, environmental, economic 
and grid management benefits [1]. EVs could outline a 
pathway to a more reliable, affordable and efficient low-
carbon electrical system [2]. Charging EVs when renewable 
energy sources (RES) are more available helps the 
integration of such technologies. EVs also have the 
capability to inject power when needed, and in that manner 
they can serve as producers [3]. 

Over the past few years EVs have managed to penetrate 
the transportation market as part of the solution to the global 
pollution and fossil fuel consumption problem. As EVs are 
expected to gain more attention in the future, research has 
focused on the potential opportunities and challenges they 
may offer to the DSO [4].  Most research studies are focused 

on the optimal charging/discharging schedule of EVs 
considering vehicle-to-grid (V2G) operation. For example, in 
[5], pricing mechanisms have been designed in order to 
guide the EV owners to charge their EVs during off-peak 
hours. In [6], a ramp rate limiting service has been developed 
to compensate wind power fluctuations in the grid based on 
the charging load of EVs. In [7], a multi-objective model is 
proposed for the optimal scheduling of EV 
charging/discharging. 

However, it would be impractical for the DSO to 
separately control each EV from a large fleet of EVs. 
Additionally, the direct communication between the DSO 
and the EV owners may be another problem. To cope with 
these issues, the involvement of EVAs is proposed. An EVA 
is a mediator between the EVs and the DSO, responsible for 
controlling the aggregated charging/discharging process of 
EVs. In [8], a multi-objective optimization model is 
proposed for obtaining optimal coordinated operation of 
microgrids, including renewable generation and EVAs of 
plug-in EVs. The multi-objective model is solved using two 
different methods, i.e., the exponential weighted criterion 
method and a compromise programming method. In [9], 
EVAs collaborate to schedule the plug-in EV charging 
pattern. A bi-objective charging schedule problem is 
formulated to maximize the total EVAs’ profit, while 
maximizing the number of EVs to be charged. In [10], a day-
ahead operational planning is proposed to minimize the 
microgrid’s daily operational cost based on load and source 
availability forecasting, in the presence of an EVA, while 
also considering the financial transactions between the EVA 
and the microgrid operator.  

In [11], a robust optimization (RO) model is introduced 
to minimize the total cost of the distribution system, and a 
decentralized solution algorithm based on the alternating 
direction method of multipliers is introduced to preserve the 
independency of EVAs and to reduce the complexity of the 
proposed model. The authors of [12] investigate the optimal 
participation of a single EVA in the energy market with 
uncertain prices. The main goal of the proposed RO 
framework is to satisfy the economic goals of the EVA in an 
uncertain energy market. The authors of [13] present a RO 
technique to model the electricity price uncertainty, in order 
to obtain robust scheduling of a single EVA. In [14] an 
EVAs’ bidding strategy model is proposed, which constitutes 
a generalized Nash equilibrium problem. RO is used to cope 
with uncertainties of energy prices. 

 As discussed, EVAs have been optimally integrated in 
the distribution systems for different objectives, representing 
their importance in power systems. The existing literature 
usually takes into consideration the maximization of revenue 
of a single or multiple EVAs, as well as the uncertainties of 
energy market prices. However, the potential optimal 
cooperation between the DSO and the EVAs should be 
investigated in order all the included parties to obtain 
satisfactory financial benefits. Additionally, a more complex 
energy mix of the distribution system should be taken into 
account, as well as the uncertainties of RES. 

This paper proposes a RO model for the joint cooperation 
between the DSO and the EVAs in a power distribution 
system that also includes fuel-based DGs and wind 
generators. Hereafter, the proposed model is called robust 
coordinated optimization (RCO) model. The RCO model 
consists of two sub-problems both formulated as mixed 



integer non-linear programming (MINLP) problems. The 
first one minimizes the energy production cost for the DSO, 
whereas the second one maximizes the revenue of each EVA 
separately. Subsequently, these two models are modified for 
RO to take into account the maximum expected deviation 
from the hourly forecasted values of the wholesale market 
price and the produced active power of WG. The results of 
the RO sub-problems are used as input parameters for the 
proposed RCM, which, in turn, seeks a trade-off between the 
objectives of the included stakeholders, i.e., DSO and EVA, 
altogether. The proposed RCO model, which is also a 
MINLP problem, is applied to a 14-bus power distribution 
system to demonstrate its effectiveness and robustness. 

The contributions of this paper are the following: 

1) A new optimization model is introduced, called 
RCO model, which simultaneously co-optimizes the 
objective of the DSO and the objectives of each 
EVA participating in the distribution system. 

2) The proposed model is a RO model, so the worst-
case uncertainties of the forecasted parameters, 
wholesale market prices and WG production, are 
taken into account. 

3) The problem is formulated considering a complex 
energy mix with multiple distributed energy 
resources, such as renewables, conventional fuel-
based DGs, and electric vehicles. 

The remainder of this paper is organized as follows. In 
Section II, the sub-problems of minimizing the DSO’s 
energy cost and maximizing the revenue of each EVA are 
formulated. Section III formulates the RO models of Section 
II sub-problems. Section IV introduces the proposed RCO 
model. Section IV briefly outlines the case study and 
discusses the obtained results, while Section V concludes. 

II. PROBLEM FORMULATION 

In this section, the main problem of optimizing the 
operational planning of a distribution system is split in two 
sub-problems, each one related to the objectives of the 
entities participating in the system, i.e., the DSO’s sub-
problem, and the sub-problem of multiple EVAs. The sub-
problems that are formulated are: a) minimization of the 
DSO’s energy cost and b) maximization of the revenue of 
each EVA. In that setting, EVAs gather the data of the EVs 
(i.e., technical characteristics of the EVs, arrival/departure 
time) and send them to the DSO. The DSO optimizes the 
operational planning of the distribution system determining 
the charging/discharging schedule of the EVs. The proposed 
model adopts the formulation of [11] for the fuel-based DGs 
and EVAs, as well as the power flow equations of [15]. 

A. Minimization of DSO’s energy cost 

The objective of the DSO is to minimize the total 
operational cost of the distribution system: 
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, , ,
( )

EV ag

Dch Ch

ag t ev t ev t

ev

P P P


   , ,ev t ag  (25) 

The objective function (1) consists of four terms. The 
first term (2) is the cost of the power imported from the 
external grid. The second term (3) gives the cost of DG units 
that comprise the start-up, fuel and shut-down costs, 
respectively. The third term (4) gives the purchase cost of the 
active power produced by WG. The last term (5) denotes the 
compensation cost to be paid to the EVA. The cost of (5) is 
related to the remuneration paid to the EV owners for using 
the battery of their vehicles. 

Equation (6) represents the active power balance at each 
bus of the distribution system. Equation (7) represents the 
active power flow of each line of the distribution system. 
Equation (8) limits the voltage deviation of each bus from 
the nominal value. Equation (9) determines the thermal limits 
of each distribution line, given in MW. Equation (10) 
determines the upper and lower limits of the power produced 
by the fuel-based DGs. Equations (11) and (12) give the 
ramp-up and ramp-down limits of the DG production, 
respectively. Equation (13) determines the minimum time a 
DG can operate, whereas (14) gives the minimum time a DG 
can be out of operation. Equations (15) and (16) determine 
the turn-on and turn-off status of a DG, respectively. The 



state of charge (stored energy) of each EV is limited by (17). 
The state of charge at the arrival time and the departure time 
of each EV are given by (18) and (19), respectively, while 
(20) denotes that an EV cannot be charged or discharged 
before its arrival and after its departure to/from the charging 
station. Equation (21) ensures charging and discharging 
cannot occur at the same time. The upper limits of charging 
and discharging power of each EV are given by (22) and 
(23), accordingly, while ensuring non negative values for the 
charging and discharging power variables of each EV.  
Equation (24) presents the energy balance of each EV 
battery. Equation (25) calculates the aggregated active power 
each EVA absorbs or injects at each time-interval. 

It should be noted that for environmental reasons the 
production of the wind generators is not curtailed by the 
DSO. It is also assumed that the WG production solely 
depends on the wind speed, as calculated by (26): 
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0 ,
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It should be also noted that the absence of EVAs (in 
which case the EVs act only as loads) is possible to be 
realized by only considering zero power injection to the 

distribution network, i.e., 
, 0

Dch

ev tP  , ,ev t . 

B. Maximization of EVAs’ revenue 

The objective of each EVA, given in (28), is to 
maximize its revenue by selling the EV energy that is 
discharged to the grid from the V2G operation. 
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noEVA
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and (2)(26). 

Equation (28) ensures that the DSO’s energy cost will 
not exceed an upper bound. This upper bound is the cost 
occurred, when EVs cannot be discharged (without EVAs). 

III. ROBUST OPTIMIZATION 

The optimization models of Section II ignore the 
forecasting errors that are always present. To deal with this 
issue, the models of RO [16] for the sub-problems of 
Section II are formulated here. In general, a RO model 
derives the optimal solution that is partly or fully 
immunized against uncertainties [17]. This paper considers 
the wholesale market price and the WG production as 
uncertain parameters. 

A. Minimization of DSO’s energy cost (RO model) 

The robust counterpart of the model that minimizes the 
cost for the DSO can be reformulated as follows: 
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and (3), (5), (7)–(26). 

B. Maximization of EVAs’ revenue (RO model) 

The robust counterpart of the model that maximizes the 
revenue of each EVA is reformulated as follows: 
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and (3), (5), (7)(26), (31)(36). 

Equation (37) ensures that the DSO’s energy cost will be 
lower than or equal to the cost that occurs without EVAs 
considering RO.  

If either model is partly immunized against the 

uncertainties of the wholesale market prices, 0
  should be 

set in the interval [0,T]. As 0
  grows, the scenario worsens 

and the model gets more immunized against these 
uncertainties. If the model is partly immunized against the 

uncertainties of the WG production, wg  should be set in 

the interval [0,1]. As wg  grows, the scenario worsens and 

the model gets more immunized against these uncertainties. 

IV. PROPOSED ROBUST COORDINATED OPTIMIZATION 

MODEL 

The proposed RCO model for the joint cooperation 

between the DSO and the EVAs takes into consideration the 

minimum energy cost of the DSO including the presence of 

EVAs, the minimum energy cost of the DSO without 

considering the EVAs’ activation, and the maximum 

revenue of each EVA. The proposed robust cooperation 
model is formulated as follows: 
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and (3), (5), (7)–(26), (31)–(36). 

The objective of (39) aims to find a consensus between 

the objectives of the DSO and the EVAs, thus to minimize 

the deviation from the DSO’s target cost and from the 

EVAs’ target revenue, altogether. The DSO’s energy cost 

that occurs from the RCO model is given by (40), and is 

limited by (41). The revenue of each EVA is given by (42). 



V. CASE STUDY & RESULTS 

The proposed RCO model is applied to a modified 14-
bus distribution system (depicted in Fig. 1), the detailed data 
of which (bus loads and line data) can be found in [18]. The 
14-bus distribution system consists of two diesel DGs (3.0 
MW each), two wind farms consisting of four commercial 
WGs of 0.45 MW each (data available in [19]), and two 
EVAs. EVA1 is located on bus 5 and controls 400 EVs. All 
the EVs of EVA1 are assumed to remain plugged in the 
charging station from 07:00 to 16:00. EVA2 is located on 
bus 7 and controls 400 EVs as well. 200 EVs of the EVA2 
fleet remain in the charging station from 07:00 to 16:00 and 
the rest 200 EVs from 16:00 to 00:00. The detailed EV data 
can be found in [11]. The forecasted wind speed values are 
sourced from [20] and are used to calculate the forecasted 
active power output of the WG using (26). The forecasted 
wholesale market prices are taken from [21]. The maximum 
deviation from the forecasted value of the wholesale market 
price is considered equal to 10%, whereas that of WG 
production is considered equal to 20%. 

The DSO’s energy cost with and without RO, with and 
without the activation of EVAs is shown in Table I. One can 
notice that the costs that derive from the RO models are 
about 10% higher than the models that do not consider 
uncertainties, i.e., without RO. This is mailny due to the 
expected deviation from the wholesale market price 
forecasting, which is assumed equal to 10%. It is also noted 
that the models that consider the activation of EVAs have 
lower cost than those with the EVAs deactivated. This goes 
to show that the optimal V2G operational planning is 
considered to be an effective practice for the DSO. The 
robust model that minimizes the DSO’s energy cost, without 
EVAs, results to the charging/discharging schedule shown in 
Fig. 2. The EVs are being discharged when the industrial and 
residential loads are at their peak, while the EVs are charged 
when the wholesale market price is at its lowest values. 
Positive values indicate EV power consumption, whereas 
negative values indicate EV power injection. 

As expected, the robust models that optimize the 
objectives of each EVA result to lower revenue for EVAs 
than their counterparts without RO. This mainly happens due 
to the considered maximum deviation from the forecasted 
WG production. According to the robust maximization 
model of EVA1, 91.38% of the total DSO’s expenses paid to 
the EVAs is distributed to EVA1, while the remaining 8.62% 
is distributed to EVA2. Accordingly, considering the robust 

maximization model of EVA2, 98.72% of the total 
compensation cost that the DSO pays all the EVAs is 
distributed to EVA2, while the remaining 1.28% is 
distributed to EVA1.  

The optimal charging/discharging schedule that 
maximizes the revenue of EVA1 is shown in Fig. 3 and 
focuses on the discharge of the EVs controlled by EVA1 
during the peak of the industrial loads in the morning and the 
discharge of the EVs of EVA2 during the peak of the 
residential loads in the evening. This is reasonable, because 
EVA1 cannot control EVs after 16:00. The optimal 
charging/discharging schedule that maximizes the revenue of 
EVA2 is shown in Fig. 4 and proposes discharge of the EVs 
under their control during both industrial and residential 
peak, because EVA2 is able to control EVs in the morning as 
well as in the evening. 

 

Fig. 1. The topology of the modified 14-bus distribution system. 

TABLE I.  ENERGY COST OF DSO 

 With RO Without RO Difference 

Without EVAs 81,478.97 € 74,151.92 € 9.88% 

With EVAs 81,275.47 € 73,938.13 € 9.92% 

 

 

Fig. 2. Charging/discharging schedule that minimizes the DSO’s energy cost. 

 

Fig. 3. Charging/discharging schedule that maximizes the revenue of EVA1. 

 

Fig. 4.  Charging/discharging schedule that maximizes the revenue of EVA2. 
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Using the results of DSO’s energy cost and the results of 
EVAs’ revenue as input parameters for the RCO model, the 
optimal charging/discharging schedule is shown in Fig. 5. 
The EVs of both EVAs are proposed to be discharged during 
load peaks and charged when the wholesale market price is 
low. The DSO’s energy cost with the proposed RCO model 
is 81,410.85€, which is 0.84% lower than the DSO’s energy 
cost of the DSO’s sub-problem without EVAs and 1.67% 
higher than that of DSO’s sub-problem with EVAs. The 
presence of EVAs reduces the energy cost for the DSO. The 
difference is not significant, because the cost of EV 
flexibility is slightly lower than the cost of the diesel DGs. 
Though, EVs are considered as a more eco-friendly 
technology than fuel-based DGs. 

The values of the objective functions for each one of the 
sub-problems and the RCO model are summarized in Table 
II. The RCO model finds a consensus among the objectives 
of all parties, while also enhances a more intensive V2G 
operation. The financial results are very satisfactory as they 
verify that all parties, i.e., DSO and EVAs, cooperate evenly. 

VI. CONCLUSION 

This paper proposes a RO model for the cooperation of 

the DSO with EVAs. The model takes into consideration the 

forecasting uncertainties of the wholesale market price and 

those of wind generation. Moreover, the objectives of all 

parties are included in a RCO model. The RCO model seeks 

the operational schedule that simultaneously fulfills the 

objectives of the DSO as well as the objective of EVAs. 
Results from a 14-bus distribution system case study show 

that the RCO model is an effective approach to find a trade-

off between the objectives of the DSO and those of EVAs. 

With the proposed RCO model, the participation of EVAs in 

local distribution markets is enhanced and the V2G 

operation is utilized as a more sustainable solution 

compared to fueled DGs. 
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TABLE II.  RESULTS FOR EACH SUB-PROBLEM AND THE RCO MODEL 

 
min DSO’s 

energy cost (€) 

max EVA1 

revenue (€) 

max EVA2 

revenue (€) 

DSO’s sub-problem 

(without EVAs) 
81,478.97 0.00 0.00 

DSO’s sub-problem 

(with EVAs) 
81,275.47 11.25 47.35 

EVA1’s sub-problem – 192.41 – 

EVA2’s sub-problem – – 219.38 

RCO model 81,410.85 69.65 105.79 

 

Fig. 5. Charging/discharging schedule of the proposed RCO model. 
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