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ABSTRACT 

We develop an improved layout optimization procedure, in which the BP neural network is 

applied and three different independent variables are analyzed. Herein, the procedures include two 

crucial steps. The first step is to forecast two risk loss costs by applying a neural network based on 

three different independent variables, and the second step is to verify the effective of the new 

estimation by using the predicted risk cost as the edge weight of the minimum spanning tree 

algorithm. The new method is applied in three different cases, leading to three distinct optimal 

layout. The results indicate that the economic benefit of using four independent variables is greater 

than the economic benefits of using three and two independent variables. Then, two optimal 

strategies for the pipeline network layouts are presented. These strategies realize a 1.54 to 13.23% 

greater economic benefit than that of the shortest layout. 
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1. Introduction 

In recent years, with the continuous expansion of the pipe network system, various pipeline failures, 

especially those caused by corrosion, have been discovered. Thus Serious ecological disaster and 

economic loss were caused and brings great harm to people's living environment. The quantitative 

calculation method of explosion radius of high pressure natural gas pipeline is studied[1-2]. It is 

difficult to determine the general method of calculating explosion radius because of the difference 

in casualties and property estimation caused by different explosion accidents. Pemanand N. Shari J 

demonstrate that an effective electronic combination of biological and physical parameters can be 

used to obtain a single environmental sensitivity index for oil spills[3]. Dong Y H proposes a new 

method, in which the probability of the event is evaluated by applying the expert heuristic of fuzzy 

set theory[4] A new evaluation method is proposed based on La Maddalena model for Islands of oil 

slick and coastline, in order to reduce and mitigate the effects of offshore oil dispersal and its 

detention [5]. Artificial neural network model was proposed to predict pipeline condition average 

percentage, and its validity is higher than 97% when applied to the validation data set[6]. The modle 

is expected to help pipeline operators to assess and predict the existing conditions of oil and gas 

pipeline.  

 

Since 1970, due to the gradual increase of pipeline accidents caused by corrosion, relevant foreign 



 

2 
 

institutions have carried out a series of researches on pipeline corrosion, and many important results 

have been achieved. Most representative achievements include: ASME B31G standards issued by 

the national institute of Mechanical engineering (American Society of Mechanical Engineers) in 

1991, DNV-RP-F101 and PCORRC method jointly developed by the British standard committee 

(BSI) and det norske veritas (DNV) in 19990[7-9]. Since the beginning of the 21st century, the finite 

element theory has been improved, and the research results of pipeline corrosion have been 

increased, due to the rapid development of computer technology. The results mainly indicate that 

the critical internal pressure load of pipeline corrosion has higher accuracy, and the overall corrosion 

outer diameter has too great influence on the ultimate internal pressure load of corroded pipeline. It 

is mainly based on finite element simulation, supplemented by experiments, and obtained by using 

nonlinear finite element theory analysis[10-11]. Teixeira AP in [12] an Caleyo in [13] studied the 

reliability and remaining life of corroded submarine pipelines based on internal pressure. Mourad 

Nahal et al. studied the failure probability and reliability index of pitting corrosion phenomenon of 

submarine pipeline Under the action of corrosion and residual stress[14]. Ouk Sub Lee et al. studied 

the effect of failure probability on corrosion pipeline due to defect depth, pipe diameter, defect 

length, fluid pressure, corrosion rate, material yield stress and pipe wall thickness[15]. Mohd Hairil 

Mohd et al. studied the relationship between the internal pressure and bending moment of different 

corrosion damage and load, and their influence on the residual strength of submarine pipeline, by 

applying ANSYS nonlinear finite element method[16]. Mohammed S. El-Abbasy et al. presented a 

reliability prediction model of the pipeline by using artificial neural networks based on historical 

data in order to keep it running safely[17] In [9] the reasons of natural gas failure are analyzed by 

using probability statistics, and then Bayesian reliability model is established based on historical 

fault data. Thus .Finally, the uncertainty and sensitivity of natural gas pipeline are studied. In [18] 

Integrity of oil and gas pipeline corrosion is evaluated by using the fuzzy logic model. In [19] The 

markov chain model was established to accurately predict the depth of corrosion pits in oil and gas 

pipelines. Alma Valor proposed the corrosion data conform to the negative binomial distribution 

according to the external corrosion shape of buried pipeline[20]. In [21] risk assessment of offshore 

pipelines is analyzed by applying lateral dynamic stability. In [22] a new layout optimization method 

is constructed to optimize the risk loss in the layout planning stage. However the theoretical basis 

of this method is insufficient as the basic data of economic loss are obtained from the actual project.  

 

In this paper, we employ a verification method similar to that described above to develop a better 

layout optimization procedure in which the theoretical basis for the data that are used to predict 

the risk loss cost is more sufficient and comprehensive compared to that of the new layout 

optimization procedure [22]. In the improved layout optimization procedure, a back-propagation 

(BP) neural network is applied in the first step based on three different independent variables 

because the economic benefit with four independent variables is greater than the economic benefit 

with three and two independent variables, and this method realizes a 1.54 to 13.23% greater 

economic benefit than that of the shortest layout.  

     

2. The critical steps of the new layout optimization 

The problem statement of the new layout optimization is to synchronize the minimum value of risk 

loss and total cost of natural gas pipeline networks at the planning stage. The mathematical model 
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and calculation procedures, which constitute the crucial framework of this problem, are described 

in the following subsections. 

 

2.1. The predicted risk loss cost 

The layout optimization presented by Sanaye ([23]) is committed to minimizing the total cost, which 

contains investment and operating costs. However, without risk loss, the layout optimization results 

are not entirely consistent with practical application, which is mainly due to the crossover and 

mutation of the genetic algorithm (GA) program. GA is based on the random combination of one 

group of network data, and hence, the as-obtained optimal layout is not suitable for pipe-laying. In 

our work, a feasible layout decision is obtained by employing graph theory because the original and 

input data are derived from the actual pipeline laying path. 

 

The edge weight used in this study is expressed using cost functions for the leakage risk and 

corrosion risk according to graph theory, in which different types of practical data can express the 

edge weight of the network graph. The corrosion prevention cost, corrosion risk loss cost, leakage 

risk loss cost and total investment cost are used in the corrosion risk cost. 

 

On the one hand, the leakage risk cost should be the focus of medium- and low-pressure pipeline 

networks in urban areas because environmental economic losses caused by corrosion and third-

party damage are very large. On the other hand, the corrosion risk cost should be the focus of 

long-distance high pressure pipeline networks in suburban areas because the leakage risk loss cost 

is too small to be of concern ([24]). The corrosion risk cost includes two aspects: one is the pipeline 

corrosion risk cost during the construction and operation periods and the other is the economic 

loss due to corrosion leakage. The two aspects are associated with the pipe network’s geographical 

environment, which is often affected by random disturbances, such as the flow of people, 

surrounding pipelines and buildings around the pipeline. Therefore, the risk levels of soil 

corrosion can be used as independent variables to fit the corrosion risk function([25]). Soil 

components are often treated as an index in buried pipeline corrosion because buried pipelines are 

exposed to varying types of soil in different regions([26]). Thus, the two costs (i.e., leakage risk 

cost and corrosion risk cost) can be summarized by the following formulas. 

Leakage risk cost = leakage risk loss cost + investment cost                    (1) 

  Corrosion risk cost = leakage risk loss cost +investment cost + operation cost      (2) 

 

The investment cost and operation cost per unit length of pipeline include material, labor, 

installation, purchase and transportation costs, which depend on the pipe length, pipe diameter, and 

electricity used by the compressor stations. The leakage risk cost, that is, the economic loss caused 

by social environmental consequences and casualties, has been substantial in recent years because 

accidents have occurred frequently with the increasing number of pipeline transmission networks 

that have been built. Particularly, these costs are calculated by using the net present value of an 

actual project. Hence, it is not necessary to estimate the input parameters to fit the two cost functions. 

Moreover, the more comprehensive these costs are, the more accurate the risk cost function will be. 

Equation (1) emphasizes the leakage risk loss cost that is included in the above two functions, as it 

is the main difference between urban and suburban areas. 
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  Figure 1. Algorithm flow diagram of the BP neural network 

 

2.1.1 Train BP neural network  

Both the corrosion risk cost and leakage risk cost vary with changes in the pipeline soil 

environment, and four chemical components of soil, i.e., the resistivity x, moisture content y, 

natural potential（-V）z, and pH value w, are defined as the independent variables of the cost 

function. Thus, the three different independent variables are defined as two independent variables 

(x and y), three independent variables (x, y and z), and four independent variables (x, y, z and w). 

The actual cost, i.e., the training data and testing data are obtained according to the historical data 

of middle pressure gas network in urban and suburban, which is gathered by SCADA system of 

Chongqing gas group, and based on formulas (1) and (2). 40 pipe section data are divided into 30 

training set data and 10 testing data, and have the similar distribution. The flow diagram of the BP 

algorithm is shown in Figure 1. The parameters of the trained neural network are as follows: the 

train epochs equal 1000, the hidden layer has 9 neurons, the output layer has 3 neurons, the hidden 

layer activation function is tansig, the output layer activation function is purelin and the training 

function is trainc, based on MATLAB R2010b. The influence of neuron number in hidden layer on 

model performanc is analyzed in order to choose the number of neuron, because this is the 

determinant for avoiding over fitting. Figure 2 describes the effect of neuron number on neural 

network performanc. The mean of determination coefficient R2 is obtained based on 10 operating 

results to reduce the impact of the initialized weight value and valve([27]; [28]).  
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Figure 2. the effect of neuron number on neural network performanc 

Thus the mean of determination coefficient R2 is maximum when the number of hidden layers is 9. 

10 operating results of R2 corresponds to the neuron number as listed in Table 1.  

Table 1. 10 operating results of R2 corresponds to the neuron number 

The neuron number 

in hidden layer 

Determination coefficient R2 

maximum minimum mean 

3 0.9648 0.6514 0.8295 

4 0.9468 0.6807 0.8530 

5 0.9295 0.6209 0.8459 

6 0.9651 0.7796 0.8861 

7 0.9437 0.6426 0.8355 

8 0.9435 0.7741 0.8706 

9 0.9598 0.8254 0.8984 

10 0.9663 0.7373 0.8926 

 

2.1.2 Performance evaluation 

The predicted value are verified by comparing the actual investment cost and predicted investment 

cost of the testing data. The investment cost is equal to the corrosion risk cost minus the leakage 

risk cost. The investment cost, which is the actual installation cost for the network area and is 

relatively stable, is defined as the error evaluation criteria of the fitted risk cost. The two investment 

costs are predicted by the above trained neural network, as shown in Figure 3.  
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Figure 3. The predicted value of testing data 

 

Similarly, the results shown in Figure 3 include those based on three independent variables and 

four independent variables. The change in the error based on two independent variables and three 

independent variables is not obvious, but the error based on four independent variables is 

significantly reduced. In addition, the maximum error value of the cost function, which is less than 

20%, was calculated by comparing the fitted investment cost and the actual investment cost 

according to the scatter plot of the data of the two groups, as shown in Figure 1. The two strategies 

obtained by the new procedures for decision-makers to plan optimal network layouts with 

maximum benefits and minimum risk were not affected by the 24% error value. The important 

theoretical basis to verify the predicted risk cost is shown in Figure 4.    

 

Figure 4. Error variables of the investment cost with three different independent variables 

2.2. The new procedures 

Based on the two risk costs predicted by the trained neural network, the new procedures are 

depicted in Figure 5. 
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Step 1 (test point): Set the test point (i.e., the pit number) according to the principle of interval, 

500 m or 1000 m, and record the resistivity and moisture content of the soil chemical elements by 

applying GIS. Notice that this step is based on the planning and building of a pipeline network. 

Step 2 (actual cost): Collect the local actual leakage risk loss cost caused by a leakage accident, 

corrosion loss cost, investment cost and operation cost. These base costs act as the basic data for 

training the neural network. Notice that this step is based on the building of a pipeline network. 

Step 3 (neural network): Train the neural networks according to the actual cost in step 2. 

Step 4 (predicted risk cost): Calculate the two risk costs based on three different independent 

parameters. 

Step 5 (minimum spanning tree): Determine the value of the edge weight based on the previous 

procedures and then employ the minimum spanning tree to gain the optimal layout. 

Step 6 (optimal layout): Analyze the optimal results and determine the optimal layout strategy 

according to the positives and negatives of the benefit value. 

 

Figure 5. Procedure for solving for the optimal layout of a pipe network 

 

2.2.1. Edge weight 

The corrosion risk cost and leakage risk cost are used as edge weights. The edge weight value of 

each pipeline in various soil environments is different due to two main factors. One is that the soil 

chemistry elements are independent parameters of the two risk cost functions, which vary in 

diverse environments. The other is that the cost used to train the neural network changes due to 

altered areas or markets. The leakage risk loss cost in urban areas is larger than that in suburban 

areas because urban populations are greater. Thus, the edge weight varies with differences in the 

pipeline area or environment. 

 

The two main factors, which include soil erosion, third parties, and the surrounding construction, 

relate to the soil chemistry, which includes the soil resistivity, redox potential, soil pH value, soil 

moisture content, soil salt content, and tube potential. Herein, two elements, resistivity and 

moisture content, are selected to be the independent parameters of the risk cost function to 

calculate the values of the edge weight. 

 

2.2.2. Minimum spanning tree algorithm 

The Kruskal algorithm is a greedy algorithm, in which the smallest edge weight was selected from 

the rest of the side and then added to a set of edges in each step. The smallest weight of the edge, 

which is connected to two trees, one tree, or a new tree, it is added to the forest. Then, when all of 

the vertices are connected, the minimum spanning tree is finally determined. Thus, the program of 

“[T, c] = krusf (b, 1)” is used in MATLAB: T is an “n” row by 2-column matrix, in which “n” is 

the number of pipe segments, and its column numbers are the starting nodes and terminal nodes a. 
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The variable c expresses the sum of the weights. Finally, b is an “n” row by 3-column matrix, and 

its column elements are starting nodes, terminal nodes and edge weights. 

 

3. Case study 

The pipeline networks of the three cases are: medium pressure in urban areas, medium-high 

pressure A in suburban areas, and medium-high pressure B in suburban areas (Jin An, 2016). The 

main differences are as follows. 

1 The same area is used for the first case and second case so that the training of the neural 

network is the same but the three different independent variables are not; 

2 A different area is used for the third case so that neither the training of the neural network 

nor the independent variable is the same. 

3 The first case and third case are for urban areas, while the second case depicts suburban areas. 

Soil data are shown in Table 2, and we suppose that the length of each pipeline in the initial 

layout is the same for the three cases as shown in Figure 6. 

Table 2. The chemical indices of soil test points 

Pit No. Soil texture pH value Resistivity

（Ω·m） 

Moisture 

content (%) 

Natural potential

（-V） 

1 Loam 24.56 21.84 8.3 0.55 

2 Loam 48.68 30.46 6.46 0.542 

3 Clay 87.63 26.76 5.52 0.55 

4 Clay 17.03 23.39 6.58 0.542 

5 Clay 241.9 22.94 6.99 0.54 

6 Clay 23.63 22 6.99 0.54 

7 Sandy loam soil 24.192 19.03 5.95 0.76 

8 Sand 27.69 18.79 5.5 0.772 

9 Clay 29.25 18.61 6.27 0.748 

10 Clay 38.88 15.73 7.24 0.81 

11 Clay 110.77 10.32 8.25 0.82 

12 Loam 63.37 14.91 7.05 0.785 

13 Loam 105.5 12.19 8.26 0.787 

14 Sandy loam soil 241.9 12.13 8.3 0.84 

15 Clay 88.9 9.61 5.35 0.88 

16 Clay 78.8 11.47 8.02 0.87 

17 Sandy loam soil 58.6 13.12 4.84 0.825 

18 Sandy loam soil 54.26 13.23 8.38 0.861 

19 Loam 51.36 18.01 8.15 0.878 

20 Clay 40.35 18.33 5.52 0.85 

21 Clay 27.81 20.35 5.7 0.829 

22 Loam 25.9 21.13 7.65 0.841 

23 Loam 25.11 22 6.31 0.88 

24 Clay 21.04 22.56 8.33 0.815 

25 Clay 105.5 22.94 4.91 0.834 

26 Clay 27.81 30.46 5.38 0.69 
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27 Loam 48.68 33.36 6.3 0.818 

28 Loam 10 17.32 4.35 0.82 

29 Loam 8.52 15.51 6.89 0.821 

30 Sandy loam soil 200 33.14 8.47 0.61 

31 Sandy loam soil 21.2 26.54 5.86 0.52 

32 Sandy loam soil 58.6 19.57 7.48 0.67 

 

Thus there are no crossing points between any two pipelines and no closed loops among the 

pipelines in each production loop. The data for both soil chemical elements and pipeline length are 

also obtained according to the historical data of middle pressure gas network in urban and suburban, 

which is gathered by SCADA system of Chongqing gas group. 

 

Figure 6. The initial layout for the three cases 

 

3.1. The first case 

The two costs of the first example are calculated by applying steps 1 to 5 of the new procedures 

and the results are as follows by using the minimum spanning tree Kruskal algorithm. Test points 

(Pit.) are selected between each section of the pipeline, and the soil resistivity, moisture content, 

natural potential, pH value and soil texture are chosen as the basic soil physical and chemical 

indices.  

(1) The shortest path layout without focusing on the soil erosion risk cost is shown in Figure 7. 

 

Figure 7. The shortest path layout 

 

The total length of the shortest layout is 8.5450 km, so the leakage risk cost and corrosion risk 

cost are equal to 0.411729657 m$ and 1.208309333 m$, respectively. 
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(2)The layout optimization results focused on the leakage risk cost are shown in Figure 8. 

 

Figure 8. The optimum layout focused on the leakage risk cost 

Here, the cost savings are calculated as follows: 0.411729657-0.3887 = 0.023m$. 

(3) The layout optimization results focused on the corrosion risk cost are shown in Figure 9. 

 

Figure 9. The optimum layout focused on the corrosion risk cost 

Here, the cost savings are calculated as follows: 1.208309333-1.176 = 0.0323 m$ 

3.2. The second case 

The two costs of the second example are calculated by the same steps as the first case and The 

results are as follows by using the same minimum spanning tree Kruskal algorithm. 

(1) The length of the pipeline is not changed, so the total length of the shortest layout is also 

8.5450 km. However, the area of the network changes as pipelines are planned further away from a 

crowded city such that the leakage risk cost is smaller. The leakage risk cost and corrosion risk cost 

are 0.352498212m$ and 1.228044667 m$, respectively. 

(2) Layout optimization results focused on the leakage risk cost are shown in Figure 10. 

 

Figure 10. The optimum layout focused on the leakage risk cost for instance 2 
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Here, the cost savings are calculated as follows: 0.352498212-0.3992 = -0.05 m$. 

(3)Layout optimization results focused on the corrosion risk cost are shown in Figure 11. 

 

Figure 11. The optimum layout focused on the corrosion risk cost for instance 2 

Here, the cost savings are calculated as follows: 1.228044667-1.1966 = 0.03145 m$. 

 

3.3. The third case 

The two costs of the third example are calculated using the same steps as in the above two cases 

and the results are as follows by using the same minimum spanning tree Kruskal algorithm. 

 (1) The length of the pipeline is not changed, so the total length of the shortest layout is also 

8.5450 km. However, the area of the network changes such that the moisture content is different. 

The leakage risk cost and corrosion risk cost are equal to 0.04247752 m$ and 0.08519975 m$, 

respectively. 

(2) Layout optimization focused on the leakage risk cost are shown in Figure 12. 

 

Figure 12. The optimum layout focused on the leakage risk cost for instance 3 

Here, the cost savings are calculated as follows: 0.4247752-0.4313 = - 0.0065m$. 

(3) Layout optimization results focus on the corrosion risk cost are shown in Figure 13. 
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Figure 13. The optimum layout focused on the corrosion risk cost for instance 3 

Here, cost savings are calculated as follows: 0.8519975-0.8657 = - 0.094318542 m$. 

Finally, the two costs and their benefits in three cases with two independent variables are 

summarized in Table 3-1. 

 

Table 3-1. The two costs and their benefits in three cases with two independent variables 

 

3.4. Three cases based on two different independent variables 

 

Two different neural networks with three independent variables and four independent variables 

are applied to the above three cases based on the above procedures. The results are summarized in 

Table 3-2 and Table 3-3. 

Table 3-2. The two costs and their benefits in three cases with three independent variables 

 

 

 

Name of cost Case 1 

 

Case 2 Case 3 

The two costs of the shortest layout 

(m$) 

0.411729657 0.352498212 0.4247752 

1.208309333 1.228044667 0.8519975 

The leakage risk cost and its benefit 

(m$) 

0.3887 0.3992 0.4313 

0.0230 (5.59%) -0.05(-13.2%) 0.0065 (-1.54%) 

The corrosion risk cost (m$) and its 

benefit (m$) 

1.176 1.1966 0.8657 

0.0323 (2.67%) 0.03145(2.56%) 0.0137(-1.61%) 

Name of cost Case 1 

 

Case 2 Case 3 

The two costs of the shortest layout 

(m$) 

 

0.411729657 0.352498212 0.4247752 

1.208309333 1.228044667 0.8519975 

The leakage risk cost and its benefit 

(m$) 

0.3887 0.3992 0.4313 

0.0230 (5.59%) -0.05 (-13.2%) 0.0065 (-1.54%) 

The corrosion risk cost (m$) and its 

benefit (m$) 

1.176 1.1966 0.8657 

0.0323 (2.67%) 0.03145 (2.56%) 0.0137 (-1.61%) 
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Table 3-3. The two costs and their benefits in three cases with four independent variables 

 

4. Results and discussion 

Three results are observed according to the values of matrix T and positive a: One result is that the 

shortest layout of natural gas pipelines is not the optimal layout for minimizing leakage risk loss 

based on matrix T. The second result is that the integrated error of two predicted rick loss costs 

decrease (as shown in Figure 3) and the economic benefit noticeably increases (as shown in Figure 

14) with the increase of independent variables. And the last result is that the choice between two 

costs is an essential determinant of the optimal layout based on Table 3-1, 3-2 and 3-3.  

 

As shown from Figure 7 to Figure 11, the layout graph of the three cases observe that these 

optimum layout are different. Especially in instance 3, as shown in Figure 12 and Figure 13, the 

total cost is different although the two optimum layout are same. Table 3-1, based on two 

independent variables, the leakage risk cost of the optimal layout offers 5.59% higher economic 

benefits than that of the shortest layout based on 0.0230, and the corrosion risk cost of the former 

offers 2.67% higher economic benefits than that of the shortest layout based on 0.0323 from the first 

case’s results. The reality that the economic loss of environmental pollution and casualties caused 

by leakage is very large in urban areas is entirely consistent with this conclusion. This conclusion, 

for which the leakage risk cost is suitable for the pipe network layout design of urban areas, is 

summarized as the first strategy. In the second case, the corrosion risk cost of the optimal layout 

offers a 2.56% higher economic benefit than that of the shortest layout based on 0.31445. However, 

the leakage risk cost of the former is higher than that of the latter, which is based on -0.001144861, 

because the economic losses from environmental pollution and casualties caused by leakage are not 

large in suburban areas. This conclusion, that corrosion risk loss is suitable for suburban areas, is 

summarized as the second strategy. In the third case, the two risk costs of the optimal layout give 

1.54% and 1.61% higher economic benefits than that of the shortest layout, based on 0.0065 and 

0.0137, respectively, so this conclusion is the same as the first case. This is the best result because 

the two risk costs are suitable for suburban areas. The two strategies, are obvious based on 5.59% 

or 2.67% for urban areas, 2.56% for suburban areas, 1.54% or 1.61% for urban areas, as shown in 

Table 3-2, and 5.17% or 2.5% for urban areas, 13.23% or 6.34% for suburban areas, 6.5% for urban 

areas, as shown in Table 3-3. That is the leakage risk cost is suitable for the pipe network layout 

design of urban areas and corrosion risk loss is suitable for suburban areas. In summary, this 

optimization layout, obtained by applying the two strategies described above, achieved 1.54-13.23% 

higher economic benefits over that of the shortest layout; moreover, the economic benefit from four 

independent variables is greater than the economic benefit from three and two independent variables, 

Name of cost Case 1 Case 2 Case 3 

The two costs of the shortest 

layout (m$) 

 

0.4114749 0.2450157 0.4386318 

1.208552 0.768452 0.8516095 

The leakage risk cost and its 

benefit (m$) 

0.3902 0.2126 0.4097 

0.0213 (5.17%) 0.03 (13.23%) 0.0289 (6.60%) 

The corrosion risk cost (m$) and 

its benefit (m$) 

1.1783 0.7197 0.8666 

0.0303 (2.50%) 0.0488 (6.34%) -0.0150 (-1.76) 
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as shown in Figure 14.  

 

Figure 14. Economic benefit of three cases with three different independent variables 

 

5. Conclusions 

This study is distinguished by the problem of new layout optimization, in which new efficient 

optimization procedures are proposed to obtain a more beneficial layout compared with the shortest 

layout. In particular, synchronization of the minimum risk loss and total cost of natural gas pipeline 

networks at the planning stage is achieved. The main thrust of this study is that the two risk loss 

costs are predicted by applying the neural network based on three different independent variables 

and are then used as the edge weight to obtain a more accurate risk cost and better economic benefits 

of the optimal layout. As expected, choosing between the corrosion risk cost and leakage risk cost 

as the deciding factor is crucial to ensure the best economic and social environmental benefits, and 

the economic benefits from four independent variables are greater than those from three and two 

independent variables. Finally, the leakage risk cost could be suitable for low-pressure pipelines in 

urban areas, as shown in case 1 and in case 3. By contrast, the corrosion risk cost could be suitable 

for higher-pressure pipelines in suburban areas, as shown in case 2; both could be suitable for 

suburban areas, as shown in case 1. In summary, the leakage risk cost is used as the deciding factor 

for urban areas and the corrosion risk cost is suitable for suburban areas, especially because both 

the corrosion risk cost and leakage risk cost can be used as the deciding factors for the latter when 

the two benefit values are positive.  

 

6. Outlook 

The two costs are accurately predicted by applying a neural network based on three different 

variables, and the conclusion is drawn that the economic benefit from four independent variables is 

greater than the economic benefit from three and two independent variables. However, it is notable 
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that the influence of the pipeline environment includes not only the four factors but also the third 

party destruction and climate conditions. Therefore, the selection principle of the independent 

variables could be more standardized to make the value of these optimization results more 

widespread.  

 

The two risk cost functions presented in the first paper can be fit more successfully by considering 

a greater number of independent variables to obtain better economic benefits from the optimal 

layout, which is the next step of our research. Thus, leakage risk cost functions containing more 

parameters (i.e., diameter and pressure) will be provided. A new model and improved algorithm, 

which is able to synthesize the optimization pipe diameter, layout and city gate station at the 

beginning of the planning stage, will be developed to achieve overall optimization of pipe networks. 

These strategies will be important and effective support tools for aiding decision makers in 

optimizing natural gas transmission networks. 
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