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Generalized Fuzzy Conditional Inference on Fuzzy Intuitions
for Granular Propositions

Poli Venkata Subba Reddy

Abstract: Fukami, Muzumoto and Tamaka are studied fuzzy intuitions based on
Godel and Standard sequence definitions. The fuzzy intuitions are not fit for Zadeh
fuzzy conditional inference. In this paper, fuzzy intuitions are studied with granular
propositions. The fuzzy conditional inference is studied for these fuzzy intuitions
which contain “and/or ”, “if--- then.-- else--- " and truth variables. These fuzzy
intuitions are studied with propped fuzzy conditional inference. Some examples are

discussed for these fuzzy intuitions.

Keywords Fuzzy sets Fuzzy logic- Fuzzy reasoning Two fold fuzzy set Fuzzy
conditional inference Fuzzy intuitions Fuzzy truth variabledBusiness intelligence

1. Introduction

There are many theories proposed to deal with incomplete information. The fuzzy
logic[20] deals with “Belief’rather than “likelihood”(probability). Zadeh [15]. Mam-
dani [2] and Reddy [13] proposed fuzzy conditional inference. Fukami [1] proposed
fuzzy intuitions and shown that Zadeh fuzzy conditional inference is not suitable for
these intuitions. Fukami [6] adapting the Godel definition to prove some fuzzy in-
tuitions. These methods used the certain restrictions. The proposed method [13] is
used to prove some more fuzzy intuitions. Zadeh defined fuzzy set with a single
membership function. The fuzzy set with a two membership functions will give more
evidence than a single membership function.

The two fold fuzzy sefd={Z;,Z - 2, Falsg, WhereZ; support the evidence and
Z, is against the evidence.
A=(True Falsg or {Likely, Unlikely} or {Belied Disbelie f} or {Positive Negative¢
etc
The fuzzy certainty factor (FCF) is difference betw&grandZ, and which will elim-
inate conflict  Consider the fuzzy proposition “xA&.

The evidence is granular if it consists of collection of propositions,
E = (01,02, - On)
O1= X1 iISA1is Ay
o= X is Ay is A,

O1= X is Ay is A,

Suppose we have granular propositions

01= Rama is very young is true

0.= Rama is young is very belief

gs;= Sita is beautiful is very likely

What is the fuzziness of the granular fuzzy propositions?

The granular fuzzy proposition is “x &is 1.
Where is true, false, very likely, more or less unlikely, very belief etc.



The fuzzy granular propositions may contain-“if then-.-- else--- "and “and/or ".

If xis P thenyis Q elsey is Ris A
If xis P andxis Q orxis Rthenyis Sis 1

Type-1indent Ifxis P andx is Q or xis Rtheny is S
xis Py andxis O, or xis R

yis?

If xis P andxis Q orxis Rthenyis Sis A
xis Py andxis Q; orxis R

yis?

If apple is red and apple is ripe or apple is sweet then apple is good is true
apple is very red and apple is more or less ripe or apple is not sweet

appleis ?

Type-2 If xis Pthenyis Q elseyis R
xis P,

yis?
If xis P thenyis Q elseyis Ris A
xis Py

yis?

If Ramais Tall thenSitais SmallelseSitais Middleis true
Ramais veryTall

Sitais ?

2. Fuzzy Logic Based on Two Fold Fuzzy Sets

Zadeh defined fuzzy set with a single membership function [20]. The fuzzy set with
two fuzzy member functions “True” and “False”will give more evidence than the sin-
gle fuzzy membership function to deal with incomplete information. In the following
“two fold fuzzy set” is defined with “True” and “False”fuzzy membership functions.
The fuzzy logic and fuzzy reasoning of single membership function is extended to
fuzzy logic with two membership functions “True” and “False”.

2.1. The Two Fold Fuzzy Sets

“Atwo fold fuzzy set” may be defined with two membership functions “True” and
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“False” for the proposition of typex‘is A”. The fuzzy set with two membership
functions “True”and “False” will give more evidence than the single membership
function.

For instance “Rama has Headache ".
In this fuzzy proposition, the fuzzy set “Headache” may be defined with “True” and
“False”.

Definition 2.1 The “a two fold fuzzy setA in a universe of discourseis defined by
its membership functionz(X) — [0, 1], whereA = {u}"¥(x), u525%(x)} and x € X}

pAME(x) andu3S(X) are the fuzzy membership functions of the “a two fold fuzzy
set’A,

KA = [ RN XO) = up™MeO) /Xa + <+ iR (%) X,

HRAS(X) = [ pREISE(X)/x = puRASOUEA(xg) /X + - - - + puEA(X0) /X0, Where “+”
is union,
For example, “young”may be given for the fuzzy propositions'young ”

young ={uJ2ue (). u52lsE(4),

pliue (x) = {0.9/10+ 0.8/15 + 0.69/20+ 0.59/25 + 0.5/30,
+0.42/35+ 0.36/40 + 0.31/45+ 0.26/50},

ungl';g(x) ={0.36/10+ 0.31/15+ 0.26/20+ 0.23/25+ 0.2/30+ 0.18/35
+0.16/40+ 0.14/45+ 0.12/50}.
For instance. “Rama is young” with fuzzines8, 02}, where0.8 is “True” and
0.2is “False”.
The Graphical representation of “True” and “False” of “young” is shown in Fig.1.

1
09
08 \
07 \ /./I'/.
06 \
05 =4=young
04 =fl= not young
\\
03
02 '\
01 -+
o

10 15 20 25 30 35 40 45 50

Fig.1 Two fold fuzzy set membership functions
2.2. The Two Fold Fuzzy Logic

The fuzzy logic is combination of fuzzy sets using logical operators. The fuzzy logic
with “two fold fuzzy sets” is combination of “two fold fuzzy sets” using logical op-
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erators. The fuzzy logic bases on “two fold fuzzy sets” can be studied similar lines
of Zadeh'’s fuzzy logic.
Some of the logical operations are given below for fuzzy sets with two fold fuzzy
membership functions.
A, B andC are fuzzy sets with two fold fuzzy membership functions.
Let tall, weight and more or less weight are two fold fuzzy sets.
tall = {0.9/x; + 0.8/%o + 0.7/%3 + 0.4/%4 + 0.2/Xs,
0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%4 + 0.1/%5}
weight= {0.8/x; + 0.7/%; + 0.5/X3 + 0.3/X4 + 0.2/Xs,
0.2/%1 +0.2/% + 0.1/%3 + 0.1/%4 + 1/Xs}
more or lessveight={0.9/x; + 0.8/% + 0.7/x3 + 0.5/X4 + 0.4/xs,
0.4/%1 + 0.4/%2 + .3/%3 + .3/X4 + 0.3/ Xs}.

Negation

X is notA

R = 1= (09, 1= 00}/ x

x is nottall

tall = {0.9/X; + 0.8/Xp + 0.7/X3 + 0.4/%4 + 0.2/,
0.5/%1 +0.4/% + 0.3/%3 + 0.2/ X4 + 0.1/ X5}

1-tall = {0.1/X; + 0.2/X; + 0.3/X3 + 0.6/%4 + 0.8/xs,

0.5/%1 + 0.6/%, + 0.7/%3 + 0.8/%4 + 0.9/ x5}.

Disjunction

xisAoryis B

Av B = (a0, 5 (). Maxus =), )}/ (x.),

tall v weight={0.9/x; + 0.8/X; + 0.7/%3 + 0.6/%4 + 0.5/xs,
0.4/%1 + 0.3/%2 + 0.2/%3 + .1/ X4 + .1/ Xs}.

Conjunction

xisAandy isB

A A B = min(uie(x), 1§(y)), min(uEas(x), uE3%5(y))}/ (%, y),

tall A weight= {0.8/x1 + 0.7/%, + 0.5/X3 + 0.2/%X4 + 0.2/ X5,
0.1/% +0.1/% + 0.1/x3 + 0.1/%4 + 0.1/%5}.

Fuzzy Conditional Inference
Zadeh [18] fuzzy conditional inference is given as
if xisAthenyisB=A - B=min{1,1- A+ B}, (2.1)
=(min(L, 1 -l S(3) + pf(y)), Min(L, 1 = uFa5) + uE3y))}/(x, ),
tall > weight=0.9/x; + 0.9/%, + 0.8/%3 + 0.9/X4 + 1/Xs,
0.7/%1 + 0.8/%, + 0.9/%3 + 0.9/%4 + 1/Xs}.
Mamdani [5] fuzzy conditional inference is given as
if xisAthenyisB=A — B = AxB (2.2)
if x1is Ap andx; is Az and- - - andx, is A, then y isB =min{A, A,, .. , A,, B}
tall x weight= {0.8/%, + 0.7/%, + 0.5/%z + 0.2/X4 + 0.2/Xs,
0.1/%1 +0.1/% + 0.1/x3 + 0.1/%4 + 0.1/xs}.
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Most of the decisions, the consequent part is given from precedent part for fuzzy con-
ditional inference [5].
if XpiSALandxzisS Ay -+ X, IS Ay, theny isB=f(Aq, Ag, - -+ , An).
f(As, A, -+, An)= (ArandAand- - -andAy)
=min(A1, A, --e An)
if xis Athenyis B=A

i.e B=A (2.3)
|f x1 is Ay andxz is Ay and- - - andx, is A, then y isB = Ajanddy, - - - , A, = min{ Ay,
Aa AL A, LA

—mln{Al, A2, . An}
B AlandAg, y An
The fuzzy conditional inference is given as,
if 1 is Ay andx, is A, and- - - andx, is A, then y isB
={min(Ay, Ao, .., A)}
if xisAthenyisB={A} (2.4)
tall > weight= {0.9/x; + 0.8/% + 0.7/X3 + 0.4/X4 + 0.2/Xs,
0.5/x1 + 0.4/% + 0.3/%3 + 0.2/X%4 + 0.1/ X5}
Zadeh [18] fuzzy conditional inference is g|ven as
if xis Athenyis Belseyis € = (Ax B+ A’ x C,) where “+ " is union
Reddy [13] fuzzy conditional inference is given for %fis Athenyis B elsey is
C"as,
if xisAthenyisB=A— B
if xis notAthenyisC=A — €

Composition
if xis Atheny isB
xis Aq

yis A; 0 (A — B)

Ao (A — B) =(minfu™s(x), min(L, 1 - ] "6(X) + L5 ()},
mm{uD'*"ef(x) min(L 1- 135500 + WEA(y))/
if x=y
:{ infy ™), min(1, 1 — up"%(x) + g ()},
min{ep >*"*"(x), min(1, 1 — yf\a'se(x)+ (%))

if xis tall thenx is weight
X is verytall

xis verytall o (tall — weight)

Fuzzy quantifiers
The fuzzy propositions may contain quantifiers like “very”,
fuzzy quantifiers may be eliminated as

more or less” etc. These
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Concentration

xis veryA

Hvery A(X)f{/v‘x?ye/.\(x)z» ﬂ\';:rlii(x)z}

xis verytall

Hyery @i(X) = {0.81/%1 + 0.64/X; + 0.49/%3 + 0.16/x4 + 0.04/xs,
0.25/x%1 + 0.16/x2 + 0.09/x3 + 0.04/%4 + 0.01/Xs}

Diffusion
if X is more or les&
HMmore or less A(X)={/1;S’£ or less LX)Z,HE%ISSW less /(X)O'5}
if x is more or lessall
Himore or less tail (9 = {0.95/x1 + 0.89/%, + 0.84/X3 + 0.63/x4 + 0.45/Xs,
0.70/%1 + 0.63/%o + .054/x3 + 0.44/X4 + 0.31/Xs}.

3. Fuzzy Inference for Fuzzy Intuitions

Consider the logical inferences

Modus Pones

p—dq
P

q

Modus Tollens
p—q

p’

Generalization
pvg=p

Pvg=q

p’ v p = Contradictory

Specialization
pAgQ=p

PAg=q

p’ A p = Contradictory

The inference is given using generalization and specialization

pAQVI=pVr=p
pAQVIr=qVvr=gq
pAQVI=pVr=r
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Consider fuzzy inference Type-1

If xis P andxis Q or xis Rthenyis §
x is P; andx is Oy or X is Ry

yis?
The fuzzy inference is given for Type-1 using generalization and specialization

If xis P thenyis §
xis Py

yis?

If xis Q thenyis §
Xis Q~1

yis?

If xis Rthenyis S
xis Ry

yis?
Confider fuzzy inference Type-2

If xis P thenyis Q elseyis R
Xis |51

yis?
The fuzzy inference is given for Type-2 using generalization and specialization

if xis P thenxis
xis Py

yis?

if xis P’ thenxis R
X is |51

yis?

From fuzzy conditional inference Type-1 and Type-2, the two criterions may be
given as



Criteria-1
If xis P thenyis S
xis P;

yis?

Criteria-2

(if xis P’ thenx is R)
xis Py

yis?

The fuzzy inference is drawing a conclusion from fuzzy propositions.
The fuzzy intuitions for Criteria-1 Based on Fukami are given as.

-1
if xis P thenyis S
xis P

yis S

I-2
if xis P thenyis S
yis S

xis P

-1
if xis P thenyis S
xis very P

yis veryS

-2
if xis P thenyis S
yis veryS

xis P

-1
if xis P thenyis S
X is more or les$




yis S

-2
if xis P thenyis S
yis more or les$

xis P

V-1
if xis P thenyis S
X is notP

yis notS

V-2
if xis P thenyis S
yis notS

X is notP

The fuzzy inference is given for Criteria-1 according to fuzzy intuitions.

Table 1 : Fuzzy inference for Criteria-1.

Intution Proposition Inference
-1 xis P yis S
-2 yis S xis P
-1 xis very P yis veryS
-2 yis veryS xis P
-1 xismoreorles®  yisS
-2 yis mororlessS is P
V-1 xis notP yis notS
V-2 yis notS X is notP

4. Verification of fuzzy intuition using Fuzzy Conditional Inference
Verification of fuzzy intuitions for Criteria-1
4.1.1 In the case of intuition I-1

Po(P-S)
=P o (Px S)
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= [up(¥) o (S up() A [us(y))
Using (2.4)

= [up(x) o (f up(¥)

= [us®) A ([ usy))

= [us(®

zyis S

intuition I-1 satisfied.

4.1.2 In the case of intuition I-2

=(Px8o0S

= ([ us0) A [us@)) o [ us(y)
Using (2.4)

= [up(¥) 0 [ us(y)
Using (2.3)

= [up(¥)) A [ 1)

= [us(¥)

=xis P

intuition 1-2 satisfied.

4.1.3 In the case of intuition 1I-1

veryPo (P — S)

=veryPo (P x S)

= [ tvens (¥ 0 (f () A [ us(y))
Using (2.4)

= f,uveryﬁ(x) 0 (f/lﬁ(X))
Using (4.1)

= [us(¥)? A ([ us(y)

[ us(y)?

= f,uver)é(z()

=y is venS
Where

Jus)? < [ us(y).

Jus)? < [ us).

intuition 11-1 satisfied.
4.1.4 In the case of intuition [I-2

(P— S)overyS

=(PxS)overyS

= (f,u,s(X) A f,ué(y)) 0 f,uveryQ(y)
Using (2.4)

= (f,tlﬁ(X)) 0 fﬂver)é(y)
Unking (2.3)

= (f,uﬁ(X)) A f:uveryﬁ(x)z

[ 1p()?
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= f,uver)ﬁ()i)
=xis veryP
e
597 € [ up(9).
5 (0% < [ up(x).
intuition 11-2 satisfied.
4.1.5 In the case of intuition [lI-1

more or les$ o (P — 8)

=more or lesP o (P x )

= fﬂmoreorlesﬁ’(x) Y (f,uﬁ(X) A fﬂé(y))
Using (2.4)

= fﬂmoreorlesﬁ’(x) 0 (f,ué(y))
Using (2.3)

= fﬂmoreorlesi(x) A (fﬂé(Y))

[ us(y)°®

= f:umorelesé(y) .

=y is more or les$
Where

Jus)°® 2 [ us)-

Jus)°® > [ us)-

intuition 111-1 satisfied.
4.1.6 In the case of intuition [l1-2

(P — S) o more or les§

=P x S)overyS

= (f,u|5(X) A f:ué(y)) Y] fﬂmoreorlesé(x)
Using (2.4)

= (f,tlﬁ(X)) 0 fﬂmoreorlesé(y)
Unking (2.3)

= (f,tlﬁ(X)) A fﬂmoreorlesé(x)

Jus(9°®

= fﬂmoreorles@sx) .

=x is more or les$
Where

Ju(x)°% 2 [ up(x).

Ju(x)°® = [ up(x).

intuition 111-2 satisfied.

4.1.7 In the case of intuition IV-1
not P O~(|5 - )

=P’o(PxS)

= [us () o (f e A [ us(¥))

= [up.(9 0 ([ ()
Using (2.4)
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= [us (9 A (f 1p(0)
= contradictory
intuition V-1 not satisfied.

4.1.8 In the case of intuition V-2

(P->S)o%

=PxS)o%

=(fus() A [us¥)) o [ s (x)
Using (2.4)

=([up(¥) 0 [us )
Using (2.3)

= ([1e(9) 0 [1p(X)
= Contradictory
intuition 1V-2 not satisfied.

Criteria-1 is suitable for I-1,1-2, 1I-1, 1I-2, 1lI-1 and 1lI-2.

The fuzzy intuitions are give based on Fukami for Criteria-2 .

I-1
if xis P’ thenyis R
xis P

yisR

I'-2
if xis P’ theny is R
yisR

yis P

Ir-1
if xis P’ theny is R
xis very P

yis veryR

Ir-2
if xis P’ thenyis R
yis veryR

yisP

nr-1
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if xis P’ theny is R
X is more or les$

yisR

1nr-2
if xis P’ thenyis R
yis more or lesK

yis S

IV’-1
if xis P’ theny is R
xis notP

yis notR

IV'-2
if xis P’ thenyis R
yis notR

X is notP

The inference is given for Criteria-1 according to intuitions.

Table 2 : Fuzzy inference for Criteria-2.

Intution Proposition Inference
-1 xis P yisR
-2 yisR xis P
-1 xis very P yis veryR
-2 yis veryR xis P
-1 xismoreorles®  yisR
-2 yis mororlesR isP

V-1 xis notP y is notR
Iv'-2 yis notR X is notP

Verification of fuzzy intuitions for Criteria-2

4.2.1 In the case of intuition I'-1

Po(P - R
=P o (P'x R



14

= [us(9 0 (fus () A [ ra)
Using (2.4)

= [us() 0 ([ up.(¥)
indent = [ 15(X) A ( p (X))

= Contradictory

intuition I'-1 not satisfied.

4.2.2 In the case of intuition I'-2

(P > RoR

=(P xR oR

= (s A [ue) 0 [ ()
Using (2.4)

= ([ us(x) 0 [ 1)

= ([ us ) A [ualy)
Using (2.3)

= min{ [ pg (%), [ ug(y))

= Contradictory

intuition I'-2 not satisfied.

4.2.3 In the case of intuition II’-1

veryPo (P - R)

=veryPo (P xR

= [up002 0 (f () A [ ua(y))
Using (2.4)

= [1p09? 0 (f ()
indent = [ (97 A ([ 15 (X))

= Contradictory

intuition 1I’-1 not satisfied.

4.2.4 In the case of intuition II’-2

= (P’ x R) o veryR

=(fup() A [ 1)) 0 [ ua(y)?
Using (2.4)

= ([ us(¥) 0 [ ua(y)?

= ([ us () A [ ualy)?
Using (2.3)

= min{ [ w59, [ ug(¥)?

= Contradictory

intuition 1I'-2 not satisfied.

4.2.5 In the case of intuition 1II’-1

more or lesP o (P’ - R)
=more orlesP o (P x R)

= f,u|5(X)O‘5 (0] (f,uﬁ/(x) A f/'lli(y))
Using (2.4)

(P - Ro veryR



= [ 1s(9°% 0 ([ s (%)
indent = [ 15(X)%5 A ([ 115(x)

= Contradictory

intuition 11I’-1 not satisfied.

4.2.6 In the case of intuition II’-2

(P — R) o more or les®
= (P’ x R) 0o more or les
=([us() A [ &) 0 [ pay)°®
Using (2.4)
=(Jus () 0 [ ua(y)°®
=([us () A [ uay)°®
Using (2.3)
=min{ [ ug (y). [ 1a))
= Contradictory
intuition 11’-2 not satisfied.
4.2.7 In the case of intuition IV’-1
notPo (P - R)
=P o(P xR
= [us () o (S50 A [ 1))
Using (2.4)
= [us(9 0 ([ 15(3)
using (2.3)
= [ e () A (f u5(9)
= [ur(y)
=yisnotR
intuition 1V'-1 satisfied.
4.2.8 In the case of intuition IV’-2
(P - R) o notR
= (P x R) o notR
=([up() A [ &) 0 [ p(y)
Using (2.4)
= ([ up(¥) 0 [ H(y)
= ([ s ) A [ 1)
Using (2.3)
=min{ [ us (X, [ 15}
=yisnotP
intuition 1V’-2 satisfied.

Criteria-2 is suitable for IV-1 and IV-2.

5. Fuzzy Granular Propositions with Truth Variables
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Zadeh [16] defined quantification of truth variables as composition of fuzzy set and
truth variables.

Definition 5.1 The quantification of fuzzy truth variables for fuzzy set of fuzzy propo-
sition of the type “xis Aisl” is defined asu,'(x) 0 1,whereua(x)™* is inverse of
comparability function of A , “0” is composition and is fuzzy truth variable like
true, false, very true etc.

Definition 5.2 The composition of fuzzy truth variables for “a two fold fuzzy set’of
fuzzy proposition of the type “x i is 1" may be defined as

ROt = pa0)* = (R, (X)) 0 A

where quantification of truth variable applied on respective truth functioas.

A = {ua(¥)s, 1F3%(x)}, whered = not true, very true, more or less true e.tc.
For instancel;= very true
A" = {ua(¥)2 h3%(x)

AX)'2 = {ua(X) T8 42 (%)}, wheredo= not false, very false, more or less false e.tc.
For instancel,= more or less false

A = {ua(¥) T 102(x)

The truth functional modification of fuzzy propositior s A is very true” is given
(R0, HEA()} 0 Very trueule,(), kb))
The truth functional modification of fuzzy propositioris A is very false”is given
(A", 1R2'%9(X)) 0 very false $u,""*(X), uf 25X},
The truth functional modification of fuzzy propositioxis tall is very true” is
given as
tall = {0.9/x; + 0.8/xz + 0.7/x3 + 0.4/%4 + 0.2/,
0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%4 + 0.1/%5},
ver37 tall = {0.81/x; + 0.64/%, + 0.49/x3 + 0.16/X4 + 0.04/xs,
0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%X4 + 0.1/X5}.
The truth functional modification of fuzzy propositiox is tall is very false” is
given as
tall = {0.9/x; + 0.8/% + 0.7/%3 + 0.4/%4 + 0.2/Xs,
0.5/%1 + 0.4/%, + 0.3/%3 + 0.2/%X4 + 0.1/ X5},
very tall = {0.9/x; + 0.8/%, + 0.7/Xg + 0.4/X4 + 0.2/Xs,
0.25/%1 + 0.16/%o + 0.09/x3 + 0.04/X4 + 0.01/Xs}.
The nested fuzzy propositions of the form
xis Ais (11 is (Ap... iSAn)) = XiSA0 A1) 01,0+ O Ay

Consider quantification of truth variables for fuzzy inference Type-1

If xis P andxis Q orxis Rthenyis Sis 1
xis Py andxis Q; or xis R
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yis?
The fuzzy inference is given for Type-1 using generalization and specialization

If xis Pthenyis Sis 1
xis P;

yis?

If xis QthenyisSis A
Xis Q~1

yis?

If xis Rthenyis Sis A
xis Ry

yis?
Confider fuzzy inference Type-2

If xis P thenyis Q elseyis Ris A
xis Py

yis?
The fuzzy inference is given for Type-2 using generalization and specialization

indent (ifx is P thenx is Q) is A
Xis |5]_

yis?

(if xis P’ thenxis R) is 1
xis P;

yis?

From fuzzy conditional inference Type-1 and Type-2, two criteria may be given as
Criteria-1

If xis P theny is Sis A

xis P,

yis?
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Criteria-2
(if xis P’ thenxis R) is 1
xis P;

yis?

The fuzzy inference is drawing a conclusion from fuzzy propositions.
The fuzzy intuitions are defined based on Fukami for Criteria-1.

-1
if xis P thenyis Sis
xis P

yis §*
I, -2
if xis P thenyis Sis A
yis S

xis P

n,-1

if xis P thenyis Sis A
xis very P

yis very S

I,-2

if xis Pthenyis Sis A
yis veryS

X is P

1, -1

if xis Pthenyis Sis A
X is more or les$

yis &1

|, =2

if xis Pthenyis Sis A
yis more or les$
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X is P

V-1

if xis P thenyis Sis A
X is notP

yis notS*

IV, -2

if xis Pthenyis Sis A
yis notS

X is not P

The inference is given for Criteria-1 according to intuitions.

Table 1 : Fuzzy inference for Criteria-1.

Intution Proposition Inference
-1 xisPo2 y is $1

I, -2 yisSoa X is Pt
-1 xisveryP o1 y is very§?
-2 yisverySoa X is P1
[1,-1 xis moreorles$ o1 yis &1
lll,-—2 yismororlessSoAl is P
IV, -1 xis notP oA y is notS4
IV, -2 yisnotS o4 x is not P*

Fuzzy Conditional Inference is straight forward based on verification of fuzzy in-
tuitions for Criteria-1

Criteria-1 is suitable fot; — 1,1, =2, 11, - 11,11, = 2, Il11 , — 1 andlll , — 2.

The fuzzy intuitions are defined based on Fukami for Criteria-2 .

-1
if xis P’ thenyis Ris A
xis P

yis Rt

1" -2
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if xis P’ theny is Ris A
yisR

X is Pt
-1

if xis P’ theny is Ris A
xis veryP

yis veryR!

1, -2
if xis P’ theny is Ris A
yis veryR

X is P4
;-1

if xis P’ thenyis Ris A
X is more or les$

yis R
;-2

if xis P’ theny is Ris A
is more or les®

yis &1

]
if xis P’ theny is Ris A
xis notP

yis notR!

V! -2
if xis P’ theny is Ris A
yis notR]S

X is not P

The inference is given for Criteria-2 according to intuitions.



Table 2 : Fuzzy inference for Criteria-2.

Intution Proposition Inference
In-1 xisPois2 yisR!

1" -2 yisRois x is P4
-1 xisveryPoisA y is veryR!
1, -2 yisveryRoisa xis P
7-1 xismoreorlesPoisd  yisR!
I’ -2 yismororlesRoisd is P
v, -1 xisnotP ois A y is notR!
v/ -1 yisnotRois X is notP!

Fuzzy Conditional Inference is straight forward based on verification of fuzzy in-
tuitions for Criteria-2

Criteria-2 is suitable fotV’ — 1andIV/ - 2.

6. Fuzzy Certainty Factor

The fuzzy certainty factor(FCF) shall made as single fuzzy membership functions
with two fuzzy membership functions to eliminate the conflict of evidence between
“True "and “False”.

Definition 4.1 The FCF ofuj for propositions “x isA” is characterized by its mem-
bership functiond:°F(x) — [0, 1], whereu 7 (x) = {up(x) — uf2%9(}/ %,

,uEC F(X) < O,,uEC F(x) =0 and p;CF(x) > 0
are the redundant, insufficient and sufficient respectively.

The FCF will compute the conflict of evidence of the incomplete information.
For Example

fhie (x) ={0.9/10 + 0.8/15 + 0.69/20 + 0.59/25 + 0.5/30 + 0.42/35 + 0.36/40 +
0.31/45 + 0.26/50}

15315(x) ={0.9/10+0.8/15+0.69/20+0.59/25+0.5/30+0.42/35+0.36/40+0.31/45+0.26/50

The Graphical representation of FCF is shown in Fig. 3.
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Fig.3 Fuzzy certainty factor
7. Application to New Fuzzy Conditional Inference for Fuzzy Intuitions

The Business intelligence needs reasoning. The Business data is defied with fuzzi-
ness with linguistic variables.

If xis Production and is Supply orxis Demand thely is Profit
X is less Production anxlis less Supply ok is more Demand

yis?
If xis Production thely is Profit
X is less Production

yis?
If x is Supply thery is Profit
X is less Supply

yis?
If xis Demand ther is Profit
X is more Demand

yis?
-1

if xis Demandtheny is Profit
X is Profit

y is Demand

-2
if X is Demandtheny is Profit
xis Demand

yis Profit



23

N,-1

if xis Demandtheny is Profit
xis very Profit

yis very Demand

-2

if xis Demandtheny is Profit
X is very lessDemand

yis very less Profit

M, -1

if xis Demandtheny is Profit
X is more Demand

y is more Profit

M, -2
-2

if xis Demandtheny is Profit
X is more or lesemand

y is Profit

IV, -1

if xis Demand’theny is Profit
X is notDemand

y is notProfit

IV, -2

if xis Demand'theny is Profit
X is notProfit

yis notDemand

Consider the fuzzy data sets for production
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Table 3 : Fuzzy data sets.

Item No. | Denand | FCF
ltem1 | {0.5,0.1 | 0.4
ltem2 | {0.6,0.1 | 0.5
ltem3 | {0.9,0.2 | 0.7
ltem4 | {0.9,0.1 | 0.8
ltem5 | {1.0,0. | 1.0

The fuzzy conditional inference using is given by
Profit=Demand

Table 3 : Fuzzy data sets.

Item No. Profit FCF

lteml | {0.5,0.1 | 0.4
ltem2 | {0.6,0.1 | 0.5
Item3 | {0.9,0.2 | 0.7
ltem4 | {0.9,0.1 | 0.8
ltem5 | {1.0,0. | 1.0

The fuzzy conditional inference for Criteria-1 and Criteria-2 is given as

Table— 4 : Fuzzy inference.

temNo. | -1 | -2 | -2 | -2 | -1 | [I-2 | V-1 | IV’-2

teml | 0.3]0.2| 0.09|0.09| 055| 0.55| 0.7 0.7

tem2 | 05]05]025|025| 071|071 05 0.5

ltem3 | 0.7]0.7| 049|049| 0.84| 0.84| 0.3 0.3

ltem4 | 0.8 0.8| 0.64| 0.64| 0.89| 0.89| 0.2 0.2

ftem5 | 10}10| 10| 10| 1.0 | 1.0 | 0.0 0.0

The fuzzy intuitions are suitable for I-1,1-2, II-1, 1I-2, 11I-1, IlI-2, IV’-1 and IV’-2.
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The Business intelligence needs reasoning. The Business data is defied with fuzzi-
ness with linguistic truth variables.

If xis Production and is Supply orx is Demand thewy is Profit is very true
X is less Production anxlis less Supply ok is more Demand

yis?
If x is Production thely is Profit is very true
x is less Production

yis?
If xis Supply thery is Profit is very true
xis less Supply

yis?
If xis Demand thew is Profit is very true
x is more Demand

yis?

I, — 1if xis Demandtheny is Profit is very true
x is Profit

y is Demand/€'y true
:{04 0'1}Very true

={0.250.1}
FCF ={0.15}

I, — 2if xis Demandtheny is Profit is very false
xis Demand

yis Profitery false
=(0.4,0.1}VeTY false
={0.5,0.01}

FCF ={0.49}

I, — 1if xis Demandtheny is Profitis very true
x is very Profit

yis very Demand€"Y true
={0.25,0.01Very true
=(0.35,0.01)

FCF ={0.34)

I, — 2if xis Demandtheny is Profit is very false
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xis very lessDemand

yis very less Profif€"y false
=(0.25,0.01yMore or less true

={0.25,0.001)
FCF ={0.25

I, — 1if xis Demandtheny is Profit is very true
X is more Demand

y is moreProfit/e"y true

={0.63, 0_31}very true
={0.39,0.31}
FCF ={0.08}

11, — 2if xis Demandtheny is Profitis more or less false
x is moreDemand

yis moreProfitnore or less false

=(0.63,0.3)Very true
=(0.63,0.55)
FCF ={0.08)

IV’ - 1if xis Demand'theny is Profit is very true
x is notDemand

y is notProfit/e"y true
=not0.4,0.1)Very true
=not0.16,0.1}

FCF =not{0.06}
=0.94

IV} - 2if xis Demand'theny is Profit is very false
x is notProfit

yis notDemande'y false

=not0.4, 0'1}very false
=not0.4,0.01}
FCF =not{0.39}
=0.61
The fuzzy conditional inference using is given by
Profit=Demand
The fuzzy conditional inference for Criteria-1 and Criteria-2 is given as
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Table- 5 : Fuzzy inference.

temNo. | I, =1 | ;=2 | =1 | Hy=2 ] Hl;=1],-2|IV,-1]1V,-2

lteml 0.15 | 0.49 0.34 0.25 0.08 0.08 0.94 0.61

Item2 0.26 | 0.59 | 0.45 0.77 0.28 0.22 0.65 0.41

ltem3 0.61 | 0.76 0.81 0.94 0.59 0.74 0.21 0.14

ltem4 0.71 | 0.89 0.84 0.94 0.62 0.85 0.20 0.11
Item5 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0

The fuzzy intuitions are suitable fog — 1,1, -2, 11, -1, 1, -2, 111, -1,
-2V, -1andlV) - 2.

8. Conclusion

Fukami studied fuzzy intuitions based on Godel and Standard sequence methods.
some more intuitions are studied with proposed method. The fuzzy set with the two
fold fuzzy membership function will give more evidence than a single fuzzy mem-
bership one. The fuzzy logic with two fold fuzzy membership function is discussed.
The fuzzy intuitions are discussed using to fold fuzzy sets. The fuzzy Inference and
fuzzy reasoning are studied for “a two fold fuzzy sets”. The FCF is studied as the
difference between the two fuzzy membership functions. The fuzzy Certainty Factor
is made as a single fuzzy membership function to compute the conflict of evidence
of the Incomplete Information. The fuzzy intuition with truth variables are studied
for “a two fold fuzzy set”. The fuzzy granular propositions may be proved in similar
lines. The business intelligence is discussed as application for “a two fold fuzzy set”
for fuzzy intuitions.
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