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Abstract Planning for multi-robot coverage seeks to determine collision-free paths
for a fleet of robots, enabling them to collectively observe points of interest in an en-
vironment. Persistent coverage is a variant of traditional coverage where coverage-
levels in the environment decay over time. Thus, robots have to continuously revisit
parts of the environment to maintain a desired coverage-level. Facilitating this in the
real world demands we tackle numerous subproblems. While there exist standard
solutions to these subproblems, there is no complete framework that addresses all
of their individual challenges as a whole in a practical setting. We adapt and com-
bine these solutions to present a planning framework for persistent coverage with
multiple unmanned aerial vehicles (UAVs). Specifically, we run a continuous loop
of goal assignment and globally deconflicting, kinodynamic path planning for mul-
tiple UAVs. We evaluate our framework in simulation as well as the real world. In
particular, we demonstrate that (i) our framework exhibits graceful coverage—given
sufficient resources, we maintain persistent coverage; if resources are insufficient
(e.g., having too few UAVs for a given size of the enviornment), coverage-levels
decay slowly and (ii) planning with global deconfliction in our framework incurs
a negligibly higher price compared to other weaker, more local collision-checking
schemes. (Video: https://youtu.be/agDs6Wymp50)

1 Introduction

Traditional robot-coverage is the problem of determining a collision-free path for
a robot that covers all points of interest in an environment [10]. Persistent cov-
erage seeks to continuously maintain a desired coverage-level over an environ-
ment [9, 17, 22]. In our case, coverage-levels degrade over time, thereby increasing
the urgency with which points must be revisited. For example, consider a floor-
cleaning robot—once a part of the floor is cleaned, more dust will eventually collect
over it and thereby decrease its coverage-level. There has been a rise in the use of
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Fig. 1: (a) The System Manager (SM) communicates with all UAVs; it sends up-to-date copies of
committed plans to corresponding UAVs and updates them using information received from the
Prioritized Planner (PP) (b) Prioritized planning framework: For each UAV, the Goal Assigner
(GA) selects the next goal using the up-to-date map from the PP and the Goal Planner (GP) then
plans a feasible path to this goal, which is appended to its committed plan

robots to perform tasks cast as persistent-coverage problems, such as environmen-
tal monitoring, exploration, inspection, post-disaster assessment, monitoring traffic
congestion over a city, etc. [18, 22, 24, 27].

In general, coverage path-planning is closely related to the intractable covering-
salesman problem, where an agent must visit neighborhoods of multiple cities while
minimizing travel-distance [3]. Extending this to multiple robots requires collision
avoidance (with both static and dynamic obstacles), which becomes computation-
ally expensive as the number of robots increase. For persistent coverage, additional
algorithmic challenges emerge since robots need to continuously revisit parts of the
environment to maintain coverage-levels. For a single robot tasked with persistent
coverage, there are broadly two decisions to be made:

Q1 Where should the robot go next?
Q2 How should it get there?

We refer to Q1 and Q2 as goal assignment and goal planning respectively. Addi-
tional questions arise when dealing with multiple robots:

Q3 How do we plan for multiple robots?
Q4 How do we avoid inter-robot collisions?

Assuming a centralized planner, we address Q3 by sequential, decoupled planning
instead of planning in the joint state-space of all robots for tractability. Specifically,
we use prioritized planning [8].

We use the notion of committed plans to tie our answers to these questions to-
gether. These are defined as parts of plans that robots commit to execute, in contrast
to the rest of their plans which may be modified after reassessing the environment.
We maintain the invariant of global deconfliction—no new committed plan inter-
sects any other existing committed plan in space or time, thereby answering Q4.

In this paper, we present a planning framework to address all the above questions.
A block diagram of the complete framework is presented in Fig. 1. To the best of our
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knowledge, this work is the first to answer all of these questions in unison for real-
world, persistent coverage with multiple robots. For our application, these robots
are Unmanned Aerial Vehicles (UAVs). The System Manager (SM, Sec. 4.1) is our
communication interface between the centralized planner and individual UAVs. It is
responsible for back-and-forth communication of up-to-date information between
the two. The Prioritized Planner (PP, Sec. 4.2) is responsible for answering Q3.
Thereafter, the Goal Assigner (GA, Sec. 4.3) answers Q1 and specifies the location
the next UAV should fly to. This is fed to the Goal Planner (GP, Sec. 4.4), which
plans a kinodynamically feasible path for the UAV to the goal, answering Q2. Part
of this plan is appended to the existing committed plan of the UAV. The PP, which
operates continuously in a loop, then begins the next planning cycle, answering Q3
again.

We only append a part of computed plans to committed plans of UAVs (further
detailed in Sec. 4). This is done so that we maintain committed plans of a pre-
specified maximum duration (denoted by tmax)!. There is a trade-off involved in
making fyax too short or too long. Sec. 4 provides more insight into how and why
this arises. We rely on globally deconflicting paths for UAVs since other, more lo-
cal collision-checking mechanisms have a higher risk of causing deadlocks®. Some
other approaches utilise conflict detection and resolution systems to repair conflict-
ing paths [4]. Our approach solves for deconflicting paths by construction and main-
tains the invariant of global deconfliction.

In Sec. 2, we contextualize our work among the Orienteering Problem (OP) [30]
and the Vehicle Routing Problem (VRP) [29], coverage path-planning [10], and
frontier-based exploration [31]. Sec. 3 formalizes the persistent-coverage problem
we aim to solve and introduces the notion of priorities over coverage zones. Sec. 4
provides details about our planning framework and each of its constituent parts. In
Sec. 5, we present results of the performance of our framework in both simulated
and real-world environments. Finally, Sec. 6 discusses the consequences of some
design-related decisions and proposed extensions.

2 Related Work

A majority of existing literature casts the persistent coverage problem as an instan-
tiation of the OP or the VRP. An OP seeks to determine a path for an agent limited
by a time- or distance-budget that visits a subset of all surveillance sites in an envi-
ronment and maximizes the sum of associated scores collected. An extension of this
to multiple agents is known as the Team Orienteering Problem (TOP) [30]. There
are a number of works that apply solutions of the OP to surveillance with aerial
vehicles over a small number of surveillance sites [14]. The formulation by Leahy
et al. comes closest to our work because of its capability of assigning time windows
to each coverage-zone as temporal logic constraints [15].

! This duration depends on the type and capability of the robots, the number of robots, and the
coverage map.

2 Two or more robots are in a deadlock if they are not in collision, but executing any valid action
for any one of the robots would cause them to collide with another. Hence, they remain stationary.



Given a number of agents at a depot and distances among all surveillance sites
and the depot, the VRP seeks to find a minimum-distance tour for each agent such
that it visits each site at least once. Michael et al. address persistent surveillance with
aerial vehicles as a VRP with modifications to model continuous site visits [11, 25].

The OP and VRP are both variants of the Traveling Salesman Problem (TSP)
and thus NP-hard. Moreover, in our case, formulating the problem as a TOP or VRP
is not enough since our problem also has an element of 2D coverage. One could
consider every discrete part of the environment as a surveillance site in a TOP or
VRP to enable 2D coverage, but this is impractical due to increasing computational
complexity with the number of surveillance sites.

Smith et al. tackle a very similar problem by assuming pre-planned paths, decou-
pling path-planning and speed-control for deconfliction [23]. Planning paths for 2D
coverage has been extensively studied in robotics [10]. Typical solutions to static
coverage involve environmental partitioning via Voroni tessellations and feedback
control laws with local collision-avoidance schemes [21]. Environmental partition-
ing is also a recurring strategy for dynamic and persistent coverage [13]. However,
such partitioning restricts individual robots to specific parts of the environment.

For real-world settings, robot path-planners must adhere to kinodynamic motion-
constraints. Thakur et al. solve the TOP and path-planning simultaneously to gen-
erate 3D (x,y,0) space-parametrized trajectories, but without temporal deconflic-
tion [28]. Many also formulate planning for persistent surveillance as a mixed-
integer linear program (MILP) [5]. However, such MILP formulations introduce
limitations that are typically managed by planning for constant-speed paths [1].

A vital part of our framework is to ensure UAVs fly to appropriate goals, so that
they simultaneously cover different parts of the environment. We adapt frontier-
based exploration to assign such goals to UAVs. Yamauchi et al. first proposed this
for single and multiple robots based on an occupancy-grid representation of the
environment [31]. Many extensions have been proposed since then, which combine
the information gain or expected benefit of the goal and the distance to it, also called
next-best-view approaches [2]. Zhu et al. also apply this to exploration and coverage
with micro aerial vehicles (MAVs) [32]. We use frontier-based exploration to trade
off between cell-proximity and cell-criticality (defined formally in Sec. 3). To be
able to do this online, we use a search-based approach similar to Butzke et al. [6].

3 Problem Formulation

Our problem definition is characterized by a mission-map M, and a set of N UAVs
{Uy,...,Uy}, tasked with covering the area represented by M. Each UAV U is
a kinodynamically constrained system, with an associated coverage- or sensor-
radius ry. Let the cell at row i and column j of M be ¢; ;. A UAV Uy is at cell
c; j if the projection of its reference point onto the x,y plane (denoted by U,i"c) lies
in cell ¢; ;. A cell is said to be covered by a UAV flying over it if any point on
the cell is at at most an r; distance from U,loc. This effectively assumes a circular
sensor-footprint of radius r; centered around U}°°. Each cell ¢; ; is associated with
two temporal properties—its lifetime {(c; j) and its age a(c; ;). The age of a cell
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Fig. 2: An example of a mission-map M, where each cell is colored according to its lifetime. For
example, a green cell with a lifetime of 15 minutes implies that no more than 15 minutes should
pass between two consecutive times a UAV covers it.

is the time passed since the cell was last covered by a UAV, while its lifetime is a
desired bound on its age (as shown in Fig. 2).

There are two types of cells in our problem specification: (i) standard cells (that
UAVs need to cover), and (ii) obstacle cells (that UAVs cannot fly over). Based on
this, we define the following maps:

1. Priority Map, MP = {Ci,j :¢j jis a standard cell A £(c; ;) < oo}. In other words,
MP is the set of all standard cells that a UAV will need to cover in finite time
since the start of the mission.

2. No-coverage Map, MNC = {¢; ; : ¢; j is a standard cell A £(c; ;) = oo }. In other
words, MNC is the set of all standard cells in the mission-map that a UAV can
fly over, but does not need to cover.

3. Obstacle Map, MO = {Ci, j © €i,j is an obstacle cell}.

The mission-map can then be defined as M = MP UMNCUM®. Fig. 2 contains an
example of a mission-map with three different priority-levels. Given a mission-map
and a set of UAVs, our problem is to compute UAV-plans such that the following
properties hold:

P1 Feasibility—the motion of each UAV adheres to its kinodynamic constraints.

P2 Deconfliction—no two UAVs collide. In our specific setting, all UAVs are
constrained to fly at the same altitude, so we say that two UAVs U, and U,
collide if they come within some predefined distance dp;, of each other.

P3 Persistence—the age of each cell is smaller or equal to its lifetime.

P4 Flexibility—UAVs can be dynamically added or removed to the system.

P1 and P2 are hard constraints that must always be satisfied. P3 depends on the mis-
sion specification—the number of UAVs deployed, their capabilities (speed, sensor
radii etc.) and the mission-map (size and lifetime of each cell). Our framework sup-
ports P4 without affecting P1 and P2, however it will affect (help or hinder) our
ability to satisfy P3.

4 Approach

Our approach, depicted in Fig. 1, consists of a System Manager (SM) which serves
as an interface between the centralized planning framework and individual UAVs.
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It maintains the priority map MP by updating locations of individual UAVs>. Every
planning cycle, the SM passes the three maps to the Prioritized Planner (PP). The
PP then iterates over all the UAVs in a round-robin fashion. For each UAV Uy, it
generates a local copy of Mg that accounts for the committed plans of the other
UAVs. This priority map MY is used by the Goal Assigner (GA) to assign a goal (in
terms of x, y location) for the UAV Uj. A kinodynamically feasible path to reach this
goal is then computed for U, using the Goal Planner (GP).

A key notion used within our framework is that of committed plans, which are
collision-free plans each UAV is committed to execute. While the GP might com-
pute plans of long durations (if the goal is far away or plan execution requires long,
feasible maneuvers), only a portion of this plan will be added to the committed plan,
such that it is at most #n,x long in time. The value of #,,x must be decided based on
the mission since the following effects introduce a trade-off:

1. Effects of a high value for #yux:

e The longer the committed plans are, the less reactive UAVs are to any map
updates including updates by an operator.

e The path computed by the GP might take Uy through areas coinciding with
parts of the committed plans of U, before U+, covers them. This results in
redundant coverage. The chances of this happening increase as fiyax increases.

2. Effects of a low value for #y,x:

e The shorter the committed plan, the lesser the chance of deviating from it
during execution due to imperfect controllers. However, this increases the
chances of UAV U, executing the committed plan before the next planning
cycle ends, leaving the UAV’s controller with no plan to execute. We han-
dle this by ensuring that the UAV can execute a stopping-maneuver in this
situation, but repeated execution of stopping-maneuvers is undesirable.

e Having short committed plans increases the frequency of goal assignment for
a UAV. This causes two adverse effects: (i) A UAV may be assigned a new
goal that is different from its previous one, which would cause it to aban-
don trying to reach the previous goal. (ii) Even if the same goal is assigned,
it might lead to “plan thrashing”. A UAV’s complex dynamics may restrict
short plans from letting it make significant progress towards a goal if com-
plicated maneuvers are required.

4.1 System Manager

The System Manager (SM) is the communication interface between the centralized
planner and the individual UAVs, shown in Fig. 1 (left): The SM sends the mission-
map M to the PP, and it receives the updated committed plans from the PP and
sends them out to the respective UAVs. It maintains the priority map MP by: (i) re-

3 Our framework also allows for static obstacles and no-coverage zones to change during a mission,
but this is beyond the scope of this paper.
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(a) (®) © (@ ©
Fig. 3: Two successive executions of the GA-GP loop (the map M is colored with 50% opacity).
(a) The solid yellow and blue lines show committed plans for both UAVs. (b) A new goal is as-
signed to the yellow UAV. (c) A path planned is for the yellow UAV (the old committed plan is
a dotted line, the new committed plan is a solid line, and the discarded part of the new plan is a
dashed line). (d) The same as (b) but for the blue UAV. (e) The same as (b) but for the blue UAV.

setting the age of any standard cells that have been covered since the last update to
zero, and (ii) incrementing the age of all other standard cells.

4.2 Prioritized Planner

The Prioritized Planner (PP) is a state-machine that controls our centralized plan-
ning framework by continuously executing RUNPLANNER from Alg. 1. During each
execution of RUNPLANNER, which we call a planning cycle, the PP is responsible
for the following tasks:

T1 Update its local copy of the committed plans and MP to reflect the most
recent information received from the SM.

T2 Determine which UAV will be planned for during this cycle.

T3 Perform a new goal assginment for the UAV and plan a path to it*.

T4 Communicate the result of T3 throughout the framework.

T1 is performed in Lines 4-6 in Alg. 1. The PP clips the part of its local copy of
committed plans that have been executed by the UAVs since the last planning cycle,
and accounts for the part yet to be executed by resetting the age of all the cells in
MP that will be covered by the committed plans to zero.

We do not prioritize any one UAV over the others, which corresponds to the PP
selecting UAVs in a round-robin fashion, thus achieving T2. While the PP supports
a prioritization over UAVs, in our experience, assigning equal priorities in this way
showed satisfactory performance.

T3 is achieved through one iteration of the GA-GP loop shown in Fig. 1b. For
ease of understanding, we show two successive executions of this loop in Fig. 3.
Fig. 3b and 3c correspond to Lines 9 and 10 for the yellow UAV. Fig. 3d and 3e
correspond to the same lines for the blue UAV.

T4 is performed by Lines 11-13. First, we append to a UAV’s committed plan
to bring it up to fyax in length. Second, MP is updated to account for this new plan
(same as in Line 6) by resetting the age of all the cells that will be covered. Finally,
the newly committed plan is communicated to the UAV via the SM.

4 Task T3 is only done if the selected UAV’s committed plan is shorter than #,y.
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Fig. 4: Multi-goal Dijkstra search for goal assignment finds the least-cost path to a pseudo-goal
connected to all potential goal locations for a robot. It considers the cost of reaching a potential
goal from the robot’s location, and the priority of a goal location reflected in the cost of the edge
connecting it to the pseudogoal. In the example above, goal G2 is assigned to the robot.

Algorithm 1 Prioritized Planner Loop

1: procedure RUNPLANNER

2 N < number of UAVs

3 while true do

4 Get latest M = {MP, MNC, MO} and U}% from SM

5: Update committed plans (local copies) by using Ull"]f, > Clip
6 Update MP with committed plans

7 for k< 1:N do

8: if committed plan for Uy is short then

9: Gy + GETGOAL (MP) > Goal assignment (GA)
10: M < GETPLAN (M, Gy) > Goal planning (GP)
11: Update committed plan for Uy with m > Append a portion of
12: Update MP with committed plan for Uy
13: Send committed plan for Uy to SM

4.3 Goal Assigner

Recall that the Goal Assigner (GA) selects a goal for each UAV to fly to. The grid
ME is the local copy of the Priority Map (MPF) that belongs to UAV Uy. Each of the
cells in the eight-connected grid that represents ME is a potential goal for Uy. The
GA computes a goal-location Gy for each UAV, accounting for how urgent every
cell in ME is and the location of the UAV U,. To simultaneously reason about the
urgency of the goal and its distance from Uy, we build a graph by connecting a
pseudo-goal to every cell of the grid ME. The pseudo-goal is an “imaginary” state
connected by “imaginary” pseudo-edges to all cells in the grid as shown in Fig. 4.
The cost of these pseudo-edges is proportional to (£(i, j) — a(i, j))°. The costs of
the rest of the edges between adjacent cells in the grid are equal to the Euclidean
distance between them.

To find an optimal goal Gy, we first find an optimal path from U,l"c to the pseudo-
goal on this graph using Dijkstra’s search [7]. The optimal path minimizes the sum

5 We lower-limit these costs by a constant to ensure they are strictly positive. Moreover, since the
UAVs’ sensors cover multiple cells, the cost of an edge between cell ¢; j and the pseudo-goal is the
average of £(u,v) —a(u,v) for all cells ¢, covered when Ul = ¢; ;.
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of the costs of the real-edges (which reflects the cost to reach the goal) and the
cost of the pseudo-edge (which reflects the priority of the cell that the pseudo-edge
connects). The final goal Gy for UAV Uy is the parent of the pseudo-goal on this
optimal path.

4.4 Goal Planner

Once a goal is assigned to Uy, the GP computes a kinodynamically feasible path to it
via search-based planning on a state-lattice [16, 19]. The state-space for each UAV
includes its two-dimensional pose (x,y, 0), linear velocity v, and time 7. Assuming
double-integrator dynamics for each UAV, we generate an action-space consisting
of feasible motion primitives. These primitives use cells of size 1m x Im. This dis-
cretization is independent of the mission-map discretization. We implicitly construct
a graph using the action space during a weighted-A* search to the goal [12, 20]. The
search prunes away all transitions that correspond to trajectories that either intersect
no-fly zones or collide with the committed plans of other vehicles in space or time.
We terminate the search as soon as a state is expanded whose incoming edge (from
the predecessor on the found path) covers the goal cell (specifically, the trajectory
corresponding to this edge contains a point whose distance to the goal cell is less
than ry). We assign the time taken to execute an action as its edge-cost in the graph.
While our aim is to plan for minimum-time paths, it is also desirable for the UAVs to
fly at high speeds whenever possible and avoid stopping. For this reason, we incen-
tivize actions with increasing velocities, penalize actions with decreasing velocities,
and heavily penalize hovering.

5 Experimental Setup and Results

We evaluate our framework in both simulation, where we assume perfect state esti-
mation and control, and on real UAVs, which can deviate from their planned paths.
The UAVs can withstand winds of speeds up to 30 m/s. Thus, the effect of wind is
negligible under normal conditions. Accounting for large deviations from planned
paths requires replanning and is part of future work. Our framework uses an identi-
cal set of parameters in both cases. We generate motion primitives with a maximum
speed of 6 m/s and a maximum turning rate of 6 ° /s. We avoid adding angular veloc-
ity to the state-space by ensuring that these primitives start and end at zero angular
velocity. Two UAVs are deemed to have collided if at any point in time the distance
between these 2D locations is less than dpi, = 10 m. The parameter 7, = 15 m de-
fines the circular area directly underneath a UAV that is deemed covered for any
2D location of the UAV. We impose a planning timeout of 4 s on the Goal Plan-
ner, which is how long it is given to compute a plan. We use an Euclidean-distance
heuristic in the Weighted-A* search [20] with an inflation of 5. Fig. 7d and 7e shows
the two coverage-maps used for the experiments presented in this paper.
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5.1 Evaluation Metrics

We look at timing statistics for Goal Assignment (tga) and Goal Planning (tgp),
number of state expansions, and number of expansions per second®. Since we desire
continued movement from each UAV, we also look at the amount of time a UAV is
stationary on average across the simulation run (fsopped)- Additionally, we evaluate
our framework’s performance with respect to the criticality of a cell, defined for any

cell (i, j) at timestamp ¢ as C; (i, j) = a;((;]])) , where C; : E(2) — R is a time-varying

measure of criticality. C;(i, j) starts with a value of zero and as the cell ages over
time, C; (i, j) starts to increase. Once the age of a cell reaches its lifetime—namely,
Ci (i, j) equals one—we say that the cell has expired. If we average this value across
all cells in the map to be covered, we obtain an estimate idea of how well a team of

UAVs is covering the areas they have been assigned:
= 1 .
C,:W Z G (i, ) (1)
(i.j)eMP
Given this measure of criticality, ideal behavior would be to keep the value of C,
constant over the course of a mission, a lower value being better.

5.2 Simulation Experiments

Hardware Platform Simulation experiments were performed on a desktop com-
puter running Ubuntu 16.04 and equipped with an Intel Core 17-4790K processor
and 20 GB of RAM.

Planner Evaluation We present simulation results on both maps from Fig. 7 for 10
minutes in Table 1. We observe that by increasing the number of UAVs, Goal As-
signment times are not affected, whereas Goal Planning times increase significantly
since GP must now compute deconflicting plans for a larger number of UAVs. De-
spite this, the total amount of stationary time spent by a UAV was at most 19.90 s
in a 10-minute period. Fig. 5 shows a plot of C; (Eq. (5.1)) over time during a 30-
minute mission. In all experiments, our framework is able to keep C; below a value
of one except where the number of UAVs was too small given the size of the map
(experiment with one UAV and map from Fig. 7). This, along with the fact that all
plots plateau over time, implies that cell-expiration is regulated on average.

Global Deconfliction Satisfactory global deconfliction relies on each UAV always
having access to committed plans that are long enough. As discussed in Sec. 4, size
of committed plans can significantly affect performance. We empirically evaluate
the need and effect of global deconfliction by varying the lengths of committed
plans for different collision-checking schemes. These schemes are:

1. Proposed Framework: Our approach with global deconfliction.

2. No Collision Checking: The GP performs no collision-checking between UAVs.

3. Current Position (static): The GP considers the other UAVS’ current positions
as static obstacles.

6 These expansions refer to graph-node expansions in the Weighted-A* search.
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Map  Number Timing (ms) Path Planning

of

UAVs ta tep Total Number of Expansions tstopped
Expansions per second (%)

Fig. 7d 1 90 223 323 413 215 0

2 90 796 898 187 226 2

3 91 1326 1430 286 209 2
Fig. 7e 1 92 172 275 28 204 0

2 91 1163 1265 200 188 <1

3 91 1433 1536 248 185 3

Table 1: Results of simulation experiments (values rounded down to the closest integer) and fopped
expressed as a percentage of total mission time.
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Fig. 5: Left: Average criticality of cells in MP during simulated experiments. Right: Spikes occur
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Fig. 6: Effect of changing the committed plan length for different collision checking mechanisms.
Since each curve represents a single mission execution, we do not show confidence intervals.

4. Quarter, Half and Full Plan (static): The GP assumes the first quarter, half and
whole of the committed plans of other UAVSs to be static obstacles respectively.
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Fig. 7: (a) UAV used in the experiments. (b) The two UAVs (circled in red) executing a mission.
(c) GUI showing a satellite image of the mission site along with UAV data overlay. (d) Map used
for experiments (big; coverage zone roughly 400m x 400m). (e) Map used for experiments (small;
coverage zone roughly 200m x 100m)

We plot the number of collisions between UAVs in Fig. 6a, the average time a UAV
is stationary in Fig. 6b, and the time taken by the Goal Planner in Fig. 6¢, all against
varying lengths of committed plans. Fig. 6 shows that our deconfliction scheme
results in competitive planning times and also guarantees collision-free UAV move-
ment with negligible stoppage. Other collision-checking schemes are either overly
conservative and compute convoluted, long-winding paths, or simply fail to avoid
collisions.

5.3 Real-World Experiments

Hardware Setup For the real-world experiments, our planning framework was run
on a Lenovo T470s laptop running Ubuntu 16.04 and equipped with an Intel Core
17-7600U processor and 20 GB of RAM.

Planner Evaluation We present results from real-world experiments in Table 2.
Fig. 8a plots C; for eight real-world runs. Additionally, dynamic removal of UAVs
from the mission was tested in five of these runs, and the remaining UAVs were
left undisturbed. Beyond this point, we are only covering the area with one UAV.
Hence, it is expected to see criticality increase. By iteratively planning and executing
computed paths, we isolate our planner from the stochasticity of controller-based
execution in the real world. Our planner quantitatively performs just as well in the
real-world as it does in simulation in spite of this stochasticity. This is because our
framework seeks latest information about UAV and map statuses from the real world
and constantly uses it to repeatedly solve our myopic version of the full problem (as
explained in Sec. 4).

Map Number Timing (ms) Path Planning
of
UAVs tGA tGp total Number of Expansions Tstopped
Expansions per second (%)
Fig. 7e 1 105 240 363 37 186 0.00
2 117 1181 1325 162 152 7.12

Table 2: Results of real-world experiments averaged over 8 runs (rounded down to the nearest
integer) and fyopped €Xpressed as a percentage of total mission time (maximum over all runs).
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Fig. 8: (a) Coverage criticality over time in the real-world: unless explicitly pointed to by arrows,
the curves represent an experiment with two UAVs run on the smaller map. A cross (x) on a
curve indicates the point in time when one of the two UAVs was removed from the mission. (b)
Comparison of all simulation and real-world missions executed in the small map from Fig. 7e by
two UAVs. The black curve with confidence intervals corresponds to the simulated experiments.

6 Conclusion and Future Work

We present and evaluate a planning framework for real-world, persistent coverage
with multiple UAVs. Our framework continuously decides where UAVs should fly
and computes kinodynamically feasible, globally deconflicting plans. We evaluate
our framework in both simulated and real-world settings. We also motivate and com-
pare global deconfliction with weaker, more local collision-avoidance schemes.

In many practical settings like ours, state spaces are high-dimensional and time
for deliberation is limited. Planning times can be a bottleneck in these cases and
cause delays. While our stopping maneuvers handle such situations, a natural exten-
sion is to incorporate anytime planning [26].

In the current framework, the goal assignment is based on priorities and is de-
coupled from goal planning. This is greedy and not optimal. Better strategies to
repeatedly cover previously observed coverage-zones can be learned from data and
added as macro-actions in the planner.
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