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Abstract. Multispecies ecological architectural design aims to create buildings 
that coexist harmoniously with the surrounding natural environment, playing an 
increasingly important role in enhancing the biodiversity and ecological 
resilience of urban environments. However, ecological architectural design 
requires expertise to tailor designs to local ecosystems, especially in terms of 
species selection and growth environment matching. This study introduces a 
multimodal system that enables non-professional designers to create ecologically 
adaptive, site-specific architectural designs. The system combines ChatGPT and 
diffusion models to analyze and synthesize visual and textual data, embedding 
local ecological characteristics into the design process. It supports the collection 
of local species data, which is then processed by GPT-4V (Vision) to generate 
detailed material descriptions, optimized through expert feedback. The 
minimally trained ChatGPT model, supported by the Segment Anything Model 
(SAM), predicts the ecological suitability of species integration across different 
areas, segmenting images to identify regions conducive to multispecies growth. 
Identified regions are further used to generate ecological designs via latent space 
diffusion, with a low-rank adaptation (LoRA) model, trained on local species 
data, enhancing the accuracy of ecological simulations. ControlNet and advanced 
prompt engineering are utilized to optimize the final design outcomes. This 
multimodal system integrates AI technologies such as transformer models and 
diffusion models, distinguishing itself from previous multimodal applications 
that mainly focused on style guidance and aesthetic generation. In contrast, this 
approach emphasizes improving building performance, offering a new method 
for incorporating ecological principles into architectural practice, and providing 
a practical tool for developing urban environments with biodiversity and 
resilience. 
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1. Introduction 

In recent years, ecological design strategies have received increasing attention in urban 
development, particularly in the field of ecological architecture (Selvan et al., 2023). 
Approaches such as green roofs, ecological walls, and vertical gardens have been 
widely applied as means to improve urban environments and address ecological issues 
(Bustami, 2018; Kader et al., 2022). These vegetation-covered building structures 
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maximize the use of limited space in urban environments, helping to improve air 
quality, regulate temperature, reduce energy consumption and carbon emissions, 
manage rainwater, and provide opportunities for urban agriculture, thus creating urban 
oases (Yan et al., 2024; Wang et al., 2023; Zheng et al., 2023; Yang et al., 2006). At 
the same time, ecological design can promote biodiversity in densely populated areas, 
where a variety of plant species can provide habitats for insects, birds, and other small 
organisms (Radić et al., 2019). Despite the potential of ecological architecture, 
designing such buildings often requires a substantial amount of specialized ecological 
knowledge, particularly when selecting appropriate plant species for specific locations 
and environmental conditions. This challenge underscores the need for systems that can 
bridge this gap, enabling designers to create ecological designs that are not only 
environmentally feasible but also fine-tuned to local conditions. 

Meanwhile, with the development of artificial intelligence and big modeling 
technologies, the multimodal large language models (MLLMs) have demonstrated 
unique advantages in cross-modal knowledge integration and understanding, 
multimodal semantic reasoning, and content generation (Dhariwal & Nichol, 2021). 
Previous studies have typically focused on using MLLMs to generate heuristic images 
(Ma & Zheng, 2023; Veloso, 2024), guiding aesthetic styles. In contrast, this study 
explores how MLLMs can integrate diverse data modalities in ecological design, 
aiming to enhance the site-specific feasibility and ecological viability of architectural 
designs from a performance-driven perspective. 

As the field of ecological architecture continues to evolve, research into the potential 
of multispecies design to enhance ecological feasibility has expanded, alongside 
progress in the application of MLLMs to improve architectural design methods. In the 
domain of ecological feasibility and multispecies design, Briscoe (2018) proposed a 
framework that combines Building Information Modeling (BIM) with ecological 
design principles to optimize the ecological benefits of living walls, particularly in hot 
and arid climates. Zhang et al. (2023) developed the Urban Agriculture Ecological 
Laboratory (ELUA), which aims to create a continuously evolving ecologically feasible 
environment through continuous monitoring, data-driven decision-making, and 
collaboration between humans and AI. Weisser et al. (2023) proposed a multispecies 
symbiotic space design technique called "ecolope," aimed at replacing traditional 
building envelopes to enhance urban biodiversity and improve human-nature 
interaction. In the field of MLLMs, Paananen et al. (2023) examined the role of text-
to-image tools like Midjourney, Stable Diffusion, and DALL-E in enhancing creativity 
during the early stages of architectural design, better supporting architects' imaginative 
processes. Shi and Hua (2023) developed a method that uses fine-tuned latent text-to-
image diffusion models to generate images and three-dimensional scenes of Chinese 
gardens in the Ming dynasty style based on textual descriptions, highlighting its 
potential in cultural heritage restoration. Kim, Johanes, and Huang (2023) proposed a 
fine-tuning framework for Stable Diffusion, generating images more aligned with 
architectural language using a formal architectural vocabulary dataset. Doumpioti and 
Huang (2023) introduced a framework combining text-to-image models with 
environmental design computation, utilizing AI-generated images and simulations to 
enhance the environmental responsiveness of architectural forms. Guida (2023) 
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demonstrated the potential of multimodal machine learning models like Stable 
Diffusion and DALL-E 2 in integrating text-to-image and three-dimensional form 
generation into the architectural design process, emphasizing the role of language 
development in architecture and the potential for intuitive user interfaces to promote 
more effective human-machine collaboration. 

Although these studies represent advances in supporting ecological architecture and 
the application of MLLMs in architectural design, the use of MLLMs in architecture 
still remains primarily at the conceptual design guidance level, and has yet to be widely 
integrated into actual building performance and applications, particularly in aligning 
architectural and ecological goals. Moreover, existing research in ecological 
architecture has not adequately addressed the importance of local feasibility nor 
conducted compatibility analyses based on multimodal data. To address these issues, 
this study employs a multimodal system based on GPT and diffusion models to assist 
non-expert designers in collecting and providing ecologically sound, site-adapted plant 
recommendations for ecological building designs. This approach not only enhances the 
ecological feasibility and sustainability of architectural designs but also lowers the 
barriers to ecological design, promoting the widespread application of ecological 
optimization in urban micro-environment design. 

2. Research Methodology 

This study adopts an intelligent design system based on multimodal large language 
models, aiming to generate environmentally friendly ecological building designs 
through an automated process. The system first uses a vision-language model to process 
multimodal data of local plants and growing substrates to assess ecological suitability. 
Then, a semantic segmentation model and diffusion model generate ecological design 
solutions that meet environmental requirements. (see Fig 1) 

Fig. 1. Multispecies Eco-building Design System 
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2.1 Data Collection and Processing 

The study uses Shenzhen, China, as a case study. Shenzhen has a subtropical monsoon 
climate with mild temperatures, abundant sunlight, and ample rainfall, creating 
favorable ecological conditions for plant growth and biodiversity. We collected 250 
images of self-seeding plants and their growing substrates from five districts in 
Shenzhen. To ensure a comprehensive analysis of ecological suitability, the dataset 
includes images of plants and substrates under various building materials such as 
concrete, brick, rammed earth, and metal. The plant species primarily cover ten 
common species in Shenzhen: Zoysia matrella, Axonopus compressus, Wedelia 
trilobata, Cynodon dactylon, Bidens pilosa, Alocasia odora, Digitaria radicosa, Oxalis 
corniculata, Ruellia simplex, and Hedyotis corymbosa (Liu et al., 2023). These images 
were standardized, including adjustments for saturation and brightness, and cropped to 
512x512 PNG format to ensure consistency and quality. The processed ecological 
images are used in two modules. In the multimodal recognition module, the system 
learns the relationship between substrate types and plant growth conditions, laying the 
foundation for subsequent design generation. In the multimodal generation module, 
local plant image data is used to train a LoRA model to fine-tune the system's output. 

Fig.2. Data Collection and Processing 
 
2.2 Ecological Data Recognition and Few-Shot Learning 

GPT-4 Vision is a large-scale language model with powerful text-visual reasoning, 
multimodal understanding, and prediction capabilities. The system uses a 250-image 
ecological dataset for few-shot learning, enabling the model to recognize and 
understand the ecological adaptability of plants and their substrates. This process allows 
GPT-4 Vision to generate textual descriptions of plant species, substrate types, growing 
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environments, and the ecological interactions between plants and substrates. Through 
few-shot learning, the GPT-4 Vision model can quickly understand and generate 
ecological descriptions with high accuracy, even with a limited amount of training data. 
2.3 Ecological Substrate Recognition and Segmentation 

After evaluating the ecological adaptability of the dataset, the system uses SAM 
(Segment Anything Model) to perform region segmentation on the input substrate 
images (without plants). SAM automatically identifies and labels different types of 
substrate regions, generating clear semantic segmentation maps (Kirillov et al., 2023). 
These substrate images and segmentation maps are then input into the GPT model, 
which has been trained with few-shot learning, for ecological adaptability analysis. The 
model accurately predicts and differentiates which areas are suitable for plant growth. 
Areas unsuitable for plant growth are output as masks. This process applies the 
understanding results of GPT-4 Vision and uses the mask to control the ecological 
design generated by Stable Diffusion (see Fig 3). 

Fig.3. Ecological Substrate Recognition and Segmentation 

2.4 Model Fine-Tuning and Inference Optimization 

The system uses the Stable Diffusion model to output design results. Stable Diffusion 
incorporates cross-attention layers in its architecture, enabling it to handle various 
conditional inputs such as text or bounding boxes, and to achieve high-resolution 
synthesis through convolutional methods (Rombach et al., 2022). In addition to 
supporting text-to-image generation, it also allows fine-tuning and control of the output 
results using technologies such as LoRA, masks, and ControlNet. 

LoRA is a technique for fine-tuning large pre-trained models by adjusting a small 
subset of model parameters, achieving efficient fine-tuning with low resource 
requirements (Hu et al., 2021). The system fine-tunes the Stable Diffusion model using 
LoRA, updating only a small portion of the dataset and a few parameters. This enables 
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the model to focus on plant types, forms, and their relationship with substrates, thus 
improving the accuracy of generating plant growth effects. The system uses 
RealisticVisionV60B1.safetensors as the base model and fine-tunes it via the diffusion 
pipeline (von Platen et al., 2024). The training process specifically uses the previously 
processed 500 512x512 plant images paired with simplified text labels generated by 
GPT-4 Vision. The training employed the AdamW 8-bit optimizer, with a network 
dimension of 32, a learning rate of 1e-4 (UNet learning rate of 1e-4, text encoder 
learning rate of 5e-5). The training was conducted at a resolution of 512x512 for 5 
epochs, using mixed precision (fp16) and enabling Xformers, with learning rate control 
through constant_with_warmup. The training was performed on an RTX 4090 GPU, 
ultimately resulting in a LoRA model suitable for ecological architectural design. 

 
2.5 Generation Control and Ecological Design Generation 

When generating plant growth images using Stable Diffusion, the system combines 
ControlNet and the previously generated mask images to control the output results. 
ControlNet is a neural network architecture that adds spatial condition control to large 
pre-trained text-to-image diffusion models (Lvmin Zhang et al., 2023). The system uses 
the control_segment-fp16.safetensor and control_inpainting-fp16.safetensors models 
to precisely control semantic and image editing during the generation process. By 
loading the mask images generated by GPT-4 Vision and SAM, the system accurately 
controls the plant growth areas, ensuring that the plant growth in different substrate 
regions meets ecological requirements, thereby avoiding unreasonable design 
outcomes. 

Furthermore, prompt engineering plays a key role in guiding the Stable Diffusion 
model to generate design results. The system adjusts and optimizes prompt semantics 
and structure based on the text data generated by GPT-4 Vision and the labeled training 
set used during LoRA training. Ten different prompts, corresponding to ten plant 
species, are applied to effectively trigger LoRA and control the growth effects of 
different plant species. 

The base images that need plant generation, along with the inpainting masks 
previously obtained, are input into the Stable Diffusion model, and the fine-tuned LoRA 
model is loaded. The sampling steps are set to 30, using the DPM++ SDE Karras 
sampler, with a CFG scale of 7.5 and denoising strength of 0.7. The inference process 
is accelerated with Xformers, optimized with fp16 mixed precision, and the output 
resolution is set to 512x512. Ten sets of ecological design images are generated, with 
each set containing five images. 

3. Results and Evaluation 

The results show that by combining ControlNet and inpainting masks, the generated 
plants are reasonably distributed within the designated growth areas, and their growth 
patterns highly align with the substrate environment (see Fig 4). Furthermore, each 
prompt effectively guided the generation of different plant species, influencing the plant 
types, morphology, and spatial arrangement. The generated images are rich in detail, 
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and the natural integration between plants and substrates is impressive. These results 
reflect the powerful learning ability of the fine-tuned LoRA model and its adaptability 
in generating diverse plant species with ecological relevance. The system effectively 
demonstrates the potential of this model for scalable and precise ecological design 
applications. 

Fig.4. Results generated with different prompts 

3.1 Evaluation of Few-shot Correction 

To improve the system's accuracy in identifying the ecological adaptability of plant 
growth substrates, an expert evaluation mechanism was implemented to rigorously 
verify and correct the descriptions generated by GPT-4 Vision. We invited 10 experts 
from the fields of ecology, architecture, and landscape architecture to conduct cross-
evaluation and provide feedback on the ecological image descriptions from the 500 
dataset entries. 

The evaluation results showed that out of the 500 descriptions, 447 were accurate. 
Among the 53 errors, 19 were related to substrate material identification, and 34 were 
related to plant species identification, with an overall accuracy rate of 89.4%. Based on 
the experts' feedback, additional few-shot training was conducted, focusing on 
correcting errors in these two areas, followed by iterative dialogue with the GPT-4 
Vision model for further corrections. After this correction process, the model 
demonstrated higher precision in subsequent tests, achieving an accuracy rate of 97.6%. 
This improvement significantly enhanced the system's stability and reliability in 
handling multimodal ecological data. 
 



 Contribution Title (shortened if too long) 8 

3.2 Evaluation of Generated Results 

To validate the effectiveness of the system, the generated design schemes were 
evaluated on multiple dimensions, including generation quality, ecological adaptability, 
species accuracy, and locality. An expert panel conducted an interdisciplinary 
evaluation of the generated ecological design images. Each expert scored the design 
schemes based on the following criteria (1 to 10 scale): 

 
 Species Accuracy: The generated results effectively learned and produced 

accurate and reasonable plant species types. 
 Generation Quality: The image details were clear, and the fusion between plants 

and substrates appeared natural. 
 Ecological Adaptability: The selected plant species were suitable for the 

substrates and growth environments, meeting ecological needs. 
 Locality: The generated plant species were native and suitable for local growing 

conditions. 
 
The evaluation results show that the system performed well in terms of generation 

quality, locality, and ecological adaptability, with average scores of 9.22, 8.47, and 
9.27, respectively. These results suggest that the system can identify and generate real 
and diverse plant types that adapt to their growth environments. However, the species 
accuracy score was relatively low, with an average of only 7.38, especially for species 
with unique morphologies, such as Ruellia simplex, Oxalis corniculata, and Alocasia 
odora. This indicates that while the system is capable of generating various plant types, 
improvements are needed in learning and generating specific plant species, as locality 
is often closely tied to species specificity. 

4. Discussion 

This study integrates GPT-4 Vision and the multimodal large language model (MLLM) 
based on Stable Diffusion with data on plants and their growth environments to develop 
an automated ecological building design system. The research explores the potential of 
MLLM in multispecies ecological architecture design. Unlike previous studies that 
used MLLM to guide design aesthetics (Ma & Zheng, 2023; Veloso, 2024) or human-
computer interaction in 3D design processes (Guida, 2023), this research leverages 
MLLM's cross-modal reasoning and content generation capabilities to explore its 
applicability in performance-based design tasks. Additionally, this study shares 
similarities with Briscoe’s (2018) work on integrating ecological design principles into 
building systems and Weisser et al. (2023) on multispecies envelope design. However, 
these frameworks rely on traditional design methods, whereas this research 
demonstrates the potential of text-to-image models in incorporating ecological data into 
ecological building design, bridging the gap between automatic image generation and 
ecological performance optimization. 

While the system performs excellently in generating realistic and ecologically 
adaptive plant types, its ability to accurately identify and generate specific plant species 
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remains limited. This limitation may stem from constraints in the original training 
datasets of the MLLM, which lacked detailed plant species information, presenting 
inherent challenges in further model development. Despite fine-tuning with LoRA, 
prompt engineering, and few-shot learning, these adjustments are still insufficient to 
fundamentally address this issue. Although developing large-scale models specifically 
for ecology or architecture remains challenging, future work will explore using higher-
quality and more domain-relevant multimodal pre-training data, instruction-tuning 
datasets, and preference-based data to improve system performance. 

5. Conclusion 

This study demonstrates the potential of MLLM in ecological building design, 
providing a practical framework for creating ecologically adaptive solutions. It pioneers 
the application of MLLM (including GPT-4 Vision and Stable Diffusion) in 
performance-based ecological building design. Unlike previous research focusing on 
visual inspiration, this study integrates image-text data, plant adaptability prediction, 
and substrate analysis to create an automated and scalable system for generating designs 
suited to local conditions. Through techniques such as LoRA fine-tuning, ControlNet, 
and prompt engineering, the system achieves high precision and adaptability, reducing 
the threshold for non-expert involvement. Expert validation and real-world testing 
further demonstrate its potential to democratize ecological expertise and drive 
sustainable urban development. The results indicate that the system performs well in 
matching plant species with substrate conditions, but there remains a gap in achieving 
precise locality accuracy for plant species. Future improvements should focus on 
enhancing species identification and generation capabilities and developing a 
comprehensive local plant database to ensure more precise alignment between plant 
selection and regional ecosystems. 
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