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The object of this research is the algorithms for controlling large-scale models of 

sea-based vehicles (SBVs). The subject of the research is a linear-quadratic method 

for controlling a model of the propulsion complex with azimuthal thrusters (ATs) in the 

aft part. The problem is the solution between the interdependent throws of surge, sway, 

and yaw speeds predicted by the linear controller. Input signals are the rotational 

speeds and the angles of ATs propeller thrusts with respect to the diametrical plane of 

SBVs. During the simulation, step responses of a closed system for overload and 

rotation speed are compared. Simulation of speed jumps showed an adequate response, 

in contrast to the speed of rotation of ATs, which showed a greater impact on the system 

than the orientation of ATs. When modeling the rate of yaw, the behavior of the ATs 

angle did not correspond to its limitations inherent in the device rotating at the 

appropriate speed. It is concluded that this is the result of linearization of the actuators, 

and the proposed solution is to implement the strengthening of the task to better adapt 

to the rotating behavior of ATs. Despite these problems, the simulation showed the 

potential of the model and controller for use in similar situations. Several 

modifications are also offered to significantly improve the model and simulations. One 

of the main changes that could be made is the implementation of a predictive gain 

during the linearization of the ATs control system. The practical significance of the 

results obtained is the fact that the quadratic optimization model is an effective and 

reliable technique in the process of designing SBVs of various configurations of 

steering devices for optimal control 

Keywords: modeling, thruster, linear-quadratic regulator, optimization, 

combined propulsion complex, dual purpose 

 

1. Introduction  

Azimuthal thrusters (ATs) reflect a growing trend in the modern market of sea-

based vehicles (SBVs). AT is a propeller mounted in a nacelle under the body of SBV. 

This nacelle is able to rotate around its axis, which makes it possible to change the 

direction of the force acting on SBVs [1–3]. 

Unlike SBVs with ATs, most modern vessels are driven by a mechanical system 

with an internal combustion engine (ICE) or a propeller electric motor (PEM), which 

rotates the propeller through the shaft line system. The direction of rotation of the 

propeller is usually fixed relative to the hull of the vessel, and the control is carried out 

mainly by the steering pen in the aft. Some vessels also have tunnel thrusters (TTs) 

installed in the bow or aft parts that provide a lateral thrust to improve maneuverability 

capabilities, such as mooring. Another method of movement and maneuvering that is 

currently being used is ATs. 

With greater maneuvering capabilities, there are more algorithms to control Ats 

located in the aft part, which require greater operator qualification, or a more complex 



control system. The controller uses estimates of linear and angular velocities obtained 

using the Global Positioning System (GPS) and inertial measuring units (IMU) to 

control SBVs. 

Therefore, research on the development of algorithms for controlling large-scale 

models of SBVs, based on the linear-quadratic principle of controlling thrusters, is 

relevant. 

 

2. Literature review and problem statement 

This research investigates how adequately it is possible to control a smaller vessel 

with ATs using a linear-quadratic regulator (LQR). This will require mathematical 

modeling of both the behavior of SBVs and the thrust pattern of propellers. Since LQR 

requires linear models for design, some simplifications and linearization will be 

needed. Thus, a linearized model will also be implemented to describe the movement 

of this type of SBV. The scale model of the SBV to be controlled is shown in Fig. 1. 

In the AT model (Fig. 2), PEM is placed in a nacelle, which is installed under the 

body in such a way that it can rotate around a vertical axis. The propeller is driven by 

a mechanical transmission that connects it to the engine inside the vessel or to the PEM 

installed inside the nacelle itself. This structure eliminates the need for steering and 

provides better maneuverability of the vessel under compressed sailing conditions [4]. 

 

 
 

Fig. 1. General view of the physical model of a multifunctional propulsion complex 

with a variable structure: 1 – thruster of the Contra–rotating propeller system; 2 – 

main electric motor of the Contra–rotating propeller system; 3 – aft thruster; 4 – bow 

thruster with two degrees of freedom; 5 – bow tunnel thruster 
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Fig. 2. General view of the physical model of azimuthal thrusters located in the 

aft part of the physical model of a multifunctional propulsion complex with a variable 

structure 

 

To determine the SBV position, orientation, and speed of movement, appropriate 

movable and fixed coordinate systems are required. The most common representation 

for a fixed coordinate system is based on hull symmetry around the XbZb-plane, 

approximate symmetry around the YbZb-plane, and projection onto the Zb-axis relative 

to the surface of the water. The inertial (fixed) coordinate system is used to describe 

the position and orientation of the vessel in global coordinates and Euler angles as [x y 

z]T and [ϕ θ ψ]T, respectively. The moving coordinate system describes forces, torques, 

linear velocities, and angular velocities [X Y Z]T, [K M N]T
, [u v w]T

, [x y z], and [p q r]T, 

respectively. The movement of the vessel can be described by six degrees of freedom, 

which are divided into two categories. Translational motion in three directions: 

longitudinal movement (surge), transverse movement (sway), and vertical movement 

(rise), as well as rotational movement around three axes: onboard swing (roll), keel 

swing (pitch), and yaw. These are the standard designations used in the modeling of 

ships [5, 6]. In [5], the results of research as part of the improvement of the decision 

support system (DSS) were to formalize these designations in the design of ship power 

plants (SPP) for combined propulsion complexes (CPC). And in [6], the implemented 

DSS built by using system analysis, optimization, and modeling technologies aimed to 

implement this approach on the basis of DMI-models of ships. The issues of improving 

DSS by the method of mutual implementation of characteristic spatial vectors of energy 

processes in SPP and hydrodynamic in the CPC remained unresolved. 

The announced method provides for a simple model the approximation of Coriolis 

terms and the damping matrix by a linear function. This system of equations of motion 

is based on [7] where the applied models require that the dynamics of the vessel and 

the ATs be known with a certain accuracy to use the linear-quadratic theory of optimal 

control. However, in this case, the identification of the mathematical model of the 



vessel in a dynamic positioning mode (DP) is problematic since the excitation of the 

vessel under the action of DP is non-deterministic. 

Different descriptions of excitation forces are based on [8] where models with 

four degrees of freedom are studied (where roll is an additional degree of freedom), 

and not with three, as in the case of [9] when the low-weight component is neglected. 

As for the three degrees of freedom, the equations are represented in the form of [10] 

where they are talking about controlling an autonomous underwater vehicle (AUV ) 

with a linear-quadratic Gaussian controller and a combination of different algorithms. 

But the reported simulation results did not allow us to conclude that the fixed and 

variable speeds match. In [11], the problem of maneuvering is solved by 

parameterizing the input data on the basis of ensuring the desired dynamic behavior of 

the model. A technique of adaptive recursive design for a parametrically indefinite 

nonlinear object describing the dynamics of the vessel has been developed. First, the 

geometric part of the problem is solved. Then the law of renewal is built, which 

combines geometric design with a dynamic task. But the design procedure is carried 

out and tested by several experiments for the vessel model in the maritime control 

laboratory, which is not always possible. 

On a classic marine vessel, drive forces originate from the rudder, fixed 

propellers, and thrusters (Ts). However, since the type of vessel in question is set in 

motion by the ATs, the reaction from the application of forces will be different. The 

ATs is an engine that can rotate 360 degrees around its vertical axis. This makes it 

possible to apply forces in the x- and y-directions depending on the position of the ATs 

and the torque applied to the vessel. Subsequent model calculations, which use input 

data from the speed of rotation, and azimuthal angle, were mainly obtained from model 

calculations [12]. The article analyzes parameter estimates for nonlinear regression 

models, where regressors are functions of a second-order module. The focus is on 

finding sequential estimates, and the instrumental variable method is used to this end. 

The problem of determining the accuracy of the appraiser remains unresolved if the 

input signal has a static displacement of sufficient amplitude, and the instruments are 

forced to have a non-zero average value of the time domain. These approaches were 

improved in [13] where more attention was paid to azimuthal forces as input data rather 

than rotational speeds. In [14] it is shown that this two-step procedure gives consistent 

estimates for second-order module models in cases where the standard applied method 

for finding sequential estimates does not work, in particular when measurement 

uncertainty is taken into account. In addition, it is shown that the possibility of 

obtaining consistent parameter estimates for models of this type depends on how the 

perturbations of the process enter the system, and on the volume of preliminary data 

on perturbation probability distributions that are available. In the cases where first-

order moments are known, the aforementioned approach gives consistent estimates, 

even when perturbations enter the system before nonlinearity. To obtain consistent 

estimates in the cases where the moments of the first order are unknown, a structure is 

proposed to evaluate the moments of the first and second order along with the 

parameters of the model. This moment imposes additional requirements for the 

accuracy of measurement of these parameters.  



To predict the states of the controller, it is necessary to use a monitoring system 

using sensors used in marine navigation. The main monitoring systems used in the 

control of the vessel are the inertial measurement unit (IMU) and the Global 

Positioning System (GPS). 

IMU uses a combination of accelerometers, gyroscopes, and magnetometers to 

measure angular velocities, accelerations, and magnetic fields. It is an important device 

for controlling vessels as they can move and rotate in all 6 degrees of freedom. 

Measurements from the gyroscope and accelerometer include some shifts that create a 

systematic measurement error. If the angular velocities and accelerations are 

integrated, then as a result of linear velocity errors, they will increase linearly over 

time, and the orientation error – quadratically. Therefore, it will be difficult to rely only 

on IMU for this purpose over a longer period of time [15]. 

GPS is a system that uses satellite communication and data exchange with the 

receiver and providing information about location and time in areas with unhindered 

direct visibility. The most common GPS has For autonomous vehicles, the 

development and implementation of a high-integrity navigation system is based on the 

combined use of GPS and IMU. Improving the integrity of the navigation cycle will be 

carried out by identifying possible malfunctions both before and during the synthesis 

process. The implementation of this fault detection methodology takes into account 

both low-speed failures in IMU caused by displacement in sensor readings and device 

offset, as well as high-speed failures in the GPS receiver caused by multi-beam 

propagation errors. 

The main purpose of the task of adequate vessel control is to minimize the design 

criterion, that is, to balance it between the magnitude of the tracking error e=y–r and 

the value of the input signal. Sometimes such a paradigm can be considered as an 

optimization problem when a system is described using a linear differential equation, 

and integration relationships are described using quadratic functions. 

To achieve the desired design behavior of the system, an iterative modeling and 

adjustment process is necessary in accordance with the behavior of the observed 

regulator in order to find the optimal value of constant coefficients. The controller 

defined above resets the state of the system to zero but, in this case, the controller must 

follow the specified reference signal. 

A common problem that arises when modeling the yaw velocity is the unrealistic 

reaction of the model during the linearization of the input signal. When compared with 

a possible real reaction, almost any angle of α that is not close to the working value 

will differ significantly from the actual one. A possible solution for this problem is to 

use predictive amplification. 

Predictive amplification is an approach to controlling a nonlinear system using 

multiple linear controllers. Thus, having several linearization species regarding the 

approximation of the trigonometric function at different operating points, LQR can be 

applied to these segments independently. A similar application of predictive LQR 

amplification, but in the field of risk management, was performed in [16], except for 

the problems of switching between linearization species [17]. If we neglect this aspect, 

then an unstable state or instability in the system may occur.  



By using the Kalman filter to combine the information provided by the two 

sensors, it is possible to reduce the negative effects. The IMU offset can be adjusted, 

and when the GPS sensor is not in line of sight, the controller will rely more on IMU 

until the GPS reaches the line of sight again. However, since most maritime routes pass 

through areas with open skies, the GPS signal will always be present and therefore the 

focus will be on fixing the elimination of IMU. This type of integration of sensors for 

driving vehicles outdoors is implemented in [18] where ground transport is used instead 

of SBVs. In [19], the Kalman amplification coefficient is found using 

MATLAB/Simulink. First, an inertial system is developed to obtain information about 

the orientation and position of the control object. To determine the position and course, 

an algorithm for combining sensors using a standard Kalman filter is proposed. LQR 

methods and Kalman filtration are discussed in detail in [20]. Combined use of Kalman 

filtration and LQR is called linear-quadratic-gaussian control (LQG). Similar 

approaches to using such methods to solve such problems are considered in [21, 22]. 

In [21], a combination of equations describing the movement of a load by the 

mechanism for lifting the frame of the pallet holder into a system of differential 

equations with coefficients dependent on ship oscillations is proposed. In [22], the 

same approach is applied to the design of a linear-quadratic Gaussian regulator for a 

submarine. In both the first and second cases, the eigenvalues of a linear time-constant 

system can be optimally placed by modifying the performance criterion in the optimal 

controller design. The results are compared with the linear-quadratic Gauss controller, 

developed by standard methods of forming a cycle in the state assessment system and 

using a linear-quadratic regulator to restore cyclic transfer. The only thing that remains 

undefined is the method of assigning the eigenvalues of the optimal state feedback 

system. 

Physical modeling begins with determining the SBVs coordinate system and how 

certain forces act on the SBVs in the aquatic environment. After that, it is explained 

how the thrusts and rotational moments of ATs affect SBVs depending on the angle 

and speed of rotation. These mathematical models are then combined to form a spatial 

vector of states in which the regulator will be applied. It then describes how LQR works 

and how to find the optimal controller using the Riccati model and equation [23]. It 

also explains how the following actions of the controller are activated, depending on 

possible changes in operating conditions. The results of a simulation research with the 

setting of the controller and controller of the reference input signals are analyzed in 

accordance with the achievement of the desired results. Also, during the simulation, 

the advantages of choosing different operating points for linearization of the model for 

different controller settings are investigated. 

To take into account the existing restrictions, it will be necessary to adopt a 

number of simplifications. Some degrees of freedom (DOF) that have little effect on 

the system will be excluded. In modeling, we shall use only 3 degrees of freedom 

(DOF) out of 6 (pitching, roll, and yaw). Some parts of the resulting mathematical 

model will be nonlinear, so linearization will be necessary for the model to work with 

LQR. If it is impossible to obtain data from a real vessel, the modeling and design of 

the controller will be carried out using only nominal values. 

 



3. The aim and objectives of the s research  

The development of an optimal-parameter LCR for controlling SBVs with ATs in 

the aft part is reduced to a comparison, according to the results of modeling, of its work 

with actual conditions. This makes it possible to improve the control algorithms for 

scale models of SBVs based on the linear-quadratic principle of controlling thrusters. 

To accomplish the aim, the following tasks have been set: 

– to carry out physical modeling of SBVs with ATs in the aft part; 

– to check the behavior of the model in combination with studies of the design 

features of vessels of this class; 

– on the basis of the defined space of states and linearization of the AT control 

system, to simulate the yaw velocity to track the effect of disturbing forces on the 

characteristics of the controller; 

– to determine the principles of linearization with independent control over the 

speed and angle of rotation of ATs; 

– to define the limiting characteristics of azimuthal angles to adapt the controller 

to actual conditions.  

 

4. Materials and research methods 

4. 1. Methodology of iterative linearization of control system states 

The position, orientation, and velocity of SBVs in accordance with the coordinate 

systems (Fig. 3) are based on hull symmetry around the XbZb-plane, approximate 

symmetry around the YbZb-plane, and projection onto the Zb-axis relative to the surface 

of the water. With this in mind, the position orientation vector and the linear-angular 

velocity vector can be defined as:  

 

  ,
T

x y     .
T

v u v r   (1) 

 

The usual simplification of the model is to neglect vertical movements 

(lifting/submerging) and longitudinal pitching ("pitching"). To simplify the model, the 

roll angle is also assumed to be small. 

These generalized positions and velocities have a geometric relationship that can 

be described as 

 

( ) ,J v =    (2) 

 

and the equations of motion of the vessel in the inertial (fixed) coordinate system take 

the form 

 

( ) ( ) ,MR MR actG v C v v D v v+ + =    (3) 

 

where GMR is the inertia matrix of a solid, CMR(v)v represents centripetal and Coriolis 

terms, D(ν) is the damping matrix, τact is a vector with generalized external forces.  

 

 



 
Fig. 3. Standard designations for describing the movement of a vessel in 

accordance with (1) 

 

For three degrees of freedom, the equations are represented as follows:  
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where the total mass of the vessel is assumed to be equal to m and is found as rg=rG=[xG, 

yG], as well as the Iz-inertia moment relative to the z-axis, expressed in the b-system. 

Xu, Yv and Nr are large-scale damping coefficients. 

Then the goal at this stage will be to find the law of control u=−Lx, where: 

 

,u Lx= − ( ) ( ) ( ) ( )( )1 2

0

argmin d ,T T

L

z t Q z t u t Q u t t


= +L  (8) 

where Q1 and Q2 are weight matrices that can be used as design variables for the 

resulting controller. The solution of the optimization problem is carried out by 

determining: 

 
1

2 ,T NL Q B S−=   (9) 



 

where SN is a positively defined matrix that solves the Riccati algebra equation: 

 
2 1

1 2 0.T N N N T NA S S A M Q M S BQ B S−+ + − =   (10) 

 

The solution to this equation can be derived using MATLAB Simulink software. 

To do this, you need to integrate the reference signal ref in the equations: 

 

( ) ( ) ( ),refu t Lx t L ref t= − +   (11) 

 

where Lref is selected so that the static gain corresponds to a given value. A similar 

method of using LQR was applied in [24]. The system developed according to this 

principle is shown in Fig. 4. 

 

 
Fig. 4. Designation of the reference signal and system feedback 

 

Each system is characterized by uncertainties. Typically, these uncertainties are 

modeled as a random stochastic process ("white noise"), which is a random signal with 

a constant spectrum. Given the uncertainty, the model can be written as 

 

1,x Ax Bu Nv= + +  2,
NC x v = + ,MRz G x=  (12) 

 

where v1 and v2 are white "Gaussian" noise with normal distribution in the time 

region with zero mean value of the time region. In order to filter out these signals, a 

state observer can be implemented that uses the estimate in the following form: 

 

( ) ( )ˆ ˆ ˆ ˆ .N Nx Ax Bu K y C x A KC x Bu Ky= = + − = − + +   (13) 

 

This problem can be solved by describing it as an optimization problem by 

analogy with the definition of LQR with minimizing the variance of the valuation error. 

If the system error is designated as ,ˆe x x= −  then the variance will be equal to Ee(t)e(t). 

If v1 and v2 are independent and have a normal distribution in the time domain with a 

zero mean value of the time domain, we can assume that: 

 

1 1 1,
T

eE v v V= 2 2 2,
T

eE v v V= 1 2 0.T

eE v v =   (14) 

 



Then the state observer can be described as 

 
1

2cov ,NK PC V −=   (15) 

 

where covP is the covariation matrix of the optimal estimate that solves the 

Riccati equation 
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−
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− =
 (16) 

 

(16) is called a Kalman filter, where V1 and V2 are variables that can be configured 

to filter process perturbation and measurement.  

Suppose that the force Nα of ATs is applied to the hull of the vessel. Let the 

thruster be the AT that rotates at the speed of rotation of the propeller ωi (r/s), and the 

angle of the applied resulting force αі (rad). Then the forces in the xb-direction from the 

azimuthal motor i can be designated as (Fig. 5): 

 

( ), ,, , ,x i x i i iF g u


=     (17) 

 

where uα,i is the velocity of water passing through ATs in the negative direction 

xb. This is necessary because at higher speeds, and when uα,i and ωi cos(αi) are equal to 

the same sign, there will be a loss of efficiency. The assumption in the model is a linear 

relationship between gx and ωi as 

 

( ) ( ) ( ), ,, , cos cos ,x i i i i i i i i i ig u k u
 

  =   −     (18) 

 

where µi and ki are positive constants defined by a full-scale experiment, and uα,i 

can be described as 

 

( ), 1 .i i ru w u

= −   (19) 

 



 
 

Fig. 5. Location and angle of rotation of the i-th AT 

 

Here, wi is the coefficient of the passing flow, which determines the ratio of the 

speed of water flowing through the propeller to the speed of the vessel ur – the relative 

speed between the vessel and the surrounding water. By combining the coefficient of 

passing flow, we can simplify the second term in (18) using 

 

( )1 ,i i ik w k= −   (20) 

 

and substituting this in (18), we get 

 

( ) ( ) ( ), , cos cos .x i i r i i i i i r ig u k u  =   −    (21) 

 

Thus, we have a generalized model of forces from ATs. However, the true 

function gx(·) is more complex due to water dynamics but the approximate function 

would be adequate for the purposes of this research. 

Similarly, the force in the Yb-direction 
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=   −     
(22) 

 

can be found with the same assumptions as for the x-direction. The azimuthal 

engine i will also generate torque relative to the vessel depending on where it is 

installed relative to the center of rotation of the vessel. Torque can be described as 

 

, , , , .i x i y i y i x iM F F=  −   (23) 



 

The generalized torque vector contains forces and moments from all azimuthal 

motors put together. 
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 (24) 

 

To make the model even easier, we neglect the losses at high speed in the yb 

direction since the speeds in this direction are much lower than in the xb direction. 

Also, for simplicity, it is assumed that each engine is equally efficient and 

therefore 

 

, 1,..., ,i j i j N


 =  = , 1,..., .i jk k k i j N
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which yields 
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  (26) 

 

Since τact depends on ur, which, in turn, depends on the rate of increase in motion 

resistance, the model becomes nonlinear. For simplicity, we neglect these terms and 

the designation of a generalized torque vector can be simplified to 
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  (27) 

 

Since CMR(ν) depends on ν, the term CMR(ν)ν becomes nonlinear. However, the 

use of LQR requires a linear model. Thus, linearization is needed to simplify the model 

further. Linearization is described by the function  

 

( ) ( ) ( )( ),L x f a f a x a= + −   (28) 

 

where L(x) is called a linearized function, f(α) is a function to be linearized in α, f '(α) 

is a derivative of f(x) over x, estimated in (α), in this case the Jacobian of function f(x). 



Finally, x – linearization variable (in this case, ν), α is the selected operating point 

(angle of rotation of AT relative to the body of SBV. In this case, the linearizing terms 

are equal to: 
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which contains Jacobian 
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The operating point depends on what state the system should be. Since the system 

will operate at a constant forward speed and with minor changes in the speed of rotation 

of AT, the corresponding operating point is defined as 
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Using this working point and linearizing CRB(ν)ν, we find the following 
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The matrix of states (32) will then replace CMR(ν)ν in the equation of the space of 

states. 

 

4. 2. Linearization of the assigned input signal 

To control a vessel using an AT, it is necessary to process drive signals as input 

signals, so the complete equation (26) must be combined into a controller with a 

dependence on ω and α. Due to the trigonometric functions of cos and sin, which are 

present in (27), linearization with the LQR framework is necessary to match it. 

Linearization of the general case is as follows. Since there are several operating 

points that can be selected in the simulation, a general case of linearization is necessary. 

In addition, two different linearization species are needed through two ways to control 

the vessel. One with synchronous control, that is, the same input signals for both ATs, 



and one with differential (asynchronous) control, where the Ats are controlled 

independently. Starting with synchronous control, we use the following variables 
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Then (28) integrates to (27) with the previously mentioned variable and the 

generalized working point as αs 
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which gives the following equation, which includes a constant term: 
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This means that the stable state of ATs must be at this operating point and the 

controller will control deviations from this state. In other words, τact can be divided into 

two parts as follows: 

 

,act act act =  +   (37)
 

 

 where  is constant, and: 
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 (38) 

 

depends on the time that will be determined by the LQ controller. This 

linearization will force the ATs to use the same rotational speed and propeller flow 

angle for both ATs. 

For differential (asynchronous) control, the control variable will contain a 

separate definition of the control signal: 

 

 1 2 1 2 .
T

dp =       (39) 

 

where the speed of rotation of the propeller and the angle of the applied resulting 

force, respectively: ω1, α1 – port side, ω2, α2 – starboard. 

As before, equation (28) is applied and a new Jacobi matrix is displayed and a 

working point is used. However, for f(pd) is still chosen (34) since these equations must 

also undergo a linearization procedure. The reworked equations are as follows: 
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 1 2 1 2 .
T

da =      (40) 

 

These transformations give complete linearization: 
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and differential (asynchronous) control signal: 
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With the help of such linearization, it is possible to describe the functions of an 

independent change in the speed of rotation and the angles of location of AT engines. 

 

4. 3. Determination of a coherent position with linearization function 

For a simplified model, some position points give the best results depending on 

the expected maneuver of the vehicle. The simplified trigonometric orientation 

function of the AT motor is an important aspect when a position determination point is 

selected because they are periodic. After linearization, the trigonometric function loses 

its characteristic behavior, and a higher value always leads to an increase in torque. 

Therefore, the obtained simulation results must correspond to the point of determining 

the position i in order to have the result closest to reality. For the rotating scenario of 

the model, a nonzero value of α for the selected algorithm would be reasonable, and 

for a sharp change in the trajectory, a higher value of ω and a zero value of α. These 

two different approaches will be used for linearization and they are described as 

follows, starting with an algorithm for abruptly changing the ship's trajectory (an 

increasing algorithm): 
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Using this point of determining the position, which is determined by the optimal 

angle of α, and substituting the values ∆хi and ∆уi for both ATs in (38), we get 
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For the ship's turning algorithm, the position determination point is determined as 

follows: 
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adjusted to match the nonzero angle of AT propellers. The turning speed also 

decreased. By inserting these value Δx,i and Δy,i in (38), we get: 
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These will be two different linearization species that will be used in the 

simulation. Theoretically, the latter should give better results when modeling with an 

increased yaw velocity. We get two points for determining the position: 
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which will also be used for differential linearization and have equivalent values. These 

points of position determination define the following equations: 
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Such linearization can increase the maneuverability of the vessel and create 

different approaches to solving the control problem. 

 

4. 4. Definition of the space of states 

To use LQR, the model must be defined in the form of a space of states: 

 

,x x u= +A B ,Ny x u= +C D   (49) 

 

where x – controlled states, u – input signals, y – output signals, A – state matrix, 

B – input matrix, CN – output matrix, and D – direct bond matrix. So the inverse matrix 

GMR (3) must be written as: 
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Using this equation and substituting parameters and variables from (5), (7), and 

(32), it is possible to simplify the equation for τact. τact will be replaced by ~ ,act  which is 

one of the linearized parameters. The equation can be simplified as follows: 

 



2

2 2 2 2 2 2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 2

2 2 2

MR MR MR MR

MR MR MR MR MR MR

MR MR MR

MR MR MR MR MR MR

MR MR

MR MR MR

G z G G G

G G Z G G Z G G Z

G G G Z G

G G Z G G Z G G Z

G G

G G Z G

u

v v

r

mx I x y y

m x m y I m m x m y I m x m y I

x y my I x

mx my I m x m y I mx my I

y x

mx my I mx m

 
 

= = 
  

− −

+ − + − + −

−
=

+ − + − + −

−

+ − + 2 2 2

2

2

2 2

1

0 0 0 0 0

0 0 0 0

0 0 0 0

1

MR MR MR

MR

MR

MR MR MR

MR

MR MR

MR MR

G Z G G Z

u

v act

G r

G z

G G G

G Z

G G G

G G Z

y I mx my I

u X u

m v Y v

mx r N r

mx I
x y y

m

my I
x y x

mx my I m

 
 
 
 
 

 
 
 −
 

− + −  

      
      

 − − + =      
           

−
−

  −
=  
 + − 

( )

( )

2

2 2 2

1

.

MR

MR MR

MR

MR MR MR

MR MR MR MR MR MR

MR MR

act

G G

u G z

v G G r G

u G G v G z r G G G z

u G v G r

y x

x mx I
Y x y N y

m u

X x y Y mx I N x mx my I v

rX y Y x N

  
  
  
  
    −
  
  − −
  
  
  

 −
 −
   
   

− − − − +   
    − −
 
 
 

 (51) 

 

Assuming that the value 
MRGr  is significantly small, it can be brought closer to 0. 

Then the equation for ν can be simplified even more: 
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The resulting form can be considered as a representation of the space of states, 

where: 
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The sensors used to determine the speed and position of the vessel are in a moving 

coordinate system, which leads to the following definitions: 
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B will vary depending on the linearization of the input signal used, for example if 

(44) and (46) are used. From (2) and (4) these values can be transferred to the ω-system, 

where it is assumed that ψ=0. 

 

5. The results of researching the method of linear-quadratic control over the 

physical model of ta vessel with azimuthal thrusters 

5. 1. Physical modeling of elements for a sea-based vehicle  

The physical scale model of SBVs is based on a controller that uses input data 

from GPS and IMU to determine the position, course, and speed of the vessel. Based 

on these data, the controller will control the actuators, an electronically commutated 

motor (ECM), and a servo drive for each AT. ECM is connected to the AT propeller 

through gear transmissions (Fig. 6). The gear ratio between the servo drive and the AT 

compound is quite large. The main characteristics of the formalized physical model of 

AT are shown in Fig. 7. 

 

 
 

Fig. 6. Gear transmission connecting the electronically commutated motor with 

the propeller of the azimuthal thruster  

 



To regulate the rotational speed and torque of ECM, the motor currents are 

measured and the throughput is calculated with high accuracy (Fig. 6). Torque control 

is an integral part of the design of most applied speed control circuits of AT electric 

drive systems. Theoretically, the time of increase in the torque in the frequency 

converter (FC) with pulsed width modulation (PWM) is limited by the inductance of 

the motor in dependent current inverters with a DC link [25]. However, in practice, the 

controller limits the rate of change in torque to prevent damage to the mechanical part 

of the electric drive. 

 

 

 
 

Fig. 7. Physical model of the thruster with two degrees of freedom: 1 – 

electronically commutated motor supply cable and a drive cable for changing the angle 

of inclination; 2 – drive gear of the baller's turn drive; 3 – baller; 4 – bearing shield; 5 

– feedback spring of the drive for changing the angle of inclination; 6 – supply cable; 

7 – support bearing; 8 – oil seal inputs; 9 – rope of the drive for changing the angle of 

inclination; 10 – stabilization wings; 11 – fixed pitch propeller; 12 – fluorescent mark 

for remote measurement of the rotational speed of the fixed pitch propeller; 13 – the 

place of connection of the baller with the body of the azimuthal thruster; 14 – body of 

an azimuthal thruster with an electronically commutated motor located inside 

 



 
Fig. 8. Block diagram of a closed system for controlling the torque of an 

electronically commutated motor of the azimuthal thruster: Ψp and Ψcalc – values of 

the assigned and calculated flows, Isa, Isb – measured values of stator currents; PWM 

– pulse-width modulation; IM – induction motor; FC – frequency convertor 

 

 

 
 

Fig. 9. Block diagram of the speed controller in an electronically commutated 

motor  

 

Thus, the transfer function of the controller can be described by dependence 
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where tFC=20…200 ms. 

 

5. 2. Checking the behavior of SBV model when modeling surge  

To check the behavior of the model and determine whether the controller can 

control the system, a simulation research is carried out to check certain properties of 

the system. Each simulation is performed with simultaneous and differential control of 

ATs [26‒34]. 



For GFC, the interaction between the torque of the propeller Мp, which is 

determined by the push force Fp, the thrust Tp and the power Pp of the propeller, is 

found on the basis of the diagram of free water and the dynamics equations regarding 

the shaft speed and the diameter of the propeller [35]:  
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  (56) 

 

where ω – propeller speed, r/s; ρ – density of water, kg/m3; Dp – propeller diameter, m; 

KT – propeller thrust factor; KF is the coefficient of momentum.  

The relative pitch of the propeller λ (Hp)=υa/(ωDp), where υa is the speed of water 

inflow to the propeller. The efficiency of using the propeller in open water is defined 

as the ratio of the work performed by the propeller to obtain the thrust force to work 

necessary to overcome the torque on the shaft: 

 
λ

η .
2π 2 π

a p T
p

p F

M K

T K

 
= = 


  (57) 

 

As an initial test, a simple speed jump was made. This is done both for 

synchronous steering, when the input signals for both ATs are the same, and for 

differential (asynchronous), when the ATs can be controlled independently. Both 

simulations are performed using the linearization of the drive, where α is zero (46). 

 

5. 2. 1. Synchronous control over aft azimuthal thrusters 

The purpose of setting was to get a relatively fast transient characteristic with 

minimal overshooting, so the emphasis was on minimizing tracking errors. This is 

mainly done in order to see the relationship between the speed of rotation of the 

propellers and the characteristics of the load surge, as well as how the angle of the 

propeller, close to zero, behaves. Weight matrices and reference gain will be 

determined as follows: 
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0 1 0 ,

0 0 1

Q
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 2

1 0
,
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Q
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=  
 

 3

10 0 0
,

0 0 0
Q

 
=  
 

 

  (58) 

 

giving the results shown in Fig. 10–12. 

 



 
 

Fig. 10. Response to the jump in setting 

 

 

 
a  

 

 
b  

Fig. 11. Speed setting: a – sway speed; b – yaw speed 
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Fig. 12. Input signals: a – setting the speed jump; b – angle α 

 

Fig. 12 demonstrates a jump in the speed of rotation (a), which stabilizes with a 

constant zero angle, which leads to a quick response to the jump and no overshooting. 

As expected, the reference zero angle does not lead to sway or yaw, as shown in Fig. 11. 

 

5. 2. 2. Differential (asynchronous) control over azimuthal thrusters 

For differential control, the goal was the same as for modeling synchronous 

control over ATs in order to get a quick response in response to perturbations. Thus, 

the setting was similar, with the exception of the bottom two elements in the left 

column of the reference amplification. They correspond to setting and must have 

different signs so that the controller can use them to stabilize the system. They can also 

be zero but then this simulation will be no different from a synchronous control 

simulation. In fact, this is not a problem, but it does not reveal the possibility of 

differential asynchronous control. 



The simulation results are shown in Fig. 13–15. Some similar behaviors of the 

control system can be seen in Fig. 13, 14 compared to the previous modeling. This 

indicates that the simulation is working properly.  

 

 
 

Fig. 13. Differential (asynchronous) response to the jump in setting 

 

It can also be the result of linearization where the quadratic rotational speed 

function is more influential than the AT angle function. This may also be due to the 

fact that the elements of the matrix Lr (3, 1) and (4, 1) are not zero (59): 
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 (59) 
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Fig. 14. Setting differential velocities: a – drift sway; b – yaw  
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Fig. 15. Differential input signals: a – speed jump setting; b – setting angle α 

 



Fig. 15 demonstrates some differences. Both engines have a small angle of 

location relative to the diametrical plane of the vessel. This leads to the fact that both 

AT engines need a lower rotational speed to ensure the assigned water flow rate. 

 

5. 3. Yaw speed modeling based on a defined space of states 

To investigate the behavior of the physical scale model of the vessel when turning, 

a step is taken to set the reference yaw speed. To test the possibilities and realistic 

implementation in practice, two different simulations are performed. One, in which 

there is some "mitigation" of the installation time and there is a re-adjustment (peak 

test), and another in which the controller tries to adhere to the reference task as "rigidly" 

as possible (smooth test). The peak test has been adjusted so that all simulations, 

including it, have the same installation time about 10 seconds after the start of the task. 

Since linearization and simplification of the model have been carried out, this test can 

give unrealistic results, but is still considered to correspond to the capabilities of the 

control system. 

 

5. 3. 1. Zero-angle linearization with synchronous control  

For subsequent simulations, the same rotational speed and angle of the propeller 

are selected for both ATs. 

In this simulation, the controller uses matrices obtained by linearization around 

the operating point with translational motion of input signals (44), which are designed 

to work with the angle of the propeller close to zero. For the controller, two different 

settings are used, which are performed for two tasks: first, for the state when the input 

signals are equal to 1, and the reference gain is adjusted to achieve the target value. 

Another setting fixes a tracking error to increase rotational speed, providing the closest 

speed to the reference value while keeping the input level for a lower pitching speed 

value. In this regard, finding the limit of establishment takes more time, which gives 

information about the ability of the system by comparing a uniformly and more 

aggressively tuned system. Matrices of reference coefficients and transmission 

coefficients, where p and s denote peak and smoothing indices take the following 

forms, respectively: 
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Fig. 16. Transitional characteristic of zero angle linearization 
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Fig. 17. Input signals of linearization of the zero angle: a – speed of rotation; b – 

angle α 
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Fig. 18. Linearization at zero angle: a – speed of movement; b – drift sway speed 

 

According to Fig. 17, b, the final value of α is αp=αs=0.065 rad. 

Figure 16 shows the main results of the work of two different controllers. The 

maximum value setting controller provides an overshooting that is 7 times higher than 

the reference value but stabilizes after 10 s. Most likely, this is the result of a change 

in the angle of location of AT, as shown in Fig. 17, at which α reaches a very high 

negative value, close to –20 rad, which is far from a realistic scenario for a real AT. 

This fact gives reason to overestimate the need for a sharper change in the rate of yaw 

over the slow one to counteract the state when the overshoot reaches such a high value. 

However, reducing α is advisable from a physical point of view because a small 

negative angle will provide positive torque around the z axis and a positive yaw speed. 

Although it can be a debatable point if such a small angle can have such an impact if 



the zero angle gives similar results for this controller mode. Another interesting aspect 

is how separated the rotational speed and speed throws are, since the controller shows 

the same behavior for both simulations, which for a real AT can significantly affect the 

results.  

In a controller with a smooth setting, the output value seems to "follow" the 

reference value but differs from another controller. Reducing and restoring α to the 

final stabilized value occurs in less than a second, which is not possible for a real AT 

due to its dynamic properties. Figure 18 shows that the oscillation rate is set much 

slower. This means that there is some unrelated behavior since the input signal for the 

system is the same time interval of 20 seconds, but the oscillation rate at this time is 

different. Some unrealistic behavior of ATs may be associated with the linearization of 

α and its trigonometric dependence. The trigonometric function, which is periodic and 

only distributes the forces created by the number of revolutions between xb and the yb 

axis, cannot exceed 1. When applying linearization, the controller "believes" that the 

higher value of α corresponds to the higher value of the resulting force, which in 

practice is not true. 

 

5. 3. 2. Linearization with nonzero angle in synchronous control 

The model is configured based on the linearization method (45) where the angle 

of the propellers α has a small negative value, which is considered close to the resulting 

final value for a given simulation of the yaw speed. This is done in order to see if this 

setting will give better results than zero-angle linearization. The goals of designing 

settings are similar to previous simulations. One of the main differences is that the third 

element in the first line for the assigned gain value also needed to be adjusted. 

Otherwise, the speed jump tends to take a negative value, which requires a different 

behavior of the model and makes it difficult to compare the two simulations. The 

weight matrices and gain values for this simulation are as follows: 
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which give the results shown in Fig. 19–21. 

According to Fig. 20, the final value of α is αp=αs=0.0168 rad. 

These results are similar to those obtained in the previous simulation but with 

some difference in the behavior of the model. The peak setting gives slightly better 

results since its overshoot only reaches a 6x reference value. The main difference lies 

in the higher speed of rotation of the propellers, which is almost ten times more 

influential on the speed of longitudinal advancement. That is, the non-minimal phase 



response coincides with the fastest response when the maximum setting peak speed is 

reached. A smooth setting makes the controller's response slower than during the "peak 

setting" according to Q1,s (61). 

 

 
 

Fig. 19. Transitional characteristic with nonzero angle α 
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Fig. 20. Input signals with a non-zero angle α: a – propeller speed; b – angle α; 

 

 
a  

 



 
b  

Fig. 21. Dependence of speeds with a non-zero angle α: a – speed of surge; b – 

sway speed  

 

The most interesting thing in this simulation compared to the previous one is the 

charts of input signals in Fig. 20. The speed of rotation (Fig. 20, a) has a much greater 

value, in contrast to the angle α (Fig. 20, b), the resulting transitional characteristic of 

which has not changed much. First, it can be the result of linearization, in which the 

controller mainly responds to setting the angle α with the support ω at the same level 

if there is no need to increase the rotational speeds. Secondly, input signals show which 

setpoint values for α are positive, close to zero, but positive. Theoretically, for the 

modeling process, this should not be the case. 

 

5. 4. Principles of linearization with independent control over rotational 

speed and angle of AT 

5. 4. 1. Linearization with zero angle in asynchronous control 

In the following simulation, differential control is applied, in other words, the 

possibility of independent control over the speed and angle of rotation of both ATs. 

First, linearization with a zero angle α is used for differential (asynchronous) 

control over aft ATs. Modeling is carried out according to the same algorithm for the 

research of two configuration schemes for different purposes. Using differential 

(asynchronous) control, it is possible to observe a slightly different, potentially more 

improved behavior of the controller, which is confirmed by the following results. 
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The final values of αp and αs (Fig. 25) are: αp=–0.084 rad, αs=–0.41 rad. 

 

 
 

Fig. 22. Differential transition characteristic for the zero angle α 

 

Transient characteristics for surge, sway, and yaw speeds (Fig. 22, 23) show the 

operation of ATs similar to the simulation of synchronous control in chapter 5. 3. 2. 

Here, the emission of the step characteristic is lower, and the speed of surge reaches a 

higher final value. However, some interesting things can be observed in the input 

signals. The angle α is the same for both engines with two different settings, despite 

the ATs having a differential degree of freedom. This may be the result of linearization, 

making it the only adequate solution. The great depression is shown in Fig. 25, while 

the simulation is smaller, indicating steps in the right direction. The final α value for 

the peak setting is almost similar to synchronous control but the smooth setting is closer 

to the actual π/6 value, which is also a good indicator for this controller. 
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Fig. 23. Differential velocities at zero angle α: a – surge; b – sway 

 

It is possible to observe completely different values of ω (Fig. 24), which indicates 

less impact on the system of this input signal. For both settings, one of the propellers 

rotates at a lower speed, which in practice is an advantage. When one propulsion 

provides more thrust, it creates the appropriate torque by turning the ship. Using this 

difference in rotational speed, the controller can more efficiently adjust the speed of 

rotation of the vessel. 

 



 
 

Fig. 24. Differential speeds of rotation of the azimuthal thruster at zero angle α 

 

 

 
Fig. 25. Differential input signals at the assigned zero angle α 

 

The problem that can be seen in this simulation is that any configuration of the 

values of the speed of rotation of ATs moves the ship "incorrectly". Since propulsion 

1 is located to the left of the xb axis, and propulsion 2 is on the right, this development 

will provide a negative rotation speed. This is another sign that the controller is 

counteracting itself, which confirms the consequence of the linearization of the input 

signal. 

 

5. 4. 2. Linearization with a nonzero angle in asynchronous control 



The following settings are based on a nonzero differential angle linearization 

model (45) and have the same adjustment aspects as in the previous simulation with 

the same problem where the controller required negative speed spikes. Therefore, this 

has also been fixed with the controller setup. Weight matrices and reference gain are 

as follows: 
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The simulation results are shown in Fig. 26‒29. 

 

 
 

Fig. 26. Differential transition characteristic with a nonzero angle α 

 

The final values of αp and αs (Fig. 29) are equal to:  

 

αp,1=3.64 rad, αs,1=2.68 rad,  

 

αp,2=−4.81 rad, αs,2=−3.52 rad. 
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Fig. 27. Differential velocities at a nonzero angle α: a – surge: b – sway  

 



 
 

Fig. 28. Differential rotational speeds with a nonzero angle 

 

 
 

Fig. 29. Differential input signals at the assigned nonzero angle α 

 

The simulation results are unique from all yaw velocity simulations. The peak 

step shows that the emission is significantly lower than in any of the previous 

calculations. This excess reaches only double the value in relation to the reference. 

Charts of transients in Fig. 29 demonstrate results similar to previous simulations but 

with different final values. They can be configured through the application of reference 

amplification, which is not necessary because the purpose of the simulation is to find 



out how the behavior of ATs affects the system, and not what are the final values of 

the angles α. 

 

 
 

Fig. 30. Illustration of differential modeling results with the angle α different from 

zero 

 

However, in practice, input signals "behave" realistically. Both the jump settings 

and the smooth setup lead to similar transient characteristics but with different final 

values. These values have been interpreted and illustrated in Fig. 30, which shows that 

both ATs engines, as in previous simulations, are counteracting each other but now in 

a controlled way. The left AT has a greater angle α value compared to the right, which 

provides more torque around the z axis and, therefore, an increase in rotational speed. 

Although the right motor has a higher rotational speed, creating negative torque around 

the z axis and thus canceling the forces from the left motor. This makes it possible to 

achieve a constant turning speed. However, the method creates many unnecessary 

opposing forces in the direction yb. Angle values are still far from the operating point, 

making linearization accuracy low. However, our results show trends in the right 

direction. 

 

5. 5. Determining the limiting characteristics of the controller 

To ensure more efficient and reliable control, it is necessary to ensure adequate 

real-time distribution of ATs thrust and the generation of optimal control input data, 

namely rotational speed and azimuthal angles. To do this, LQR must use a sparse 

matrix structure using the variable direction method of the multipliers to obtain a 

reliable optimal solution. 

To partially solve this problem and further improve the system, an algorithm was 

developed to establish limits of azimuthal angles instead of strictly observing the 



reference step of the yaw velocity. This simulation was performed with differential 

nonzero angular linearization. The matrices of weight and reference gain for this 

simulation are as follows: 
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The simulation results are shown in Fig. 31‒34. 

The final values of α1 and α2 (Fig. 34) are: α1=0.63 rad, α2=−0.28 rad. 

 

 
 

Fig. 31. Setting a step-by-step characterization limit 
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Fig. 32. Restriction settings: a – acceleration of surge; b – acceleration of sway 

 
 

Fig. 33. Setting the rotational speed limit 

 



 
 

Fig. 34. Setting an angle α limitation 

 

The result of this simulation gives the lowest jump in setting the angle α of all 

previous simulations but instead has a much longer establishment time, reaching almost 

a minute. The acceleration speed of surge is also significantly greater than in any 

previous simulation. This simulation assumes that the appropriate configuration of the 

controller for the model will be longer, which indicates a non-significant decrease in 

the versatility of the controller by increasing its prospects. 

When compared with a possible real reaction, almost any angle α that is not close 

to the working value will differ significantly from the actual one. A possible solution 

for this problem is to use predictive amplification. 

Predictive amplification is an approach to controlling a nonlinear system using 

multiple linear controllers. Thus, having several linearization species with respect to 

the approximation of the trigonometric function at different operating points, LQR can 

be applied to these segments independently.  

The use of predictive LQR gain can help eliminate the problem of switching 

between linearization species. If we neglect this aspect, then an unstable state or 

instability in the system may occur. 

Table 1 gives the calculated data and parameters of the physical model of SBVs 

(Fig. 1–5) for real-time modeling of the model's behavior in dynamic positioning mode 

with adequate distribution of ATs thrust and the generation of optimal control input 

data. 

 

Table 1 

Parameters of the SBV model and thrusters 

Name Designation  
Unit of 

measure 
Value  

Port side AT 

y1 m –1.22 

x1 m –0.23 

Fmax N 894 

Fmin N 0.264 



ω r/s 7.96 

α1max rad 3.925 

α1min rad –0.785 

α rad 0.088 

Мp (56) N/(r/s)2 6.6e-4 

Starboard AT 

x2 m 0.23 

α2max rad –0:175 

α2min rad –3:054 

 

The SBV model with ATs moved forward with a constant thrust force Fx, and 

changed course by turning the moment, changing in time lasting 450 s. Random "noise" 

was added to the desired generalized force (Fig. 35, c) to check the reliability and 

constancy of the assigned method of thrust distribution.  

 

 
a  

 

 
b  



 
 

c  

Fig. 35. Real-time simulation results: a – propeller thrust characteristic Fx; b – 

characteristic of the thrust of the propeller; c – Fy, characteristic of turning moment 

 

It is shown that the real value of the generalized force is well consistent with the 

assigned generalized force, except for the duration of the time from 0 to 25 s where a 

rapid increase in Fx leads to a deviation of Fy. 

 

6. Discussion of the results of researching the method of linear-quadratic 

control over the physical model of a vessel with azimuthal thrusters 

Based on the simulation results, we can conclude that the functional ability of the 

controller relative to the real situation depends primarily on the configuration of the 

values of the speed of rotation of ATs. The problems that arise with the controller and 

model, and possible potential solutions to improve the system as a whole, rely on the 

LQR predictive gain method, which in turn will help eliminate the problem of 

switching between linearization species. 

When modeling the acceleration of surge, the results show adequate operation of 

the controller, which quickly works out the task without a significant difference 

between synchronous and asynchronous (differential) control of aft ATs. The 

relationship between the speed of rotation of the propeller and the actual speed of the 

model is linear, which can be considered an excessive simplification. Performing 

additional physical tests of the model in terms of determining the true nature of such a 

dependence, it was found that the resulting model can improve the characteristics of 

the controller when modeling the yaw speed. Another interesting thing that could be 

tested is the work of the controller under the influence of non-deterministic 

environmental disturbances, such as wind, waves, or currents. This can be done in 

research pools with the appropriate equipment. 

When modeling the yaw speed, the results showed the true capabilities of the 

model and controller since they included all states and input signals. The two settings, 

one of which "hard" tracked the set speed and the other was somewhat "softer" in the 

time of reaching the setpoint, had mostly the same dependence of the output signal 

(Fig. 17, 20). Some interesting results regarding the ratios of the maximum and final 

values of the angle α can be observed for the dependences of input signals and the 



velocities of surge/sway (Fig. 23, 27). For all simulations and settings, the azimuthal 

angle reached a relatively large negative value before reaching a steady one. 

In practice, this will force the AT engines to rotate around the axis of the baller, 

increasing the yaw speed, which, from the point of view of the characteristics of the 

controller, occurs due to the linearization of the model, or rather by controlling the 

angle α and linearization of the input signal. Excessive dependence on the angle α 

means that it is effectively possible to control only the angle of α, and for the overall 

control over the movement of the vessel, more delicate adjustments are required. 

Excessive dependence on the angle α is observed on the dependences of surge and 

sway. Here, the speed of surge is much lower than the sway speed, which means that 

the vessel is moving mainly by lag, which in practice under this mode would create 

resistance and stop. To continue moving, it is necessary to change the orientation of 

the vessel. When simulating pitching, the risk of overturning the vessel also increases. 

This indicates that something is amiss with the model and is most likely the result of 

the simplifications made during the creation of the model. 

Most of the elements in the matrix of states A (53) are zero, which in practice 

would have a great impact on a real vessel during physical tests. These elements show 

how much some states depend on others and to what extent. "Zero" elements indicate 

that there is no relationship between these states – centripetal forces and Coriolis 

forces. However, it is the linearization of the input signal that leads to the reaction of 

the controller, which is not fully adequate with respect to the actual change in the angle 

α of ATs. Thus, to resolve the specified discrepancy between the input signals and the 

output forces of ATs, additional research is needed, in particular in the area of changing 

the differential settings of the controller. 

The speed of rotation of the propellers is different for two ATs, which makes it 

possible to change the direction of movement of the vessel without changing the angles 

α of ATs. During the simulation, the controller sets the speed of rotation of the 

propellers in such a way that a negative yaw velocity is created, so that it counteracts 

the change in the input angle. This can also be the result of excessive dependence on 

the angle α, so the speed of rotation of ATs propellers is used only to obtain the exact 

result corresponding to the task. However, the last simulation, which is a differential 

(asynchronous) control with linearization of a nonzero angle, is the most physically 

probable scenario (Fig. 30). The right AT pushes the ship forward and right, and the 

left AT, if continued to turn in said direction, will also create a greater emphasis for the 

vessel to turn right. This shows that the applied principle of control creates many 

opposing forces directed in different directions, which physically indicates the 

adequacy of the solution and the potential feasibility of using this control method. 

Modeling a mode under which the speeds of surge, sway, and yaw are less 

dependent on each other also creates several problems with the control of the vessel, 

for which it is necessary to improve the theoretical part of the simulation in order. For 

example, centripetal and Coriolis terms, CRB(ν) must be linearized using different 

stationary points. The damping matrix D(ν) here is approximated by a diagonal matrix 

but could potentially be expanded, which as a result could be the cause of an unrelated 

vessel reaction in a particular state. The values of the parameters can affect the negative 

simulation result. Therefore, operational tests with monitoring of the parameters of 



certain measured resistances and azimuthal characteristics can help improve modeling 

performance. 

ATs are characterized by extremely high force intensity of the elements of their 

design. Mechanical loads can reach the permissible limit of strength. First of all, this 

applies to the elements of Ats subjected to the most intense influence of operational 

loads and the corresponding destructive processes. Exaggeration of loads beyond 

nominal causes destruction of the installation elements. In combination with the 

absence of reserved parts and assemblies in ATs, the destruction of any main element 

leads to a loss of operability of the installation at all. Information about the load in the 

elements of ATs can be used as an additional one in the implementation of the 

installation control processes. The conclusion is based on the assumption that a change 

in geometry or a decrease in the damping of vibrations by the supports of ATs elements 

should be reflected in the total load transmitted by the propeller and PEM to the hull 

of the vessel in the support placement brackets. Therefore, it is advisable to use as 

additional information the results of incliniometry of PEM supports [36, 37]. 

The limitation of our studies concerns primarily achieving the consistency of 

additional measurements of perturbations in the cases where the moments of the first 

order are unknown. In this case, a structure is proposed for estimating the moments of 

the first and second order along with the parameters of the model. Secondly, 

theoretically, the time of increase in torque in FC with PWM is limited by the 

inductance of the motor in dependent current inverters with a DC link. This aspect 

requires experiments on parameterization, which is not always possible.  

The disadvantages of this research include the fact that in order to take into 

account these restrictions, a number of simplifications were adopted:  

‒ we excluded degrees of freedom (DOF), which have little effect on the system;  

‒ only 3 degrees of freedom (DOF) out of 6 (pitching, roll, and yaw) were used 

in the simulation; 

‒ some parts of the resulting mathematical model were linearized to make the 

model work with LQR. 

To solve these problems and limitations in terms of obtaining more adequate 

results, instead of using the LQR infrastructure, which requires linearization, it is 

necessary to apply a method based on a model predictive controller (MPC), which 

eliminates the need for linearization. Since MPC is also based on the theoretical models 

discussed in this research, they can be reused. Another option for controlling the vessel 

may be to use Fuzzy LQR, which can handle nonlinear systems [38‒42]. 

The practical significance of our results is the fact that the quadratic optimization 

model is a very effective and reliable technique in the process of designing sea-based 

vehicles of various configurations of thrusters for optimal control. 

Owing to its low computing complexity and hardware requirements, control 

distribution algorithms can work on embedded platforms. In addition, it is possible to 

apply averaged values to the control commands for ATs engines, which leads to a 

decrease in the wear of structural elements. 

 

7. Conclusions  



1. For the physical scale model of SBVs, the physical model of ATs in the aft part 

can be implemented on the basis of actuators, an electronically commutated motor, and 

a servo drive for each AT. Electronically commutated motor is connected to the 

propeller of AT through gear transmissions. In practice, the controller uses input data 

from GPS and IMU to determine the position, course, and speed of the vessel. To adjust 

the speed and torque of the electric motor, it is necessary to measure the currents of the 

motor and calculate the throughput of converters with high accuracy. In practice, it is 

necessary to provide for limiting the rate of change of torque to prevent damage to the 

mechanical part of the electric drive. 

2. Checking the behavior of the model showed that in order to obtain a relatively 

fast transient characteristic with minimal overshooting, it is necessary to minimize the 

tracking error. Studies of the design features of vessels of this class confirm that jumps 

in the speed of rotation of ATs, which stabilize with a constant zero angle, lead to a 

quick response to the jump and the absence of overshooting. The small angles of 

location of ATs relative to the diametrical plane of the vessel lead to the fact that both 

AT engines need a lower rotational speed to ensure the assigned water flow rate. 

3. The determination of the space of states and the linearization of ATs control 

system allows for adequate modeling of the yaw velocity to track the effect of 

disturbing forces on the characteristics of the controller. Moreover, it was found that 

small negative angles provide positive torque around the z axis and a positive yaw 

speed. To take into account the dynamic properties of real ATs, it is necessary to be 

able to adjust the reduction and restoration of angle α to the final stabilized value. It 

can also be concluded that when applying linearization, the higher value of α 

corresponds to the higher value of the resulting force, which in practice is not true. 

4. Independent control over the speed and angle of ATs with linearization with 

zero or non-zero angle of ATs proved its greater adjustable ability than synchronous. 

To reduce the counteraction of ATs engines, it is necessary to apply a coordinated 

change in the magnitude of angle α with the speed of rotation. And to cancel the 

corresponding forces, it is necessary to adjust the speed of rotation, creating a negative 

torque around the z axis. Increasing the accuracy of linearization is possible by 

eliminating unnecessary opposite forces in the yb direction.  

5. The use of the predictive amplification method in the future makes it possible, 

albeit by reducing the versatility of the controller, to increase its realism. To improve 

the functioning of the models, the controller was configured for more realistic output 

and input parameters. The change in the principles of linearization of the input signal 

led to it acting more as a trigonometric function of predictive amplification. The result 

has made it possible to find out the influence of the orientation of ATs on the position 

of the vessel, and the linearity of the model affects the functionality of the controller. 
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https://entc.com.ua/download/Збірник%20тез_11_Наукової%20конференції_НАУКОВІ%20ПІДСУМКИ%202022%20РОКУ_.pdf
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