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Abstract—Ethereum is a cryptographic currency system built
on top of blockchain. It allows anyone to write smart contracts in
high-level programming languages, solidity is the most popular
and mature one. In the last few years, the use of smart contracts
across domains has increased a lot, security analysis to detect
the potential issues in contracts thus becomes crucial. Theorem
proving is a formal method technique which mathematically
prove the correctness of a design with respect to a mathematical
formal specification, that can be applied to smart contracts’
secure analysis. The successful implementation of a deduction
calculs of theorem proving in an automated reasoning program
requires the integration of search strategies that reduce the search
space by pruning unnecessary deduction paths.

This paper desribes SPrune, a code pruning tool designed
to simplify static analysis for solidity contracts. It works by
unfolding derived contracts based on the inheritance between
contracts in one smart contract, and execute code pruning on
the unfolded contract. Our tool allows for the application of
static code pruning and provides facility for solidity contract
developers and testers to trace and localize bugs in contracts.

Index Terms—Ethereum, Solidity, smart contracts, static anal-
ysis

I. INTRODUCTION

Blockchains are underlying technologies for promising se-
cure distributed computations even in the absence of trusted
third parties. It is the decentralized nature of blockchain
assures transactions using cryptocurrencies autonomously
and truthfully executed. The most prominent and popular
blockchain-based distributed computing platform is an open-
source, public platform called Ethereum. It is also an operating
system featuring smart contract functionality [1]. Developers
write the smart contract in Turing-complete languages to
develop a variety of applications across domains, including the
financial industry, supply chain management, and government
services.

Despite the increasing use of smart contracts in various
domains, the deployed smart contract can be insecure. Bugs
and vulnerabilities in smart contracts may lead to severe con-
sequences. For instance, 150M were stolen from the popular
DAO contract by exploiting the fallback function in the code
that was exposed to reentrancy in June 2016, 30M were
stolen from the widely-used Parity multi-signature wallet by
exploiting the delegatecall and fallback function in the smart
contract library for the multi-sig wallets in July 2017, and a
few months later 280M were frozen due to a bug in the very

same wallet. Today, Luu [2] estimate that 45 percent of smart
contracts written in Ethereums programming language Solidity
are vulnerable. Effective security analysis for smart contracts
is thus crucial for the trust of the society in blockchain
technologies and their widespread deployment.

Solidity is the most mature high-level language for writing
smart contract [3], [4]. It allows developers to write smart
contracts and compile to bytecode of the Ethereum virtual
machine (EVM). Existing tools and frameworks designed to
analyze smart contract were generally based on analyzing the
bytecode of solidity contracts, or transform solidity code to
other programming languages or intermediate representations
[2], [4]-[6]. But most of these tools are based on functional
verification and can only scratch the surface, as they work by
verifying that the logic design conforms to the specification.
When it comes to financial concerned contract, we want to be
sure that our contract behaves correctly 100% of the time.

Formal verification is the act of proving or disproving
the correctness of intended algorithms underlying a system
with respect to a certain formal specification or property,
using formal methods of mathematics. It allows us to prove
conclusively that certain error states can never occur. Theorem
proving is a formal method for checking a infinite system.
In theorem proving, systems are defined and specified by
users in an appropriate mathematical logic. Important/critical
properties of the system are verified by theorem provers.
Theorem prover checks that whether a statement (goal) can be
derived from a logical set of statements (axiom/hypothesis). It
can model and verify any system that can be defined with the
help of mathematical logics.

In this paper, we provide SPrune, a solidity code pruning
tool to predigest smart contract for further verification. To
make the smart contract suited to further modeling process,
we first unfold derived contracts in one smart contract, using
the inheritance between them. In solidity, inheritance is make
a base contract that implement functionality and reuse it
in future contracts. When a contract inherits from multiple
contracts, only a single contract is created on the blockchain,
and the code from all the base contracts is copied into the
created contract. After unfolding the contracts, we unfold
function calls with their respective definition to enhance the
codes’ clarity and make it less verbose.

We evaluate SPrune on a collection of smart contracts that



are running on the Ethereum network. Our result shows that
the utility is easy to use and could effectively cut down
the size of solidity contract, while maintaining the necessary
functionality.

II. BACKGROUND INFORMATION

In this section, we provide a brief introduction to Ethereum
platform, smart contracts and theorem proving.

A. Ethereum Platform

Ethereum is an open software platform based on the
blockchain technology. The developers can implement, com-
pile, test, deploy, and execute the centralized applications upon
it [1]. Ethereum provides a decentralized virtual machine, the
Ethereum Virtual Machine (EVM), which is designed to serve
as a runtime environment for Ethereum smart contracts and
can execute scripts using an international network of public
nodes. Ethereum network is a distributed and decentralized
network with permission-less untrusted peers.

Ethereum protocol moves far beyond just currency. Proto-
cols and decentralized applications around decentralized file
storage, decentralized computation and decentralized predic-
tion markets, among dozens of other such concepts, have
the potential to substantially increase the efficiency of the
computational industry, and provide a massive boost to other
peer-to-peer protocols by adding for the first time an economic
layer.

B. Smart Contracts

Smart contracts in Ethereum are computer programs written
in Turing-complete programming languages, the most mature
and wide use one is Solidity [7]. Smart contracts are compiled
to bytecode that is executable on the EVM. Ether is the second
largest cryptocurrency in the world after Bitcoin, and smart
contracts can be used to quickly build decentralized appli-
cations on the Ethereum platform. Users can use compatible
programming languages to write any rules and functionalities,
and the rules are encoded as smart contract to invoke an action,
whenever it is required by users or other smart contracts. Smart
contracts can be applied to various kinds of applications such
as financial transactions, prediction markets and internet of
things. Users invoke smart contracts by referring transactions
toward the contract address [8].

C. Theorem Proving

Two most popular formal verification methods are model
checking and theorem proving. In model checking, a finite
model of the system is developed first, whose state space is
then explored by the model checker to examine whether a
desired property is satisfied in the model or not [9]. However,
model checkers still face the state-space explosion problem
[10]. Theorem proving on the other hand, can be used to
handle infinite systems. In theorem proving, systems are
defined and specified by users in an appropriate mathematical
logic. Important/critical properties of the system are verified
by theorem provers. Theorem prover checks that whether a

statement (goal) can be derived from a logical set of statements
(axiom/hypothesis). It can model and verify any system that
can be defined with the help of mathematical logics.

III. PRUNING METHOD

To improve the efficiency of applying theorem proving to
smart contract verification, we proposed to cut down the size
of contract and only retain codes that are necessary to further
analysis. Considered solidity is the most mature high-level
programming language for writing smart contract, we provided
SPrune, a solidity code pruning tool to predigest smart contract
for further verification, so as to reduce the search space of
deduction before further modeling process.

Our solution completes in 3 steps. Step 1 focuses on using
the inheritance between contracts to unfold contracts in a smart
contract. Step 2 unfold calls of function with their respective
definition. Step 3 executes code pruning and retain codes that
are necessary to further analysis. We will discuss each of these
steps in more detail in the rest of this Section.

A. Unfolding of Contracts

Solidity supports multiple types of inheritance, including
multiple inheritance. Solidity copies the base contracts into the
derived contract and a single contract is created with inher-
itance. A single address is generated that is shared between
contracts in a parent-child relationship. To simplify further
code pruning process, we need to unfold derived contracts
based on the inheritance between contracts in one smart
contract. We use an example shown in Listing 1, containing a
base contract and a derive contract, to illustrate the phase.

1 | contract Base{

2 uint internal id;

3 function setValue(uint _value) external {
4 id = _value;

5 }

6 |}

7

8 | contract Derive is Base{

9 function getValue() external view returns(uint) {
10 return id;

11

12 |}

Listing 1. Contract combining example

Inheritance marks several associated contracts with a parent-
child relationship, the contract that inherits from another
contract (the parent) is the child. All function calls are virtual
in solidity, which means that the most derived function is
called, except when the contract name is explicitly given or
the super keyword is used.

contract Derive {
uint internal id;
function getValue () external view returns(uint) {
return id;

function setValue(uint _value) external {
id = _value;
}

O©CONO O WN =

Listing 2. Contract combining example



In this case, the parent and child correspond to the Derive
contract and the Base contract, respectively. The unfolded
contract is shown as Listing 2. Contract Derive inherits from
Base, only Derive is created on the blockchain, and the code
from the base contract is compiled into the Derive.

B. Unfolding of Function Calls

To enhance clarity of the codes and facilitate further code
processing, we unfold function calls with their respective
definition after unfolded contracts in the same parent-child
relationships. There shows three forms of function calls to
unfold in our situation [11].

o Call functions defined in the same contract.

« Explicitly give contract name or use “super” keyword to
call external function.

« Use the directive “using A for B” to attach functions from
library A to type B, these functions will receive the object
they are called on as their first parameter.

We use different templates to unfold the above forms of

function call. In this section, we take the library function call
in Listing 3 as example.

6 function subBalance(uint x) {

7 balanceOf[msg. sender]=balanceOf[msg. sender]—x;
8

9 function getBalance (){

10 return balanceOf[msg.sender];

11 }

12 |}

Listing 5. Code pruning example

Take the contract in Listing 5 as an example, any code that
involves transaction or balance operation need to be retained.
After the unfolding of contract inheritance and function call,
for each function that contains code that meet our criterion, it
also contain the code that may affect the matching code. Thus,
retain the functions which contain code that are relevant to
criterion and prune the left ones can reduce the size of contract
a lot, without affecting the functionality we concerned.

contract C {
mapping (address => uint256)
function senderTransfer () {
msg.sender. transfer (msg.value);
}

function subBalance(uint x) {
balanceOf[msg. sender]=balanceOf[msg.sender]—x;
}

public balanceOf;
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1 | library libA {

2 function add(uint256 a, uint256 b) internal pure
returns (uint256) {

3 uint256 ¢ = a + b;

4 assert(c >= a);

5 return c;

6

7 |}

8

9 | contract C {

10 using libA for uint256;

11 function f(uint x, uint y) {

12 X = x.add(y);

13 }

14 |}

Listing 3. Function call replacement example

For this form of call, we first check the object that called,
if the object type is attached with a library, take the object
as first parameter and replace the function call with function
definition in corresponding library.

contract C {
function f(uint x, uint y) {
uint256 ¢ = x + y;
assert(c >= x);
X = C;
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Listing 4. Function call replacement example

C. Execution of Code Pruning

To reduce the search space in further theorem proving, the
code that are unecessary to analysis should be removed. In
this paper, we consider code that related to balance change as
criterion.

1 | contract C {

2 mapping (address => uint256) public balanceOf;
3 function senderTransfer () {
4
5

msg.sender. transfer (msg.value) ;

Listing 6. Code pruning example

In this case, call of “transfer” function and subtract oper-
ation to an element of “balanceOf” array meet our pruning
criterion. Therefore we retained the functions that contained
these code, and removed those that are unrelated to criterion.
The pruned code of this example is shown as Listing 6.

IV. EVALUATION

We evaluate efficiency, syntactic support in using our prun-
ing tool over 100 unique Solidity contracts randomly chosen
from the Ethereum network.

A. Solidity Language Support

How does SPrune support constructs in the Solidity syntax?
To answer this question, we first inspect contract code in our
dataset and the official Solidity documentation to check the
range of syntactic structures present in the dataset. As the
unfolding of function call is the most syntactic concerned
phase in the working process of SPrune, we discuss supported
types of function call in this section.

Function calls in Solidity can be of several types: inter-
nal, external, delegate, and calls to certain builtin functions.
Internal function calls are simply jumps in the code of the
current account. External calls cause a message to be sent over
the Ethereum network, executing code on another account.
Delegate calls exist to provide a functionality akin to shared
libraries. That is, they allow code from another account to
directly operate on the storage of calling account [11].

Since SPrune is built to facilitate static analysis, we only
unfold internal calls and external calls in SPrune. For external
calls, the code executed by outgoing external function calls
may not be available, or not written in Solidity, thus we decide
to focus on the calls to the known function in current contract
file.



B. Syntactic Correctness

Does the output produced by SPrune satisfy syntactic cor-
rectness? In the case of predigestion for static analysis, we
have to take the correctness of output into account. To validate
this property, we ran SPrune on all smart contracts contained
in our dataset. The outputs were checked through the solc
compiler for syntactic correctness, no problems were found.
Apart from this, we also test functions in the pruned contract
on a browser-based Solidity realtime compiler named Remix
to check whether the functions work as original. We ran the
functions with the same input as we ran the original ones, the
results appeared to be consistent.

To ensure the syntactic correctness of SPrune’s output, we
will use formal verification to verify it’s correctness in our
future work.

C. Time Efficiency

Time efficiency is one of the most concerned properties
when analyzing process tools. We present the composition of
our dataset in Figure 1. Contracts with less than 1000 lines of
code take 93 percent of the dataset, and those with less than
500 lines of code take 76 percent.
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Fig. 1. Dataset composition

We randomly choose 100 contracts from the dataset with
respect to the proportion and inspect the time efficiency of
SPrune. The average time consuming for each set of contracts
in using SPrune to prune smart contracts with different size are
reported in Figure 2. SPrune finished pruning in 1.25 seconds
for 80% of the contracts with less than 500 lines of code,
5 seconds for 90% of those with less than 1000 lines of
code. Still, several contracts took times of the average to finish
pruning. To understand why code pruning for these contracts
took significantly longer, we profiled the SPrune phases and
found that 95% of the time was spent on replacing the function
call. The most time consuming part of SPrune’s execution is
the function call replacement phase, we use recursive queries

to look for function definition, Thus the running time is mainly
affected by the number of function calls in a contract.
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Fig. 2. Time consuming in each set of contracts

In our future work, we will find ways to optimize and
accelerate function call replacements.

D. Pruning Efficiency

To validate that SPrune can facilitate static analysis ef-
fectively, we have used several solidity static analyzers to
analyze the original contracts in our dataset and the pruned
ones [12]. For each analyzer, we ran it over 100 contracts
and their corresponding pruned contracts, and calculated the
average ratio of time consuming. The result of the comparison
is reported in Table I, P and O represent the execution time
of pruned contracts and original contracts respectively.

TABLE I
PRUNING EFFICIENCY EVALUATION RESULT
Analyzer Execution time(P) / Execution time(O)
SIF 21.24%
Smartcheck 88.83%
Slither 65.77%

SIF [13] is a comprehensive framework for solidity analysis,
it takes both the source code of solidity contracts and the
correspond AST as inputs and analyzes based on the AST of
contracts. We used SIF to generate solidity code from the AST
of the two sets of contracts. When using the ASTs of pruned
contracts as input, the time it takes to generate code is 21.24%
of the ASTs of original contracts. To verify the results of SIF,
we checked the size of ASTs that generated by solc compiler
and confirmed that the size of the ASTs of contracts could be
cut down to 47.91% of the originals on average, which made
the framework took far less time to generate code from the
ASTs of the pruned contracts.

Smartcheck [6] automatically checks for vulnerabilities and
bad coding practices, it also highlights the vulnerability, gives



an explanation of the vulnerability, and a possible solution
to avoid a particular security issue. It works by translating
Solidity source code into an XML-based intermediate repre-
sentation and checks it against the defined vulnerability criteria
in intermediate representation terms. That makes it takes more
analysis time than other tools, and the analysis time for the
pruned contracts is 88.83% of the analysis time for originals.

Slither [14] can be used to detect code vulnerabilities and
code optimization opportunities. Slither works by first generate
the control flow graph and the list of expressions from the AST
of contract, then transform the source code of smart contract
to an intermediate representation, and perform actual code
analysis in the third stage. The source code of contracts and
the corresponding ASTs were used in two phases of analysis.
When using Slither to analyze the two sets of contracts, the
average analysis time of pruned contracts takes 65.77% of the
original ones.

The result shows that use SPrune to prune smart contract
code can smooth the way for further analysis, but the effec-
tiveness depends on how the tools work.

E. Summary

Overall, our results indicate that SPrune works smoothly in
reducing the size of smart contracts and facilitating further
analysis. Going further, we see three relevant items for future
work.

First, to ensure that SPrune produces contracts correctly,
we will prove the correctness of the process formally in the
future work. Second, it would be feasible to integrate SPrune
with program slicing technique that provides fine-grained code
slicing, a way to further facilitate theorem proving. Third, as
there exists no pruning tool to facilitate smart contract analysis,
we can leverage SPrune to improve existing solidity analysis,
optimization and verification techniques. For example, SPrune
can be used to reduce the time consuming of these tools or
reduce search space for deduction calculs of theorem proving.

V. CONCLUSION AND FUTURE WORK

We presented SPrune, a code pruning tool for Ethereum
smart contracts, to facilitate theorem proving in further analy-
sis. SPrune leverages the inherent nature in smart contracts
that only the most derived contracts are deployed in the
Ethereum network. Based on this insight, SPrune produces
the contracts that actually deployed and prunes the code that
are unnecessary to further theorem proving analysis. We used
a dataset with 1803 contracts in our evaluation.

SPrune improved smart contract verification efficiency by
reduce search space for theorem proving, there are also direc-
tions that we could take to improve it. For instance, SPrune is
still a crude tool for smart contract pruning, we will look to
prove the correctness of SPrune and bring slicing technique in
to make SPrune fine-grained.
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