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Abstract. Image basis function plays a key role in image information analysis. 

Due to the complex geometric structure in image, a better image basis or frame 

often have a very large family with a large number of basis functions lying in a 

lower dimensionality manifold, such as 2D Gabor functions and Contourlets 

used in image texture analysis, the corresponding image transform and analysis 

will be very time consuming. In this article, we propose a novel image represen-

tation method called “image elementary manifold”, here, an image elementary 

manifold can represent all the basis functions lying in the same manifold. A fast 

elementary manifold based image decomposition and reconstruction algorithm 

are given. Comparing to traditional image representation methods, elementary 

manifold based image analysis reduce time consumption, discovers the latent 

intrinsic structure of images more efficiently and provides the possibility of 

empirical prediction. Finally, many experiments show the feasibility of image 

elementary manifold in image analysis. 
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1 Introduction 

In linear algebra, basis is a set of linearly independent vectors that can represent every 

vector in a given vector space via linear combination. In mathematical approximation 

theory, it requires only the linear combination of few vectors to reconstruct signal 

accurately. For example, the basis functions of Fourier transformation is Sine function 

and Cosine function, the input signal is limited to 1( )L R  [1], then it is extended to 
2 ( )L R  [2]. In 1946, Dennis Gabor [3] proposed that the signal to be analyzed is first 

multiplied by a window function for Time-Frequency Localization. A Gabor system 

may be a basis for 2 ( )L R  , which is generated from a single 2 ( )L R -function through 

phase space translations and modulations. Wavelet transform [4, 5] inherits and de-

velops the localization performance of Gabor transform, overcomes it’s shortcoming 

of lack of discrete orthogonal basis. Do and Vetterli [6,7] constructed a double filter 
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bank structure which results in a flexible multiresolution, local, and multidirectional 

image expansion using contour segments, named Contourlet Transform. The contour-

let expansion is shown to achieve the optimal approximation rate for piecewise 2C  

smooth images with 2C  smooth contours. For this class of functions, the decay rate of 

approximation error of contourlet transform is far better than wavelets and Fourier 

basis [5, 8]. 

As for images, there are still some problems in subspace decomposition and recon-

struction. Traditional image decomposition method requires convolving the image 

with all the basis functions, but the rotation and dilation of a mother function often 

generate a large number of basis functions, this leads to a large amount of calculation. 

For example, Gabor Transform and Contourlet Transform use multidirectional basis 

functions to achieve better approximation, but the large time consuming limits their 

application. Actually, there are potential low dimensional manifolds exist in basis 

functions, generating through shifting, scaling, rotating and so on. Further more，one 

can decompose images into different sub-manifold space. In this article, we classify 

the basis functions based on their embedding manifold. Therefore, the computational 

power and the empirical predictive power of image analysis will be greatly increased. 

2 Image elementary  manifold 

2.1 Manifold embedded property of image basis functions 

A manifold is an abstract mathematical space that near each point resembles Euclide-

an space. Many image sets vary due to a small number degrees of freedom and the set 

of these images lie in or near to some low-dimensional manifolds embedded in a high 

dimensional (e.g. equal to the number of image pixels ) image spaces [9]. Manifold 

learning algorithms can infer global structures from locally computed geometric 

properties (such as distances, angles, and symmetry). Existing manifold learning algo-

rithm includes distance-preserving methods (such as ISOmap [10], MVU [11]), angle-

preserving methods (such as conformal eigenmaps [12]) and proximity-preserving 

methods (such as LLE [13]) [14]. Wu Hui, Kilian Q, Saul, et al. promt a data-driven 

method for semi-supervised multioutput regression on image manifolds [15]. 

Manifold embedded property could be found in many kinds of basis functions. 

Shifting, rotating or scaling always exists in basis functions, and each kind of these 

basis images should lie in a low-dimensional manifold. Simply looking at the Gabor 

basis functions in Fig.1, all basis functions in one scale are generated by rotating the 

zero direction image (the top image), so that these images lie in a one-dimensional 

manifold. These basis functions could be packaged together as a manifold, and this 

manifold will be treated as an elementary function in image decomposition and recon-

struction. Therefore, the manifold spans the space which is spanned by Gabor basis 

functions. 
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Fig.1. Gabor basis functions and the one-dimensional manifold learned by MVU algorithm. 

Each asterisk stands for an elementary image which is generated by rotating a zero direction 

image. The picture that arrow points to is the corresponding basis function. 

2.2 Image elementary  manifold 

As mentioned above, a series of basis functions that lie in a manifold could be pack-

aged together for follow-up computation. A package model will be introduced in the 

following paragraphs. 

Suppose that a manifold PS  of the intrinsic dimension d  in the vector input space 

is a set of some sample points and their deformations, such as shifting, rotating. It 

could be formulated as follows:  

  | , ,PS x x s P                                              (1) 

Where s  the deformation function, P  is the sample points, dR  is deformation 

parameter. 

A core task of manifold learning is to find the low-dimensional structure (potential 

embedded manifold) of high-dimensional observed data, that is to find deformation 

parameter   and deformation function s . Many manifold learning algorithms can 

give a low dimensional global coordinates from high dimensional input data. If we 

take these low dimensional variables which have been learned by manifold learning 

algorithm as the deformation parameters, a deformation mapping between high-

dimensional data and low-dimensional variables can be obtained. 

In this paper, we use Maximum Variance Unfolding (MVU) algorithm, which at-

tempts to unfold curved manifolds while preserving local geometry. After obtaining 

the intrinsic variables of image transformation by manifold learning algorithm, the 

deformation mapping between high-dimensional space and low-dimensional space is 

obtained by higher-order Taylor expansion, and then the nonlinear manifold is ap-

proximated by polynomial. 
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Here T   is tangent vector, T  is the second-order partial derivative. As shown in 

Fig.2: 0P T   is the first-order Taylor expansion to approximate the point P  on the 

manifold surface, 
2
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0P  '
T *

 '

0P T

 ''
T

P
TP

* . * *
 ' 2  ''

0P T 0 5 T  

s P( , )

 

Fig.2. Manifold distance computation based on Taylor-expansion approximation 

The approximated manifold s  is called an elementary manifold of basis functions. 

P  means that a collection of similar basis functions. All these functions are generated 

from a central function and modeled by a multivariable polynomial. The elementary 

manifold s  will be an elementary cell in image decomposition and reconstruction. 

In many cases, the analytical expression of s  is unknown, so, the partial differen-

tiation in equation (2) will be represented by difference in calculation, that is: 
( , ) ( , )s P s P 

 

 


 
                                            (3) 

Traditional transform method convolves the input image with all basis functions, 

which needs a huge consumption of calculation. Based on elementary manifold, we 

just compute correlation between input image and manifold instead of a series of basis 

functions. The correlation details based on manifold will be shown in next sections. 

2.3 The decomposition and reconstruction of images based on image 

elementary  manifold  

Fig.3 illustrates the distance between manifolds. If PS  and ES  are all represented by 

polynomials, the problem will be transformed into solving the distance between two 

polynomial surfaces.  

0x

P

MD( Manifold Distance)

PS

ES

 

Fig.3. Manifold distance diagram. The manifold distance (MD) between corresponding mani-

folds PS  and ES . The correlation between the point 0x  and the manifold PS . 
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Based on Taylor expression, manifold could be modeled by a multivariable poly-

nomial whose dimension (D) and order (O) are settable values. Therefore, the correla-

tion between the point and manifold is defined as: 

0maxcov( , ( , ))r x s P


                                         (4) 

The Formula (4) constitutes a new polynomial. So, the problem of calculating the 

correlation between point 0x  and manifold PS  is converted to solving the maximum 

of polynomial with fewer variables. Solving the maximum of polynomial directly 

provides the possibility of empirical prediction.  

From the point of linear algebra, we can decompose image  ,I x y  into linear com-

bination of image basis if the image is in the space spanned by the basis, which is the 

synthesis equation 

 , ( , )i i

i

I x y a x y                                            (5) 

Where ( , )i x y  is called the dual function of the basis function ( , )i x y , ia is the de-

composition coefficient. According to the dual property of basis functions, we have 

the analysis equation  

       , , ,i ia I x y x y                                          (6) 

The process of calculating coefficient ia  according to Formula (6) can be consid-

ered as decomposition process. And the weighted summation of basis functions ac-

cording to Formula (5) can be seen as reconstruction process. When the number of 

basis functions is large, calculating coefficients requires a huge consumption. 

In this paper, we introduce the image elementary manifold. Basis functions are 

classified into different manifolds. Therefore, it only needs to compute the manifold 

distance for image decomposition and reconstruction. Formula (5) could be converted 

to Formula (7): 

 , i i

i

I x y r s                                               (7) 

Where is  refers to the dual elementary manifold, ir  is the corresponding decompo-

sition coefficient which is the maximum of the polynomial in Formula (4).  

In this work, the concept of inner product of elementary manifolds and the input 

image is introduced. It replaces the inner product of basis functions and the input 

image. According to the dual property of basis functions, we can also infer the equa-

tion: 

 , ,i ir I x y s                                               (8) 

Similarly, the same kind of dual basis functions could be trained as a manifold in 

image reconstruction. According to Formula (7), using dual elementary manifolds and 

corresponding coefficients can reconstruct the input image. 

2.4 Computation analysis of elementary  manifold decomposition 

Using elementary manifolds can significantly reduce the calculation of the decompo-

sition and reconstruction. Suppose there are N  basis functions, and there are t  pixels 

in each basis image. According to Formula (6), conventional method convolves the 
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input image ( K pixels) with all basis functions. This means that N t K   times multi-

plication and N t K    times addition need to be calculated.  

For elementary manifold method, suppose each Taylor-expansion polynomial in-

cludes P  terms, there are t  polynomials. The value of P  is determined by the order 

of the polynomial O  and the number of free variables D . According to Formula (4) 

and (8), the decomposition process needs to calculate P t K   times multiplication 

and P t K   times addition to construct a new polynomial that represents the correla-

tion between point and manifold.  

Generally, the number of polynomial terms is far less than the number of basis 

functions ( P N , P t K N t K    ). Therefore, elementary manifold method will 

show its advantage. For example, 13 13 169t    , 20P  , 90N  , 128 128K   ,in 

conventional method, 249,200,640N t K    times multiplication and 249200640 

times addition need to be calculate, while in our method, it only needs to calculate 

55,377,920P t K    times multiplication and 55377920 times addition. 

3 Some applications about elementary  manifold 

In this section, we verify the feasibility of the image elementary manifold, and show 

applications in image decomposition, image reconstruction and edge detection 

through a series of experiments. In those experiments, we first test a simple image 

elementary  manifold composed of 13 13  pixels stepped edge images with different 

directions and displacements (as shown in the Fig.4), these basis functions span a 

piecewise constant space.. Then, other classic basis functions like Gabor functions 

and Log-Gabor functions   are used in elementary manifold method. We use the MVU 

manifold learning algorithm to get the manifold knowledge. 
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Fig.4. Some13×13 pixels stepped edge elementary images 
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3.1 Image Decomposition 

By calculating the correlation between each small image block of the input image and 

the elementary manifold, namely the correlation coefficient, a correlation coefficient 

matrix can be generated, which is the image decomposition process. Some classic 

basis functions also can be used in this method, such as Gabor basis functions. As 

mentioned in Section 2.4, we now present several experiment results with elementary 

manifold method and compare it with the performance of Gabor transform directly. 

The decomposition coefficient image is shown in Fig.5 (b), stepped edge images were 

treated as a two-dimensional manifold for manifold learning. The transform effective-

ly shows the fact image edges. In Fig.5(c), Gabor basis functions are considered lying 

in two manifolds (real part and imaginary part). The experimental results proved the 

feasibility of elementary manifold method.  

       
(a)                                (b)                                 (c) 

Fig.5. Image decomposition. (a) Input image. (b) Decomposition image with stepped edge 

elementary manifold. (c) Decomposition image with Gabor basis function manifold. 

In this experiment, we choose 13 13 169t    , 20P  , 90N  , the time consuming 

of our method is far less than the conventional two dimensional convolution method. 

With the unified data types (“double”), our approach takes 5 seconds while traditional 

Gabor transform takes 24 seconds for 512 512  pixels image in the same hardware 

platform. 

As mentioned in Section 2, the computation complexity is closely related to the 

number of polynomial terms. Therefore, we took some experiments to discover the 

relationship between the terms and the processing time. A 512 512  pixels image is 

decomposed, with 13 13 169t    , 90N  . The result is shown in Table 1. Time con-

sumption is proportional to the number of polynomial terms. 

Table.1. The processing time according to increasing polynomial terms. The relation of the 

number of free variables (D) and orders (O) to polynomial terms (M) and time consumption.  

(D, O) (2,2)     (2,3)    (3,3)    (4,3)    (5,3)    (6,3)     (7,3) 

P 

Time consump-

tion(ms) 

6          10        20       35        56         84        120 

3033    3997    4939   5889    8403    10747    14472 
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3.2 Image Reconstruction 

According to Formula (7), calculating the linear combination of dual elementary man-

ifolds can reconstruct the input image. In this experiment, we use two different ele-

mentary image sets reconstruct the “Lena” image ( 256 256  pixels). From Fig.6(a), 

we find that the result reconstructed by the stepped edge elementary  image set 

(13 13  pixels) mentioned before describes the geometric structure information of the 

input image correctly, while the hair, facial features and other details are not so accu-

rate. The straight lines in the figure are very clear, although curves are not smooth. As 

shown in Fig.6(c), it is reconstructed by the stepped edge elementary image set (3 3  

pixels), which can almost recover the input image. Fig. 6(b) shows an example of the 

Log-Gabor transform on the “Lena” image. The reconstruction image is smoother, 

which mainly result from the different characteristics of basis functions.  

  

(a)                                                      (b) 

  

(c)                                                  (d) 

Fig.6. Reconstruction image by elementary images with different sizes. (a) Original image. (b) 

The image is reconstructed by Log-Gabor transform. (c) The image is reconstructed by the 

stepped edge elementary images (13 13  pixels). (d) The image is reconstructed by the stepped 

edge elementary images (3 3  pixels). 
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3.3 Image Edge Detection 

Image elementary manifold can be used for image edge detection. For example, in 

Fig.4, each elementary image is expected to represent an “edge”. The input image is 

first removed the mean image, and then decomposed into correlation coefficient im-

age, which reflects the intensity of stepped edge. Therefore, the edges of the input 

image would be highlighted in the transformed image. Since the linear equations of 

learning samples are known, we can obtain the gradient direction and amplitude of 

each point of transformed image. We follow on do non-maximum suppression for 

gradient amplitudes. Then we use the double threshold algorithm to detect and con-

nection edges. Finally, the clear edges would be obtained. 

In this experiment, the elementary images are used to detect the edges of a camer-

aman image, of size 256 256  pixels. The size of each elementary image is 13 13  

pixels. The experimental results are shown in Fig.7. It is shown that the edge features 

of the cameraman and the camera in the image are detected very well，and the lines 

are continuous and smooth. Due to the limited size of the elementary image, many 

detailed edges cannot be accurately described. 

 

(a)                                        (b) 

Fig.7. Edge detection images. (a) Input image. (b) Edge image. 

4 Conclusion 

In this paper we proposed a new elementary manifold method in combined with im-

age multi-scale geometric analysis. It is shown that this method can improve the com-

puting performance of image basis function analysis. In this paper, we calculate the 

correlation coefficients between elementary manifold and the input image in spatial 

domain, whereas in traditional method, correlation coefficients image is constructed 

by using all basis functions convolve with the input image. In order to improve the 

computing speed, the traditional method of digital image processing deals with imag-

es via the transformation from the image to the frequency domain processing. The 

proposed algorithm could show great advantages when the number of basis functions 

is considerably larger than the number of Taylor expansion terms. Furthermore, the 
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elementary manifold spans the space which is spanned by the basis functions that 

lying in the manifold. Experiments indicate the potential of the elementary manifold 

method in image processing applications. The disadvantages of this method include 

two aspects. For one thing, despite the manifold learning algorithm is varied, but there 

are still unstable situation when training basis functions; for another, the increase of 

the Taylor expansion order will lead to a sharply increase of computing cost, and if 

the order of the polynomial is too low will result in fitting error. For future work, we 

will try to transform the elementary manifold to the frequency domain processing to 

improve the algorithm efficiency. 
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