
EasyChair Preprint

№ 1455

A combined clustering algorithm based on

ESynC algorithm and a merging judgement

process of micro-clusters

Xinquan Chen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 4, 2019

 1

Title Page

A combined clustering algorithm based on ESynC algorithm and a

merging judgement process of micro-clusters

Xinquan Chen1, 2
1School of Computer & Information, Anhui Polytechnic University, Wuhu, 241000, China
2Key Laboratory of Intelligent Information Processing and Control, Chongqing Three Gorges

University, Chongqing, 404100, China

chenxqscut@126.com

Author: Xinquan Chen

Corresponding Author: Xinquan Chen

* Corresponding author. Tel.: 0086-15123428097.

E-mail address: chenxqscut@126.com (X. Chen).

Post Address:

Xinquan Chen

School of Computer & Information, Anhui Polytechnic University, Wuhu, 241000,

China

Conflicts of interest: None

 2

A combined clustering algorithm based on ESynC algorithm and a

merging judgement process of micro-clusters

Abstract: ESynC algorithm is inspired by SynC algorithm and a linear version of

Vicsek model. When facing complex data distributions, ESynC algorithm may regard a

whole irregular cluster as some micro-clusters. In order to conquer this shortcoming, a

Combined clustering algorithm based on ESynC algorithm and a merging judgement

process of micro-clusters (CESynC) is presented. CESynC algorithm uses ESynC

algorithm to detect clusters or micro-clusters and a merging judgement process to

merge those conjoint micro-clusters. For some data sets that ESynC algorithm and

SynC algorithm cannot detect correct clusters, CESynC algorithm can obtain natural

clusters. From some experiments of some artificial data sets, we observe that parameter

δ in CESynC algorithm has better valid interval than ESynC algorithm and SynC

algorithm in some cases. From the experiments of nine artificial data sets, we observe

that the valid interval of parameter σ is affected by parameters δ and MinPts. From the

experiments of eight UCI data sets, we observe that CESynC algorithm gets better (or

the same) clustering results than (or as) that of ESynC algorithm. From many

experiments, we observe that the clustering results of CESynC algorithm and ESynC

algorithm are often better than that of SynC algorithm. So we can say CESynC

algorithm can often obtain better clustering quality than ESynC algorithm and SynC

algorithm in some kinds of data sets. Further comparison experiments with some

classical clustering algorithms demonstrate the clustering effect of CESynC algorithm.

Keywords: Synchronization clustering; SynC algorithm; ESynC algorithm;

micro-cluster; merging judgement

1. Introduction

Clustering is an important method in data mining and machine learning.

Clustering tries to uncover the hidden structure by exploring the systematic partitioning

of the unlabeled data set. According to a predefined similarity(or dissimilarity)

measure, clustering algorithms can be used in pattern recognition, image segmentation,

document organization, data compression, information retrieval, and bioinformatics.

The traditional clustering algorithms are mainly classified into partitioning-based

methods (Bezdek, 1981; MacQueen, 1967), hierarchy-based methods (Guha et al.,

1998; Karypis et al., 1999; Zhang et al., 1996), density-based methods (Ankerst et al.,

1999; Ester et al., 1996; Roy et al., 2005), grid-based methods (Agrawal et al., 1998;

 3

Wang et al., 1997), model-based methods (Theodoridis et al., 2006), and graph-based

methods (Tan et al., 2005; Theodoridis et al., 2006; Zahn, C. T., 1971). Quantum

clustering algorithms (Horn et al., 2002), spectral clustering algorithms (Luxburg, 2007;

Schölkopf et al., 1998), affinity propagation clustering algorithms (Frey et al., 2007),

synchronization clustering algorithms (Böhm et al., 2010; Chen, 2014, 2017, 2018;

Hang et al., 2017; Huang et al., 2013; Shao et al., 2013a, 2013b, 2016, 2017a, 2017b)

are some recent clustering methods.

Recent ten years, several famous clustering algorithms were published. Affinity

propagation (named as AP) algorithm (Frey et al., 2007) is a new type of clustering

algorithm based on probability graph models. After AP algorithm was published,

clustering based on probability graph models grew a new research direction. As we

know, the first synchronization clustering algorithm (named as SynC) was proposed by

Böhm et al.(2010). After that, synchronization clustering attracts some researchers.

Some synchronization clustering methods (Chen, 2014, 2017, 2018; Hang et al., 2017;

Huang et al., 2013; Shao et al., 2013a, 2013b, 2016, 2017a, 2017b) were published

from different views. Clustering by fast search and find of density peaks (named as DP)

algorithm (Rodriguez et al., 2014) was developed based on the assumption that “cluster

centers can be characterized by a higher density than their neighbors and by a

relatively large distance from points with higher densities”. In DP algorithm, the

number of clusters can be detected automatically, outliers can be identified easily, and

even nonspherical clusters can be explored quickly. Very likely, DP algorithm can lead

a new research branch in clustering field.

Synchronization means that some natural objects with similar rhythm will come

into co-occurrence progressively. Some synchronization clustering models (Böhm et al.,

2010; Chen, 2014; Chen, 2017) simulate the basic synchronization process by

imposing the interactions on local near neighbor objects. Synchronization clustering is

also a new kind of clustering approach. The original SynC algorithm declares that it

can detect the intrinsic structure of the unlabelled data set and handle outliers without

any distribution assumption (Böhm et al., 2010). Inspired by the idea of SynC

algorithm and a linear version of Vicsek model, an effective synchronization clustering

algorithm (named as ESynC) was presented (Chen, 2017). ESynC algorithm can often

get better local synchronization effect than SynC algorithm and a similar

synchronization clustering algorithm based on the original version of Vicsek model.

But when facing complex distributions, ESynC algorithm may regard a whole irregular

 4

cluster as some micro-clusters. In order to conquer this shortcoming, this paper

researches a Combined clustering algorithm based on ESynC algorithm and a merging

judgement process of micro-clusters (named as CESynC). CESynC algorithm uses

ESynC algorithm to detect clusters or micro-clusters and a merging judgement process

to merge those conjoint micro-clusters.

The idea of “preclustering and merging” in CESynC algorithm is useful for some

data sets with complex distribution. When ESynC algorithm and SynC algorithm

cannot explore some irregular clusters with complex distributions, it is necessary that

adding a merging judgement process to merge those conjoint micro-clusters that are

detected by ESynC algorithm.

The remainder of this paper is organized as follows. Section 2 lists some related

work. Section 3 gives some basic knowledge. Section 4 introduces CESynC algorithm.

Section 5 validates CESynC algorithm by some simulated experiments. Conclusions

and future work are presented in Section 6.

2. Related work

This paper is inspired by several papers (Böhm et al., 2010; Chen, 2014, 2017)

and the idea of “preclustering and merging”.

2.1 The origin and advance of synchronization clustering

In 2010, a novel synchronization clustering (SynC) algorithm was presented by

Böhm et al. (2010). SynC algorithm attempts to explore the intrinsic distribution

structure of the data set and handle isolates by dynamic synchronization. In order to

implement automatic clustering, those natural clusters can be detected by using the

minimum description length (named as MDL) principle (GrÄunwald, 2005).

In 2013, Huang et al. (2013) proposed a synchronization-based hierarchical

clustering method basing on the work of Böhm et al. (2010). In order to find the

intrinsic patterns of a complex graph, a novel and robust graph clustering algorithm,

RSGC (Shao et al., 2013a), was proposed by regarding the graph clustering as a

dynamic process towards synchronization. In order to explore meaningful levels of the

hierarchical cluster structure, a novel dynamic hierarchical clustering algorithm, hSync

(Shao et al., 2013b), was presented based on synchronization and the MDL principle.

In 2014, inspired by the work of Böhm et al. (2010) and Vicsek model (Vicsek et

al., 1995; Jadbabaie et al., 2003; Wang et al., 2009), Chen (2014) presented a shrinking

synchronization clustering algorithm by using a linear weighted Vicsek model.

 5

In 2016, an effective scalable synchronization clustering algorithm for large

datasets named as CIPA (Shao, et al., 2016) was presented. CIPA algorithm can handle

very large datasets by iteratively partitioning them into thousands of subsets and

clustering each subset separately.

In 2017, inspired by the work of Böhm et al. (2010) and Vicsek model, Chen

(2017) proposed ESynC algorithm based on a linear version of Vicsek model.

Simulated experiments validate that the linear version of Vicsek model is an effective

synchronization model for clustering. Based on the metaphor of gravitational

kinematics and central force optimization method, Hang et al. (2017) presented a local

synchronization clustering algorithm, which can find clusters of those data sets with

arbitrary size, shape, and density, and determine the number of clusters automatically.

Qin et al. (2017) investigated group synchronization problem for multiple interacting

clusters of nonidentical systems that are linearly or nonlinearly coupled. Based on

Lyapunov method, they provided the sufficient conditions guaranteeing the group

synchronization behavior and performed rigorous group synchronization analysis. To

discover the co-cluster structure of gene expression data, a new synchronization-based

co-clustering algorithm (named as CoSync) was presented (Shao et al., 2017a).

CoSync algorithm can detect high-quality biologically relevant subgroups embedding

in a given gene expression data matrix. In order to explore subspace clusters of some

high-dimensional sparse data sets, a novel effective and efficient subspace clustering

algorithm, ORSC (Shao et al., 2017b), was proposed. ORSC algorithm can detect

correlation clusters in arbitrarily oriented subspaces and do not need to specify the

subspace dimensionality or other difficult parameters.

In 2018, Chen (2018) presents three fast synchronization clustering (named as

FSynC) algorithms basing on the work of Böhm et al. (2010), R-tree structure, and the

grid-based index method. FSynC algorithms have three improved versions of SynC

algorithm by storing all data points in a R-tree structure or by combining

multidimensional grid partitioning method and Red-Black tree structure to construct

the near neighbor point sets of all points in each synchronization evolution (Chen,

2018).

2.2 The idea of “merging judgement”

The idea of “merging judgement” is not presented originally. It is used in multiple

fields of data mining. For example, a famous hierarchical clustering method, AGNES

(Agglomerative Nesting) (Kaufman et al., 1990), uses the single link method and the

 6

dissimilarity matrix to merge micro-clusters that have the least dissimilarity. The

dissimilarity of merging two micro-clusters can use single link (smallest distance

between an element in one micro-cluster and an element in the other), complete link

(largest distance between an element in one micro-cluster and an element in the other),

average (average distance between an element in one micro-cluster and an element in

the other), or centroid (distance between the medoids of two micro-clusters).

2.3 The new advance of other clustering methods

Clustering is a pretreatment technique and a base in data mining field. New

clustering methods are developed from different views. Recently, He et al. (2017)

presented a kernel conditional clustering (named as KCC) algorithm by using kernel

based conditional dependence measure as its objective function. KCC algorithm has no

assumption about the cluster structure, the covariates, or the distribution of the data set.

And it can both discover non-linearly separable clusters and detect the true cluster

structures more accurately than some other alternative clustering methods.

In order to obtain a more balanced partitioning and avoid the appearance of

singleton clusters, Chehreghani (2017) used the sum of the squared size of the clusters

as an additive regularization term for the min cut cost function and proposed an

efficient local search algorithm to optimize the objective function.

In order to avoid repeated computation of polynomial approximation when

reconstructing the Laplacian matrix, a fast compressive spectral clustering (named as

FCSC) algorithm (Li et al., 2017) was presented. FCSC algorithm can reduce the

computation time significantly while preserving high clustering accuracy.

In joint action grouping and modeling, a hierarchical clustering multi-task learning

(named as HC-MTL) method was presented by formulating the objective function into

the group-wise least square loss, which was regularized by the trace norm and group

sparsity terms for joint multiple action learning (Liu et al., 2017). HC-MTL method

can aid in discovering both shared-action relatedness and action-specific feature

subspaces.

3. Some basic knowledge

Suppose there is a data set S = {X1, X2, …, Xn} in a d-dimensional Euclidean

space. Naturally, we use Euclidean metric as our dissimilarity measure, dis(·, ·). In

order to describe our algorithm clearly, some concepts are presented first.

Definition 1 The δ near neighbor point set δ(P) of point P is defined as:

 7

δ(P) = {X | 0 < dis(X, P) ≤ δ, X ≠ P, X  S}, (1)

where dis(X, P) is the dissimilarity measure between point X and point P in the data set

S. Parameter δ is a predefined range threshold.

Definition 2 (Chen, 2017). The linear version of Vicsek model for clustering used

in ESynC algorithm is defined as:

Point X = (x1, x2, ···, xd) is a vector in d-dimensional Euclidean space. If each point

X is regarded as an agent based on a linear version of Vicsek model, with an interaction

in the δ near neighbor point set δ(X), then the dynamics of point X over time according

to Jadbabaie et al. (2003) and Wang et al. (2009) is described by:

X(t+1) =   









 
))((

)(
))((1

1

tXY

YtX
tX 

, (2)

where X(t = 0) = (x1(0), x2(0), ···, xd(0)) represents the original location of point X, and

X(t+1) describes the renewal location of point X at the t-step evolution.

Definition 3 (Chen, 2017) The t-step average length of edges, AveLen(t), in a

t-step δ near neighbor undirected graph Gδ(t) is defined as:

AveLen(t) = 
)(|)(|

1

tEe

e
tE

, (3)

where E(t) is the t-step edge set of Gδ(t), and |e| is the length (or weight) of edge e. The

average length of edges in Gδ(t) decreases to its limit 0, that is AveLen(t) → 0, as more

δ near neighbor points synchronize together with time evolution. In ESynC algorithm,

AveLen(t) can be used to characterize the degree of local synchronization.

Property 1 The data set S = {X1, X2, …, Xn} using ESynC algorithm for clustering

will obtain an effective result of local synchronization with some obvious clusters or

isolates, if parameter δ satisfies:

max{longestDistance(clusterk) | k = 1, 2, …, Kclu} ≤ δ < min{dismin(clusteri, clusterj)

| i, j = 1, 2, …, Kclu}, (4)

where longestDistance (clusterk) = max{ dis(P, Q) | P  clusterk, Q  clusterk, P ≠ Q}

is the longest edge in the complete graph of the k-th cluster, dismin(clusteri, clusterj) =

min{dis(P, Q) | P  clusteri, Q  clusterj, P ≠ Q}is the weight of the minimum edge

connecting the i-th cluster and the j-th cluster, and Kclu is the number of clusters in the

final synchronization step.

Proof: Suppose the data set S = {X1, X2, …, Xn} has Kclu obvious clusters. If

parameter δ is larger than or equal to max{longestDistance (clusterk) | k = 1, 2, …, Kclu},

 8

then data points in the same cluster will synchronize to a steady location. If parameter δ

is less than min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu}, then data points in

different clusters will not interactive and can not synchronize.

Property 2 The data set S = {X1, X2, …, Xn} uses ESynC algorithm for clustering.

If max{longestDistance(clusterk) | k = 1, 2, …, Kclu} > min{dismin(clusteri, clusterj) | i, j

= 1, 2, …, Kclu}, then the data set S might obtain an effective result of local

synchronization with some obvious clusters or isolates. That is: if we set δ >

min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu}, some obvious clusters may be

detected.

Property 2 is validated by some simulations.

Definition 4 A micro-cluster is a cluster or a part of a cluster that can be detected

by using ESynC algorithm with a small value of parameter δ. Usually, the number of

points in a micro-cluster should be larger than or equal to the threshold parameter

MinPts.

Note: This threshold MinPts is the similar to the parameter MinPts used in

DBSCAN algorithm. Parameter MinPts is often set from 1 to 4 for many data sets.

Property 3 For some data sets, some clusters have strange spatial distributions and

min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu} is small. Parameter δ of ESynC

algorithm has no valid interval. But some clusters might be detected by merging some

conjoint micro-clusters which can be detected by using ESynC algorithm with a small

value of parameter δ.

Property 3 is also validated by some simulations. For example, seven 2-D data sets

(data0 – data6) are used to validate this conclusion in subsection 5.2.

Definition 5 Suppose the data set S = {X1, X2, …, Xn} using ESynC algorithm for

clustering obtain Kclu micro-clusters, MCS = {MCSi | i = 1, 2, …, Kclu}. In Kclu

micro-clusters, the Kclu steady locations (or Kclu mean locations in some cases) are

often selected as Kclu micro-cores, MC = {MCi | i = 1, 2, …, Kclu}. Then the Minimum

Spanning Tree (MST) of MC can be constructed by Prim algorithm with O(Kclu
2) time

complexity.

Furthermore, based on the MST of MC, an Minimum Connecting Bracket Tree

(MCBT) of MCS can be constructed by replaced the weight of every edge in the MST

of MC, dis(MCi, MCj), by a new weight, dismin(MCSi, MCSj). The new weight

computing equation is:

dismin(MCSi, MCSj) = min{dis(P, Q) | P  MCSi, Q  MCSj, i ≠ j}, (5)

 9

4. A combined clustering algorithm based on ESynC algorithm and a

merging judgement process of micro-clusters

Although we use the Euclidean metric as our dissimilarity measure in this paper,

this algorithm is by no means restricted to this metric and this kind of data space. If we

can construct a proper dissimilarity measure in a hybrid-attribute space, this algorithm

can still be used.

4.1 The description of ESynC algorithm

ESynC algorithm is developed by Chen (Chen, 2017). In order to make a

difference between ESynC algorithm and this new method, we introduce it simply

below.

Algorithm name: an Effective Synchronization Clustering algorithm (ESynC).

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and parameter

δ.

Output: The final convergent result S(T) = {X1(T), X2(T), …, Xn(T)} of the

original data set S.

The main procedure of ESynC algorithm is described by Table 1.

Table 1 The main procedure of ESynC algorithm.
Step1. Initialization:

 1: IterativeStep t is set as zero firstly, that is: t ← 0;

 2: for (i = 1; i ≤ n; i++)

 3: Xi(t) ← Xi;

Step2. Execute the iterative synchronization process of the dynamical clustering:

 4: while ((the dynamical clustering does not satisfy its convergent condition) and (t < 20))

 5: {

 6: for (i = 1; i ≤ n; i++)

 7: {

 8: Construct the δ near neighbor point set δ(Xi(t)) for each point Xi(t) (i = 1, 2, …, n)

using Eq.(1) of Definition 1;

 9: Compute the renewal value, Xi(t+1), of Xi(t) using Eq.(2) of Definition 2;

 10: }

 11: Compute the t-step average length of edges of all points, AveLen(t), using Eq.(3) of

Definition 3;

 12: IterativeStep t is increased by 1, that is: t++;

 13: if (AveLen(t) → 0)

 14: The dynamical clustering reaches its convergent result, and then exit from the

while repetition;

 15: }

Step3. Finally we get a convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, where T is the times of the
while repetition in Step2. The final convergent set S(T) reflects the natural clusters or isolates of the
data set S.

In the convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, suppose there are K (K ≤

n) steady locations. If a steady location contains some points in S(T) such that the

 10

number of points is larger than or equal to the threshold parameter MinPts, they can be

regarded as a micro-cluster or a cluster. If a steady location contains only one point or

several points of S(T) such that the number of points is less than MinPts, then it is an

isolate or they are isolates. Suppose there are Kclu micro-clusters and Kiso isolates in the

K steady locations. Here, K = Kclu
 + Kiso is satisfied.

4.2 The description of CESynC algorithm

CESynC algorithm has a different process with SynC algorithm (Böhm et al.,

2010) and ESynC algorithm (Chen, 2017). The basic flow of CESynC algorithm is

presented by Fig. 1.

Algorithm name: a Combined clustering algorithm based on ESynC algorithm

and a merging judgement process of micro-clusters (CESynC).

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and range

parameter δ, and density threshold parameter MinPts (the minimum number of points

in a micro-cluster or a cluster).

Output: The final clustering result FCS = {FCS1, FCS2, …, FCSk} of the original

data set S.

The main procedure of CESynC algorithm is described by Table 2.

Input

Clustering S using
ESynC algorithm

Constructing an MST from Kclu
micro-cores using Prim algorithm
or an MCBT of Kclu micro-clusters

according to Definition 5

Output

The original data set
S = {X1, X2, …, Xn}

A convergent result S(T) = {X1(T),
X2(T), …, Xn(T)} with Kclu

micro-clusters and Kiso isolates

Fetching

Kclu micro-clusters with
Kclu micro-cores

Input

Merging conjoint
micro-clusters based on the

MST of Kclu micro-cores or the
MCBT of Kclu micro-clusters

Output

Continue

 11

Fig. 1 The basic flow of CESynC algorithm

Table 2 The main procedure of CESynC algorithm.
Step1. Call ESynC algorithm for the original data set S = {X1, X2, …, Xn}. The function call formal of

this step is:

 S(T) = {X1(T), X2(T), …, Xn(T)} ← ESynC(DataSet S, float δ);

/* S(T) = {X1(T), X2(T), …, Xn(T)} record the final steady locations of some micro-clusters or isolates

of the data set S. */

Step2. Fetch Kclu micro-clusters and Kiso isolates from S(T) = {X1(T), X2(T), …, Xn(T)}. Here, we

mainly consider Kclu micro-clusters. The function call formal of this step is:

 MCS = {MCS1, MCS2, …, MCSKclu} ← Fetch(S(T) , int MinPts);

/* MCS = {MCS1, MCS2, …, MCSKclu} are Kclu micro-clusters of the data set S. */

Step3. Construct an MST from Kclu micro-cores (Kclu steady locations or Kclu mean locations of Kclu

micro-clusters are selected as Kclu micro-cores), MC = {MC1, MC2, …, MCKclu}, using Prim algorithm.

The function call formal of this step is:

 mst(MC) = {e1, e2, …, eKclu-1} ← Prim(MC); /* Suppose mst(MC) = {e1, e2, …, eKclu-1} is sorted

by an increased sequence. */

 Or further construct an MCBT from Kclu micro-clusters based on the mst(MC) according to

Definition 5. The function call formal of this step is:

 mcbt(MCS) = {ce1, ce2, …, ceKclu-1} ← ReplaceWeights(MCS, mst(MC)); /* Suppose

mcbt(MCS) = {ce1, ce2, …, ceKclu-1} is sorted by an increased sequence such that ce1 ≤ ce2 …≤ ceKclu-1.

*/

Step4. Merge Kclu micro-clusters, MCS = {MCS1, MCS2, …, MCSKclu}, if they are satisfied with the

merging condition, based on the mst(MC) or mcbt(MCS). The function call formal of this step is:

 FCS = {FCS1, FCS2, …, FCSk} ← Merge(MCS, mst(MC) or mcbt(MCS));

/* FCS = {FCS1, FCS2, …, FCSk} are k clusters of the data set S after the merging process. */

Step5. Finally we get a set with k clusters, FCS = {FCS1, FCS2, …, FCSk}. The final set FCS may
reflect the natural clusters of the data set S.

Note: In Step4, the merging step in CESynC algorithm has two implement merging strategies and

merging judgement methods that are presented in section 4.3.

4.3 The merging strategies and judgement methods of merging micro-clusters in

CESynC algorithm

Here we present two concrete merging strategies and two judge methods of

merging micro-clusters for CESynC algorithm.

4.3.1 Strategy 1: The MST-based inflexion-point strategy

This strategy is designed by searching the inflexion-point from the mst(MC) = {e1,

e2, …, eKclu-1}. That is:

 (Sa). First fetch Kclu micro-cores from Kclu micro-clusters (for example, select Kclu

steady locations), MC = {MC1, MC2, …, MCKclu};

The final k clusters after the
above merging operation

 12

/* MC = {MC1, MC2, …, MCKclu} are Kclu micro-cores of Kclu micro-clusters. */

 (Sb). In Step3 of CESynC algorithm, it is implemented concretely by:

mst(MC) = {e1, e2, …, eKclu-1} ← Prim(MC); /* Suppose mst(MC) = {e1, e2, …,

eKclu-1} is sorted by an increased sequence such that e1 ≤ e2 …≤ eKclu-1. */

 (Sc). Select some minimum edges from mst(MC) = {e1, e2, …, eKclu-1}. These

selected edges are less than the other edges. Suppose there are NumMinMst minimum

edges. Usually, (Kclu - NumMinMst) is equal to the right number of clusters in those

data sets with obvious clusters. There are four cases in mst(MC) = {e1, e2, …, eKclu-1}.

 Case 1: e1 ≤ … ≤ ej-1 ≤ ej ≤ ej+1 ≤ ej+2 ≤ … ≤ eKclu-1.

In this case, we either consider the merging operation of {e1, e2, …, eKclu-1}, or do

not consider any merging operation.
 /* If the (Kclu – 1) edges of mst(MC) = {e1, e2, …, eKclu-1} are increased steadily and have no change

suddenly, then the Kclu micro-clusters are either Kclu disjoint clusters or one cluster that can be

constructed by merging the Kclu micro-clusters. */

 Case 2: e1 ≤ … ≤ ej-1 ≤ ej  ej+1 ≤ ej+2 ≤ … ≤ eKclu-1, such that

1
1,2,..., 2
arg max ()

clu

i i
i K

j e e
 

  ，where ej and ej+1 are two near neighbor edges with maximal

diversification in the mst(MC).

In this case, we only consider the merging operations of {e1, e2, …, ej}.
 /* In the mst(MC) = {e1, e2, …, eKclu-1}, if the first j edges {e1, e2, …, ej} are increased steadily

and there is a sudden change between ej and ej+1, then {e1, e2, …, ej} should be used to consider the

merging operations of the corresponding (j+1) micro-clusters */

 Case 3: e1 ≤ … ≤ ej-1 ≤ ej ej+1 ≤ ej+2 ≤ …≤ ej+l-1 ≤ ej+l ej+l+1 ≤ ej+l+2 ≤ … ≤ eKclu-1.

In this case, we either consider the merging operation of {e1, e2, …, ej}, or

consider the merging operation of {e1, e2, …, ej, ej+1, …, ej+l}.

 Case 4: Like Case 3, there are three or three above sudden change in mst(MC) =

{e1, e2, …, eKclu-1}.

In this case, we either consider the merging operation of {e1, e2, …, ej}, or

consider the merging operation of {e1, e2, …, ej, ej+1, …, ej+l}, or …..

 (Sd). Merge two near neighbor micro-clusters connected by any edge in the

NumMinMst minimum edges of mst(MC) if they can be merged. That is:

 for (i = 1; i ≤ NumMinMst; i++)
 {
 if (two near neighbor micro-clusters connected by ei can be merged)

 The two near neighbor micro-clusters should be merged.

 }

 13

4.3.2 Strategy 2:The MCBT-based inflexion-point strategy

This strategy is also a concrete algorithm based on the Minimum Connecting

Bracket Tree of MCS = {MCS1, MCS2, …, MCSKclu}. That is:

 (Sa). First fetch Kclu micro-cores of Kclu micro-clusters (for example, select Kclu

steady locations), MC = {MC1, MC2, …, MCKclu};

 (Sb). In Step3 of CESynC algorithm, it is implemented concretely as follows.

First constructing an MST from Kclu micro-cores by using Prim algorithm, then

constructing an MCBT of Kclu micro-clusters based on mst(MC) according to

Definition 5. Finally sort all edges in the MCBT of MCS. After that, we can obtain an

edge set mcbt(MCS) = {ce1, ce2, …, ceKclu-1} such that ce1 ≤ ce2 …≤ ceKclu-1. That is:

mst(MC) = {e1, e2, …, eKclu-1} ← Prim(MC); /* Suppose mst(MC) = {e1, e2, …, eKclu-1}

is sorted by an increased sequence such that e1 ≤ e2 …≤ eKclu-1. */

mcbt(MCS) = {ce1, ce2, …, ceKclu-1} ← ReplaceWeights(MCS, mst(MC)); /*

Suppose mcbt(MCS) = {ce1, ce2, …, ceKclu-1} is sorted by an increased sequence such that ce1 ≤ ce2 …≤

ceKclu-1. */

 (Sc). Just like the step (Sc) of Strategy 1, select some minimum edges from

mcbt(MCS) = {ce1, ce2, …, ceKclu-1}. These selected edges are less than the other edges.

Suppose there are NumMinMcbt minimum edges. Usually, (Kclu - NumMinMcbt) is

equal to the right number of clusters in those data sets with obvious clusters. There are

also four cases in mcbt(MCS) = {ce1, ce2, …, ceKclu-1} just like that in mst(MC).

 (Sd). Merge two near neighbor micro-clusters connected by any edge in the

NumMinMcbt minimum edges of mcbt(MCS) if they can be merged. That is:

 for (i = 1; i ≤ NumMinMcbt; i++)
 {
 if (two near neighbor micro-clusters connected by cei can be merged)

 The two near neighbor micro-clusters should be merged.

 }

4.3.3 Two judgement methods of merging two micro-clusters in Strategy 1

In step (Sd) of Strategy 1, the following any judgement method of merging two

micro-clusters can be used.

 14

(1) Method 1: The middle-point judgement method

In the front NumMinMst edges of the increased edge set mst(MC) = {e1, e2, …,

eKclu-1}, suppose edge ei (i = 1, 2, …, NumMinMst) connects two micro-cores, MCu and

MCv, of two micro-clusters, MCSu and MCSv. We compute the middle point in the line

of the two micro-cores MCu and MCv, Line(MCu, MCv). The computation equation of

the middle point in the line Line(MCu, MCv) is presented by:

middlepoint(MCu, MCv) = (MCu + MCv) / 2 (6)

One kind of density measure of the middle point can be used to judge the merging

of two micro-clusters. Suppose σ(middlepoint(MCu, MCv)) is the σ near neighbor point

set of point middlepoint(MCu, MCv), and |σ(middlepoint(MCu, MCv))| is the number of

points in σ(middlepoint(MCu, MCv)). The density measure index, |σ(middlepoint(MCu,

MCv))|, can be used to judge the merging of two micro-clusters, MCSu and MCSv.

The judgement rule of merging two near neighbor micro-clusters in Strategy 1 is:

if (|σ(middlepoint(MCu, MCv))| ≥ MinPts)

 Two micro-clusters, MCSu and MCSv, can be merged;

else

 Two micro-clusters, MCSu and MCSv, can not be merged;

Here, parameter σ is a range threshold and parameter MinPts is a density threshold.

(2) Method 2: The three-points judgement method

In the front NumMinMst edges of the increased edge set mst(MC) = {e1, e2, …,

eKclu-1}, suppose edge ei (i = 1, 2, …, NumMinMst) connects two micro-cores, MCu and

MCv, of two micro-clusters, MCSu and MCSv. We compute three points in the line of

the two micro-cores MCu and MCv, Line(MCu, MCv).

The first point is the middle point of Line(MCu, MCv), middlepoint(MCu, MCv).

The computation equation of middlepoint(MCu, MCv) is presented by Eq. (6).

The second point of Line(MCu, MCv), leftpointσ(MCu, MCv), is a left point near

middlepoint(MCu, MCv) with a distance that is equal to parameter σ.

The third point of Line(MCu, MCv), rightpointσ(MCu, MCv), is a right point near

middlepoint(MCu, MCv) with a distance that is equal to parameter σ.

Easily, we can get two computation equations of the second point and the third

point in the line Line(MCu, MCv).

leftpointσ(MCu, MCv) = (,) ()
(,)u v v u

u v

middlepoint MC MC MC MC
dis MC MC


  (7)

 15

rightpointσ(MCu, MCv) = (,)+ ()
(,)u v v u

u v

middlepoint MC MC MC MC
dis MC MC


 (8)

One kind of density measure of three points, leftpointσ(MCu, MCv),

middlepoint(MCu, MCv), and rightpointσ(MCu, MCv), can be used to judge the merging

of two micro-clusters, MCSu and MCSv. Just like the above, the three density measure

indexes, |σ(leftpointσ(MCu, MCv))|, |σ(middlepoint(MCu, MCv))|, and |σ(rightpointσ(MCu,

MCv))|, are used to judge the merging of two micro-clusters, MCSu and MCSv.

The judgement rule of merging two micro-clusters is:

if ((|σ(leftpoint(MCu, MCv))| ≥ MinPts) and (|σ(middlepoint(MCu, MCv))| ≥ MinPts)

and (|σ(rightpoint(MCu, MCv))| ≥ MinPts))

 Two micro-clusters, MCSu and MCSv, can be merged;

else

 Two micro-clusters, MCSu and MCSv, can not be merged;

4.3.4 Two judgement methods of merging two micro-clusters in Strategy 2

In step (Sd) of Strategy 2, the following any judgement method of merging two

micro-clusters can be used.

(1) Method 1: The middle-point judgement method

In the front NumMinMcbt edges of the increased edge set mcbt(MCS) = {ce1,

ce2, …, ceKclu-1}, suppose edge cei (i = 1, 2, …, NumMinMcbt) connects two nearest

points, MPu and MPv, of two micro-clusters, MCSu and MCSv. We compute the middle

point in the line of two nearest points MPu and MPv, Line(MPu, MPv). The computation

equation of the middle point in the line Line(MPu, MPv) is presented by:

middlepoint(MPu, MPv) = (MPu + MPv) / 2 (9)

One kind of density measure of the middle point in the line Line(MPu, MPv) can be

used to judge the merging of two micro-clusters. Suppose σ(middlepoint(MPu, MPv)) is

the σ near neighbor point set of point middlepoint(MPu, MPv), and |σ(middlepoint(MPu,

MPv))| is the number of points in σ(middlepoint(MPu, MPv)). The density measure

index, |σ(middlepoint(MPu, MPv))|, can be used to judge the merging of two

micro-clusters, MCSu and MCSv.

The judgement rule of merging two near neighbor micro-clusters in Strategy 2 is:

if (|σ(middlepoint(MPu, MPv))| ≥ MinPts)

 Two micro-clusters, MCSu and MCSv, can be merged;

 16

else

 Two micro-clusters, MCSu and MCSv, can not be merged;

(2) Method 2: The three-points judgement method

In the front NumMinMcbt edges of the increased edge set mcbt(MCS) = {ce1,

ce2, …, ceKclu-1}, suppose edge cei (i = 1, 2, …, NumMinMcbt) connects two nearest

points, MPu and MPv, of two micro-clusters, MCSu and MCSv. We compute three points

in the line of two nearest points MPu and MPv, Line(MPu, MPv).

The first point is the middle point of Line(MPu, MPv), middlepoint(MPu, MPv). The

computation equation of middlepoint(MPu, MPv) is presented by Eq. (9).

The second point of Line(MPu, MPv), leftpointσ(MPu, MPv), is a left point near the

middle point with a distance that is equal to parameter σ.

The third point of Line(MPu, MPv), rightpointσ(MPu, MPv), is a right point near the

middle point with a distance that is equal to parameter σ.

Easily, we can get two computation equations of the second point and the third

point in the line Line(MPu, MPv).

leftpointσ(MPu, MPv) = (,) ()
(,)u v v u

u v

middlepoint MP MP MP MP
dis MP MP


  (10)

rightpointσ(MPu, MPv) = (,)+ ()
(,)u v v u

u v

middlepoint MP MP MP MP
dis MP MP


 (11)

Here, according to Definition 5, there is dis(MPu, MPv) = dismin(MCSu, MCSv).

One kind of density measure of three points in the line Line(MPu, MPv),

leftpointσ(MPu, MPv), middlepoint(MPu, MPv), and rightpointσ(MPu, MPv), can be used

to judge the merging of two micro-clusters, MCSu and MCSv. Just like the above, the

three density measure indexes, |σ(leftpointσ(MPu, MPv))|, |σ(middlepoint(MPu, MPv))|,

and |σ(rightpointσ(MPu, MPv))|, are used to judge the merging of two micro-clusters,

MCSu and MCSv.

The judgement rule of merging two micro-clusters is:

if ((|σ(leftpoint(MPu, MPv))| ≥ MinPts) and (|σ(middlepoint(MPu, MPv))| ≥ MinPts)

and (|σ(rightpoint(MPu, MPv))| ≥ MinPts))

 Two micro-clusters, MCSu and MCSv, can be merged;

else

 Two micro-clusters, MCSu and MCSv, can not be merged;

4.4 Time complexity analysis of CESynC algorithm

 The time complexity of the original ESynC algorithm is Time = O(Tdn2), where T

 17

is the times of synchronization, n is the number of data points, and d is the dimension

of data points. An improved version of ESynC algorithm by using some efficient index

structures (such as R-tree, R*-tree, et al.), Time = O(Tdn·logn) can be obtained in many

low-dimensional data sets. So Step1 of CESynC algorithm needs Time = O(Tdn2), even

Time = O(Tdn·logn).

In Step2, the simplest implementation of fetching Kclu steady locations and Kiso

isolates from S(T) = {X1(T), X2(T), …, Xn(T)} needs Time = O(dn2). Another

implementation with a little trick by recording current steady locations when scanning

each point of the data set needs Time = O(dn·(Kclu + Kiso)).

In Step3, constructing an MST from Kclu micro-cores using Prim algorithm needs

Time = O(d·(Kclu)
2). Constructing an MCBT from Kclu micro-clusters based on the

mst(MC) needs Time =  
(,)

()u v
e u v MST

O d cluster cluster


  .

In Step4, if each edge that connects two micro-clusters needs to judge the merging

operation, CESynC algorithm needs O(Kcl - 1) judgements. If two micro-clusters need

to be merged, then two subsets that contain their corresponding data points need to do

a union operation. If use a disjoint-set data structure, the union operation is very simple

and efficient.

Step5 needs Time = O(n) if using a disjoint-set data structure.

4.5 The setting of parameters in CESynC algorithm

4.5.1 The setting of range parameter δ in CESynC algorithm

Parameter δ is important for clustering quality in CESynC algorithm and ESynC

algorithm. In CESynC algorithm, ESynC algorithm is called at first. In the stage of

merging micro-clusters, parameter δ is not used again. So the setting of range

parameter δ in CESynC algorithm is the same as that in ESynC algorithm and SynC

algorithm. In Böhm et al. (2010), parameter δ is optimized by the MDL principle.

Similarly, two other methods were presented to estimate parameter δ that is used in

CNNI algorithm (Chen, 2015). How to select a proper value for parameter δ is

discussed in Chen (2017, 2018). They are summarized below.

(1) The optimization of parameter δ in Böhm et al. (2010)

Parameter δ can affect the results of clusters. In Böhm et al. (2010), parameter δ is

optimized by a heuristic method and the MDL principle. In the heuristic method

presented by Böhm et al. (2010), parameter δ is initialized with the average value of

the k-nearest neighbor distance determined from the data set for a small k. For example,

 18

k = 3 is recommended in their experiments. Then parameter δ is increased with a

reasonable step size.

(2) The heuristic selection of parameter δ

If parameter δ is satisfied with Eq. (4), then the data set S = {X1, X2, …, Xn} using

ESynC algorithm for clustering will obtain an effective result of local synchronization

with some obvious clusters or isolates.

But sometimes there is max{longestDistance(clusterk) | k = 1, 2, …, Kclu} >

min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu} for some data sets. In this case, if we

set δ > min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu}, some obvious clusters may be

detected.

 (3) A linear-searching exploring method of parameter δ

Usually, parameter δ has a very long valid interval for many kinds of data sets

with obvious clusters. Some simulated experiments in Chen (2017) and this paper also

validate this conclusion. Some times, parameter δ have several long valid intervals for

different clustering levels. So we can explore the valid interval of parameter δ by the

linear-searching method.

4.5.2 The setting of the range parameter σ in Method 1 and Method 2 of CESynC

algorithm

Parameter σ affects the merging selection in CESynC algorithm. Parameter σ is

often designed by the following rule:

σ ∈ [σmin, σmax]. (12)

Usually, min 2
NumMinMcbtce     and (1)

max 2
NumMinMcbtce     are satisfied in many data

sets. In the mcbt(MCS) = {ce1, ce2, …, ceKclu-1}, (ceNumMinMcbt/2, ce(NumMinMcbt+1)/2) is

often an inflexion-point of mcbt(MCS). Here 2
NumMinMcbtce   is the integer ceiling of

ceNumMinMcbt/2 and (1)

2
NumMinMcbtce  

  is the integer floor of ce(NumMinMcbt+1)/2).

In subsection 5.3.4, we explore the relation between parameter σ and parameter δ

in CESynC algorithm by using nine artificial data sets. We observe that the valid

interval of parameter σ is affected by parameters δ and MinPts.

4.5.3 The setting of parameter MinPts in CESynC algorithm

Parameter MinPts is a density threshold that is used to filter isolates and to judge

the merging operation of two micro-clusters. In our simulations, it is set from 1 to 4.

When MinPts = 1, it means that there is no isolates in the synchronization clustering

 19

stage of CESynC algorithm. When MinPts = 2, 3, or 4, those isolates that its number of

points is less than MinPts can be filtered after the synchronization clustering.

Usually, the valid interval of parameter δ in CESynC algorithm is longer when

MinPts = 1 or 2, and it is shorter when MinPts = 3 or 4.

4.6 The improvement of CESynC algorithm

In CESynC algorithm, one improved version of ICESynC algorithm can be

obtained by combining multidimensional grid partitioning method and Red-Black tree

structure or using R-tree structure to construct the near neighbor point sets of all data

points. The improving method based on spatial index structures is introduced in Chen

(2018).

4.7 The convergence of CESynC algorithm

Because the merging operation of CESynC algorithm is a judging-and-merging

process, so the convergence of CESynC algorithm is completely depended on the

convergence of ESynC algorithm. According to Chen (2017) and the simulation,

CESynC algorithm is also convergent.

4.8 Two extreme cases of CESynC algorithm

CESynC algorithm has two extreme cases. One case is the number of initial

micro-clusters after the synchronization clustering stage of CESynC algorithm is equal

to the actual number of clusters. In this case, parameter δ in CESynC algorithm is set in

the valid interval of parameter δ in ESynC algorithm. At this time, NumMinMst or

NumMinMcbt is equal to zero. So the merging judgement of micro-clusters is not

needed.

Another case is when MinPts = 1 and parameter δ in CESynC algorithm is set as a

small value that is less than the minimum distance of the data set, the number of initial

micro-clusters after the synchronization clustering stage of CESynC algorithm is equal

to the number of points. At this time, NumMinMst or NumMinMcbt is equal to (n – 1).

So CESynC algorithm needs a merging judgement process of all points. In this case,

the MST of micro-clusters is the same as the MCBT of micro-clusters and CESynC

algorithm is similar to an MST-based clustering algorithm (Chen, 2013).

5. Simulated experiments

5.1 Experimental design

5.1.1 Experimental environment and the description of experimental data sets

Our experiments are finished in a personal computer (Capability Parameters:

 20

Intel(R) Celeron(R) CPU 3855U 1.6GHz, 8.00G Memory). Experimental programs are

developed using C and C++ language under Windows 7.

To verify the improvements in clustering quality or clustering validity of CESynC

algorithm, there will be some experimental comparison among SynC algorithm,

ESynC algorithm and several classical clustering algorithm on some artificial data sets

and eight UCI data sets (Frank and Asuncion, 2010) in the next sections. To validate

the improvements in time cost between ICESynC algorithm (an Improved version of

CESynC algorithm in time complexity) and CESynC algorithm, there will be an

experimental comparison of four data sets.

The original location of some 2-D and 3-D experimental data sets (data0 - data 6,

DS0 - DS5, DS9) are presented in sfig. 1 and sfig. 2 of Online Resource 1 of

Supplementary Material. Seventeen kinds of artificial data sets (DS0 - DS16) are

produced in an interval [0, 600] in each dimension by two functions presented in

Online Resource 2 of Supplementary Material. Eight UCI data sets are standardized to

an interval [0, 600] in each dimension. The original location of three 2-D and 3-D

artificial UCI data sets are presented in sfig. 3 of Online Resource 1 of Supplementary

Material. Table 3 presents the description of the experimental data sets.

Table 3 The description of experimental data sets
(a) The description of seven 2-D data sets (data0 is created by a program and data1- data6 are drawn by
hand in a 2-D region referencing the original DBSCAN paper)
Data Sets Number of Points (n) Number of clusters With noise

data0 400 1 or 2 or 3 or 4 yes
data1 300 2 no
data2 300 3 no
data3 300 4 no
data4 300 4 no
data5 300 4 yes
data6 300 1 or 2 or 3 no

(b) The description of sixteen kinds of artificial data sets
Data Sets Predefined (Actual)

Number of Clusters
With Noise Cluster

Semidiameter
Dimension (d)

DS0 9 (8) no 30 2
DS1 5 (5) yes 40 2
DS2 5 (4) no 50 2
DS3 7 (6) yes 30 2
DS4 7 (5) no 40 2
DS5 12 (11) no 30 2
DS6 12 (12) no 30 4
DS7 12 (12) no 30 6
DS8 12 (12) no 30 8
DS9 5 (5) no 30 2

DS10 5 (5) no 30 4
DS11 5 (5) no 30 6
DS12 5 (5) no 30 8
DS13 5 (5) no 30 20
DS14 5 (5) no 30 40

 21

DS15 5 (5) no 30 80
DS16 5 (5) no 30 100

 22

(c) The description of eight UCI data sets (Frank and Asuncion, 2010)
UCI

Data Sets
Number
of Points

(n)

Dimension
(d)

Class Distribution Number
of Classes

Iris 150 4 {Setosa: 50, Versicolor: 50, Virginica: 50} 3
Wine 178 13 {1: 59, 2: 71, 3: 48} 3
Wdbc 569 30 {B: 357, M: 212} 2
Glass 214 9 {Window: {FB: 70, FV: 17, NFB: 76},

Non-window: {C: 13, T: 9, H: 29}}
6

Ionosphere 351 34 {Good: 225, Bad: 126} 2
Letter-recognition 20000 16 {A: 443, B: 460, C: 449, …, Z: 408} 26

Segmentation 210 19 {Brickface: 30, Sky: 30, Foliage: 30, Cement:
30, Window: 30, Path: 30, Grass: 30}

7

Cloud 2048 10 {1: 2014, 2: 2014} 2

5.1.2 Measure criteria of performance of algorithms

All comparison results of these algorithms are presented by some tables and

figures. The clustering quality and efficiency of CESynC algorithm are evaluated and

compared using the following several criteria.

(1) The efficiency of algorithms is measured by time cost (second). The smaller

the time cost is, the higher the efficiency is.

(2) Clustering quality of clustering algorithms is measured by display figures of

clustering results, the final number of clusters, and three robust information-theoretic

measures (Adjusted Mutual Information (AMI) (Vinh et al., 2010), Adjusted Variation

of Information (AVI) (Vinh et al., 2010), and Normalized Mutual Information (NMI)

(Strehl et al., 2002)). According to Vinh et al. (2010), the higher the value of three

measures gets, the better the clustering quality of algorithms is. In simulations, we use

the Matlab code from Vinh et al. (2010) to compute AMI and NMI. According to two

papers (Strehl et al., 2002; Vinh et al., 2010), we implement a Matlab program to

compute AVI.

5.1.3 The description of experiments and the setting of parameters

In our simulated experiments, the maximum times of synchronization evolution in

the while repetition of SynC algorithm, ESynC algorithm, and CESynC algorithm is

set as 20.

In section 5.2, CESynC algorithm (using Strategy 1 + Method 1) will be compared

with SynC algorithm, ESynC algorithm, and some other classic clustering algorithms

(K-Means (MacQueen, 1967), FCM (Bezdek, 1981), AP (Frey et al., 2007), DBSCAN

(Ester et al., 1996), Mean Shift (Fukunaga et al., 1975; Comaniciu et al., 2002) in

clustering quality by using seven 2-D artificial data sets (data0 – data6).

In section 5.3, CESynC algorithm (using (Strategy 1 + Method 1) and (Strategy 2

 23

+ Method 1)) will be compared with some other clustering algorithms in clustering

quality and time cost by using some artificial data sets (from DS0 - DS16). The

relation between parameter σ and parameter δ in CESynC algorithm is explored by

using nine artificial data sets (from DS5 - DS16) in this section.

In section 5.4, CESynC algorithm (using Strategy 2 + Method 1) will be compared

with some other clustering algorithms in clustering quality by using eight UCI data

sets.

In the experiments, range parameters δ and σ, and density threshold parameter

MinPts are used in CESynC algorithm. Range parameter δ is also used in ESynC

algorithm and SynC algorithm. Range parameter Eps (has similar function to

parameter δ) and density threshold parameter MinPts are used in DBSCAN algorithm.

In the simulations, parameter MinPts is set as 4 in DBSCAN algorithm. Bandwidth

parameter h (has similar function to parameter δ) is used in Mean Shift algorithm.

Parameter k, the predefined number of clusters, is used in K-Means algorithm and

FCM algorithm.

5.2 Experimental results of seven 2-D artificial data sets (data0 – data6)

5.2.1 Comparison of the clustering results among CESynC algorithm (using Strategy 1

+ Method 1) and some other clustering algorithms

 Fig. 2 presents the clustering results of seven 2-D artificial data sets (data0 – data6)

by using CESynC algorithm (using Strategy 1 + Method 1). In Online Resource 3 of

Supplementary Material of this paper, sfig. 4 presents the clustering results of seven

2-D artificial data sets (data0 – data6) by using SynC algorithm, ESynC algorithm,

DBSCAN algorithm, Mean Shift algorithm, AP algorithm, K-Means algorithm, and

FCM algorithm.

 24

(a) 4 Clusters of data0 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 18,

MinPts = 4)

(b) 2 Clusters of data1 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 14,

MinPts = 2)

(c) 3 Clusters of data2 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 14,

MinPts = 2)

 25

(d) 4 Clusters of data3 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 14,

MinPts = 4)

(e) 4 Clusters of data4 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 12,

MinPts = 4)

(f) 4 Clusters and 9 isolates of data5 identified by CESynC algorithm (using Strategy 1 + Method 1,

δ = σ = 12, MinPts = 4)

 26

(g) 3 Clusters of data6 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = 27, σ =

18, MinPts = 4)
Fig. 2 The clustering results of seven 2-D artificial data sets (data0 – data6) by

using CESynC algorithm. In Fig. 2, the original location of data points are draw by
small square with green color, the steady locations of Kclu microclusters that are
obtained by synchronization evolution based on ESynC algorithm are draw by large
sphere with red color, and the (Kclu - 1) edges connected Kclu steady locations are draw
by thin line with blue color.
5.2.2 Comparison of the valid interval of parameters δ, Eps, or h among CESynC

algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift

algorithm

Table 4. Comparison of the valid interval of parameter δ, Eps, or h among CESynC
algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift
algorithm using seven 2-D artificial data sets. In CESynC, parameter MinPts is set as 2
for data1 and data2, and it is set as 4 for other five data sets. In CESynC, parameter σ is
set according to Eq. (12).
(a) The valid interval of parameter δ, Eps, or h among CESynC, SynC, ESynC, DBSCAN, and Mean
Shift

Data
sets

The valid interval of parameter δ, Eps, or h The [ek , ek+1]
in the MST of
 the complete
graph of the
data set

CESynC
(Strategy1 +
Method 1)

CESynC
(Strategy2 +
Method 1)

SynC ESynC DBSCAN Mean Shift

data0 [14, 15] or
[18, 83]

[15, 17] or
[18, 83]

Null [35, 40] ∪

[54, 78] ∪
{47, 51, 52,
80}

{18} [46, 113] [16.23, 24.19]

data1 [14, 16] [14, 31] Null Null [24, 31] Null [23.35, 31.06]
data2 [12, 19] [12, 19] Null Null [17, 41] Null [15.3, 41.68]
data3 [13, 18] ∪

[34, 62]
[15, 62] Null [34, 62] [13, 28] [44, 49] [12.37, 28.43]

data4 [11, 14] [13, 14] Null Null [13, 22] Null [11.66, 22.85]
data5 {12} {12} Null Null [11, 18] Null [10, 18.68]
data6 [26, 46] or

[18, 25]
∪ {77}
∪ [83, 91]
∪ [93,
130] or
[131, +∞)

[24, 28] Null [47, 66] or
{77} ∪
[83, 91] ∪
[93, 130] or
[131, +∞)

[19, +∞)
[72, 156]
or {169}
∪ [171,
+∞)

Null

 27

(b) The number of clusters / isolates obtained by using CESynC, SynC, ESynC, DBSCAN, Mean Shift,
and MST-based clustering algorithm

Data
sets

The number of clusters / isolates
CESynC
(Strategy1 +
Method 1)

CESynC
(Strategy2 +
Method 1)

SynC ESynC DBSCAN
Mean
Shift

MST-based
clustering

data0 3 / 0 or
4 / 0

3 / 0 or
4 / 0

- 4 / 0 4 / 0 4 / 0 3 / 0

data1 2 / 0 2 / 0 - - 2 - 2 / 0
data2 3 / 0 3 / 0 - - 3 - 3 / 0
data3 4 / 0 4 / 0 - 4 / 0 4 4 / 0 4 / 0
data4 4 / 0 4 / 0 - - 4 - 4 / 0
data5 4 / 9 4 / 9 - - 4 / 9 - 4 / 9
data6 3 / 0 or

2 / 0 or
1 / 0

1 / 0 - 3 / 0 or
2 / 0 or
1 / 0

2 / 0 or
1 / 0

2 / 0 or
1 / 0

1 / 0

 Table 4 presents the comparison results among these clustering algorithms. Here,

[ek , ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 4, intercomparing

CESynC algorithm (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC

algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift algorithm, we

observe that the valid interval of parameters δ in CESynC algorithm is longer or has

some improvements than that in ESynC algorithm in some cases. In this simulation, the

valid interval of parameter δ between CESynC algorithm (Strategy1 + Method 1) and

CESynC algorithm (Strategy1 + Method 2) has little difference.

5.3 Experimental results of some artificial data sets (from DS0 - DS16)

5.3.1 Comparison of the valid interval of parameter δ, Eps, or h among CESynC

algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift

algorithm using some artificial data sets (from DS0 - DS16, n = 2000)

Table 5 presents the comparison results among these clustering algorithms. Here,

[ek , ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 5, intercomparing

CESynC algorithm (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC

algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift algorithm, we

observe that the valid interval of parameter δ in CESynC algorithm is longer or has

some improvements than that in ESynC algorithm in some cases. In this simulation, the

valid interval of parameter δ between CESynC algorithm (Strategy1 + Method 1) and

CESynC algorithm (Strategy1 + Method 2) has little difference.

 28

Table 5. Comparison of the valid interval of parameter δ, Eps, or h among CESynC
algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift
algorithm using seventeen artificial data sets (from DS0 – DS16). In CESynC
algorithm, parameter MinPts is set as 2 for DS0 – DS16, and parameter σ is set
according to Eq. (12).
(a) The valid interval of parameter δ, Eps, or h among CESynC, SynC, ESynC, DBSCAN, and Mean
Shift
Data
sets

The valid interval of parameter δ, Eps, or h The [ek , ek+1]
in the MST of
 the complete
graph of the
data set

CESynC
(Strategy1 +
Method 1)

CESynC
(Strategy2 +
Method 1)

SynC ESynC DBSCAN Mean
Shift

DS0 [16, 43] [16, 43] Null [19, 40] [10, 15] [29, 57] [8.54, 15.34]
DS1 [22, 33] [22, 33] Null [24, 33] [10, 14] Null [9.00, 14.94]
DS2 [20, 142] [20, 142] Null [56, 142] [12, 55] [86, 123] [8.94, 55.19]
DS3 [16, 28] [16, 28] Null [19, 28] [9, 16] [29, 50] [8.54, 16.53]
DS4 {11, 18} ∪

[14, 15] ∪
[22, 38]

{11, 18} ∪

[14, 15] ∪
[22, 38]

Null Null [10, 14] Null [9.90, 14.29]

DS5 {12, 16} ∪
[19, 43]

{12, 16} ∪
[19, 43]

Null [21, 43] [10, 17] [31, 34] [9.06, 17.29]

DS6 [27, 145] [27, 145] Null [27, 145] [27, 112] [35, 145] [26.42,
112.41]

DS7 [39, 191] [39, 191] Null [39, 191] [39, 150] [44, 204] [38.25,
150.64]

DS8 [53, 276] [53, 276] Null [53, 276] [53, 241] [53, 272] [52.80,
241.80]

DS9 [11, 14] ∪
[17, 72]

[11, 14] ∪
[17, 72]

Null [18, 72] [7, 35] [26, 69] [6.00, 35.95]

DS10 [24, 187] [24, 187] Null [24, 187] [24, 151] [35, 198] [23.17,
151.11]

DS11 [35, 223] [35, 223] Null [35, 223] [35, 188] [39, 244] [34.45,
188.28]

DS12 [46, 275] [46, 275] Null [46, 275] [46, 240] [47, 288] [45.88,
240.39]

DS13 [88, 826] [88, 826] Null [88, 826] [88, 800] [88, 842] [87.94,
800.24]

DS14 [129, 1239] [129, 1239] Null [129, 1239] [139,
1220]

[139,
1266]

[138.37,
1220.47]

DS15 [178, 1824] [178, 1824] Null [178, 1824] [204,
1805]

[188,
1848]

[203.83,
1805.51]

DS16 [201, 2078] [201, 2078] Null [201, 2078] [232,
2060]

[223,
2100]

[231.34,
2060.60]

 29

(b) The number of clusters / isolates obtained by using CESynC, SynC, ESynC, DBSCAN, Mean Shift,
and MST-based clustering algorithm

Data
sets

The number of clusters / isolates
CESynC
(Strategy1 +
Method 1)

CESynC
(Strategy2 +
Method 1)

SynC ESynC DBSCAN Mean Shift
MST-based
clustering

DS0 8 / 0 8 / 0 - 8 / 0 8 / 0 8 / 0 8 / 0
DS1 5 / 9 5 / 9 - 5 / 9 5 / 9 5 / 9 5 / 9
DS2 4 / 0 4 / 0 - 4 / 0 4 /

0
4 / 0 4 / 0

DS3 6 / 17 6 / 17 - 6 / 17 6 / 17 6 / (16 ~
22)

6 / 17

DS4 5 / 0 5 / 0 - - 5 / 0 - 5 / 0
DS5 11 / 0 11 / 0 - 11 / 0 11 / 0 11 / 0 11 / 0
DS6 12 / 0 12 / 0 - 12 / 0 12 / 0 12 / 0 12 / 0
DS7 12 / 0 12 / 0 - 12 / 0 12 / 0 12 / 0 12 / 0
DS8 12 / 0 12 / 0 - 12 / 0 12 / 0 12 / 0 12 / 0
DS9 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS10 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS11 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS12 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS13 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS14 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS15 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0
DS16 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0

5.3.2 Comparison of the clustering quality among CESynC algorithm and some other

clustering algorithms using some artificial data sets (from DS1 – DS16, n = 2000)

Table 6 presents the comparison results of the clustering quality among CESynC

algorithm (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC algorithm,

ESynC algorithm, DBSCAN algorithm, Mean Shift algorithm, AP algorithm, K-Means

algorithm, and FCM algorithm by using sixteen kinds of artificial data sets (from DS1

– DS16).

Table 6. Comparison of the clustering quality of several clustering algorithms
(CESynC (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC, ESynC,
and several classical clustering algorithms) using sixteen artificial data sets from DS1
to DS16 (n = 2000). In Table 6, parameter δ, Eps, h, or k in these clustering algorithms
gets its minimum value from its valid interval or an acceptable value. In CESynC
algorithm, parameter MinPts is set as 2 for DS1 - DS16, and parameter σ is set
according to Eq. (12).

 30

(a) The setting of parameters in several clustering algorithms

UCI Data Sets
parameter

δ in
CESynC

parameter δ in
SynC and

ESynC

parameter k in
K-Means and

FCM

parameter
Eps in

DBSCAN

parameter
h in

Mean Shift
DS1 δ = 22 δ = 24 k = 5 Eps = 10 h = 38
DS2 δ = 20 δ = 56 k = 4 Eps = 12 h = 86
DS3 δ = 16 δ = 19 k = 6 Eps = 9 h = 29
DS4 δ = 11 δ = 43 k = 5 Eps = 10 h = 69
DS5 δ = 19 δ = 21 k = 11 Eps = 10 h = 31
DS6 δ = 27 δ = 27 k = 12 Eps = 27 h = 35
DS7 δ = 39 δ = 39 k = 12 Eps = 39 h = 44
DS8 δ = 53 δ = 53 k = 12 Eps = 53 h = 53
DS9 δ = 17 δ = 18 k = 5 Eps = 7 h = 26

DS10 δ = 24 δ = 24 k = 5 Eps = 24 h = 35
DS11 δ = 35 δ = 35 k = 5 Eps = 35 h = 39
DS12 δ = 46 δ = 46 k = 5 Eps = 46 h = 47
DS13 δ = 88 δ = 88 k = 5 Eps = 88 h = 88
DS14 δ = 129 δ = 129 k = 5 Eps = 139 h = 139
DS15 δ = 178 δ = 178 k = 5 Eps = 204 h = 188
DS16 δ = 201 δ = 201 k = 5 Eps = 232 h = 223

(b) Three robust information-theoretic measures (AMI /AVI / NMI) and the number of clusters / isolates
obtained by using CESynC, SynC, ESynC, K-Means, FCM, AP, DBSCAN, and Mean Shift clustering
algorithm
Measure
indexes of
algorithms

Name of
algorithms

Data sets

DS1 DS2 DS3 DS4

AMI /
AVI /
NMI

CESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

SynC
0.1260 /
0.2238 /
0.4977

0.0859 /
0.1583 /
0.4417

0.1619 /
0.2787 /
0.5314

0.1126 /
0.2024 /
0.4816

ESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

0.9957 /
0.9959 /
0.9959

K-Means
0.9785 /
0.9881 /
0.9882

1.0000 /
1.0000 /
1.0000

0.7039 /
0.7497 /
0.7542

0.8235 /
0.8442 /
0.8448

FCM
0.9785 /
0.9881 /
0.9882

0.9522 /
0.9557 / 0.9557

0.9683 /
0.9839 /
0.9842

0.9864 /
0.9873 /
0.9873

AP
0.4091 /
0.5790 /
0.6448

0.3254 /
0.4910 /
0.5766

0.4550 /
0.6223 /
0.6792

0.3844 /
0.5554 /
0.6268

DBSCAN
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

Mean Shift
0.9725 /
0.9727 /
0.9730

1.0000 /
1.0000 /
1.0000

0.9996 /
0.9998 /
0.9998

0.9180 /
0.9244 /
0.9246

The
number of
clusters /
isolates

CESynC 5 / 9 4 / 0 6 / 17 5 / 0
SynC 889 / 0 1050 / 0 730 / 0 941 / 0
ESynC 5 / 9 4 / 0 6 / 17 5 / 0
K-Means 5 4 / 0 6 / 0 5 / 0
FCM 5 4 / 0 6 / 0 5 / 0
AP 50 56 / 0 48 / 0 53 / 0
DBSCAN 5 / 9 4 / 0 6 / 17 5 / 0
Mean Shift 5 / 9 4 / 0 6 / 16 5 / 0

 31

Measure
indexes of
algorithms

Name of
algorithms

Data sets

DS5 DS6 DS7 DS8

AMI /
AVI /
NMI

CESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

SynC
0.1397 /
0.2452 /
0.5911

0.0012 /
0.0025 /
0.5720

0.0019 /
0.0037 /
0.5722

5.3818e-15 /
1.0764e-14 /
0.5718

ESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

K-Means
0.7896 /
0.8212 /
0.8239

0.9057 /
0.9277 /
0.9288

0.9057 /
0.9277 /
0.9288

0.9530 /
0.9649 /
0.9654

FCM
0.9968 /
0.9968 /
0.9968

0.2725 /
0.4283 /
0.5228

0.2725 /
0.4283 /
0.5228

0.2781 /
0.4348 /
0.5273

AP
0.6054 /
0.7542 /
0.7862

0.6827 /
0.8114 / 0.8319

0.6827 /
0.8114 /
0.8319

0.7963 /
0.8866 /
0.8947

DBSCAN
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

Mean Shift
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

The
number of
clusters /
isolates

CESynC 11 / 0 12 / 0 12 / 0 12 / 0
SynC 1023 / 0 1990 / 0 1985 / 0 2000 / 0
ESynC 11 / 0 12 / 0 12 / 0 12 / 0
K-Means 11 / 0 12 / 0 12 / 0 12 / 0
FCM 11 / 0 2 / 0 2 / 0 2 / 1
AP 47 / 0 37 / 0 37 / 0 23 / 0
DBSCAN 11 / 0 12 / 0 12 / 0 12 / 0
Mean Shift 11 / 0 12 / 0 12 / 0 12 / 0

Measure
indexes of
algorithms

Name of
algorithms

Data sets

DS9 DS10 DS11 DS12

AMI /
AVI /
NMI

CESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

SynC
0.1740 /
0.2964 /
0.5095

0.0022 /
0.0044 /
0.4607

1.2712e-14 /
2.5423e-14 /
0.4602

1.2712e-14 /
2.5423e-14 /
0.4602

ESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

K-Means
1.0000 /
1.0000 /
1.0000

0.8273 /
0.8648 /
0.8660

0.8273 /
0.8646 /
0.8659

0.6546 /
0.7308 /
0.7365

FCM
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

0.4077 /
0.5748 /
0.6304

0.6550 /
0.7916 /
0.8096

AP
0.4287 /
0.6002 /
0.6596

0.4361 /
0.6073 /
0.6649

0.4827 /
0.6511 /
0.6979

0.5071 /
0.6729 /
0.7147

 32

DBSCAN
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

Mean Shift
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

The
number of
clusters /
isolates

CESynC 5 / 0 5 / 0 5 / 0 5 / 0
SynC 596 / 0 1976 / 0 2000 / 0 2000 / 0
ESynC 5 / 0 5 / 0 5 / 0 5 / 0
K-Means 5 / 0 5 / 0 5 / 0 5 / 0
FCM 5 / 0 5 / 0 2 / 0 3 / 0
AP 41 / 0 39 / 0 28 / 0 24 / 0
DBSCAN 5 / 0 5 / 0 5 / 0 5 / 0
Mean Shift 5 / 0 5 / 0 5 / 0 5 / 0

Measure
indexes of
algorithms

Name of
algorithms

Data sets

DS13 DS14 DS15 DS16

AMI /
AVI /
NMI

CESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

SynC
1.2712e-14 /
2.5423e-14 /
0.4602

1.2712e-14 /
2.5423e-14 /
0.4602

1.2712e-14 /
2.5423e-14 /
0.4602

1.2712e-14 /
2.5423e-14 /
0.4602

ESynC
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

K-Means
0.8273 /
0.8647 /
0.8659

0.4178 /
0.5894 /
0.6467

0.8273 /
0.8648 /
0.8660

0.5894 /
0.6696 /
0.6768

FCM
0.4178 /
0.5894 /
0.6467

0.4178 /
0.5894 /
0.6467

0.4178 / 0.5894 /
0.6467

0.4182 /
0.5872 /
0.6428

AP
0.6215 /
0.7666 /
0.7896

0.6800 /
0.8095 /
0.8255

0.6988 / 0.8227 /
0.8367

0.6998 /
0.8234 /
0.8372

DBSCAN
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

Mean Shift
1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

1.0000 /
1.0000 /
1.0000

The
number of
clusters /
isolates

CESynC 5 / 0 5 / 0 5 / 0 5 / 0
SynC 2000 / 0 2000 / 0 2000 2000 / 0
ESynC 5 / 0 5 / 0 5 / 0 5 / 0
K-Means 5 / 0 2 / 0 5 / 0 5 / 0
FCM 2 / 0 2 / 0 2 / 0 3 / 1
AP 14 / 0 11 / 0 10 / 0 10 / 0
DBSCAN 5 / 0 5 / 0 5 / 0 5 / 0
Mean Shift 5 / 0 5 / 0 5 / 0 5 / 0

Note: In Table 6, the largest values of AMI, AVI and NMI and acceptable number of clusters in every

data set are shown in bold.

5.3.3 Comparison of the time cost among CESynC algorithm, ICESynC algorithm,

SynC algorithm, ISynC algorithm, ESynC algorithm, and IESynC algorithm using four

artificial data sets (from DS1, DS2, DS3, and DS5, n = 10000)

 33

Table 7 presents the comparison results of time cost among CESynC algorithm

ICESynC algorithm, SynC algorithm, ISynC algorithm, ESynC algorithm, and IESynC

algorithm by using four artificial data sets (from DS1, DS2, DS3, and DS5).

Table 7. Comparison of time cost among three synchronization clustering algorithms
and their corresponding improved versions based on R-tree (SynC, ISynC, ESynC,
IESynC, CESynC, and ICESynC) by using four artificial data sets. In Table 7, the
number of data points n = 10000, and parameter δ in these clustering algorithms gets
its minimum value from its valid interval. In CESynC algorithm, parameter MinPts is
set as 2 for DS1 – DS5, and parameter σ is set according to Eq. (12).

 34

(a) The setting of parameter in several clustering algorithms

Name of
algorithms

Data sets
DS1 DS2 DS3 DS5

The value of
parameter

CESynC,
ICESynC

δ = 22 δ = 20 δ = 16 δ = 19

SynC, ISynC,
ESynC, IESynC

δ = 24 δ = 56 δ = 19 δ = 21

Measure indexes
of algorithms

Name of algorithms
Data sets
DS1 DS2 DS3 DS5

Spend time
(second)

CESynC 225 364 367 152
ICESynC 64 76 95 30
SynC 367 388 365 363
ISynC 63 112 61 48
ESynC 126 290 165 126
IESynC 34 137 48 28

Note: The bold in Table 7 marks the best results of IESynC algorithm or ICESynC algorithm.

5.3.4 Exploration of the relation between parameter σ and parameter δ in CESynC

algorithm using nine artificial data sets (from DS5 - DS16, n = 2000)

Table 8 presents the valid interval of parameter σ among several different values

of parameter δ for MinPts = 2, 3, 4 in CESynC algorithm (using Strategy2 + Method 1)

using nine artificial data sets. From Table 8, we observe that the valid interval of

parameter σ is affected by parameters δ and MinPts. In the valid interval of parameter σ

for MinPts = 1, 2, 3, 4, conjoint micro-clusters will be merged, and disjoint

micro-clusters can not be merged. From Table 8, we also observe that, if MinPts = 2

and without the distortion of isolates, the valid interval of parameter σ satisfies:

(1)

2 2[,]NumMinMcbtNumMinMcbt
cece        . (13)

When using MCBT-based method, the correct number of clusters locates in the

inflexion-point of mcbt(MCS) = {ce1, ce2, …, ceKclu-1}, (ceNumMinMcbt /2, ce(NumMinMcbt+1)

/2). If there is distortion of isolates, the valid interval of parameter σ is near to

(1)

2 2[,]NumMinMcbtNumMinMcbt
cece       . When MinPts = 1, Eq. (13) is satisfied in many cases. When

MinPts = 3 and MinPts = 4, this conclusion is no more correct.

Table 8 Exploration of the relation between parameter σ and parameter δ in CESynC
algorithm (using Strategy2 + Method 1) using nine artificial data sets (from DS5 –
DS16, n = 2000). In Table 8, one or several lines of parameter δ for MinPts = 1, 2, 3, 4
that are shown in bold in the valid interval of parameter σ means that CESynC
algorithm has no isolates, and parameter σ ∈Ф means that CESynC algorithm gets one
or no micro-cluster, so there is no merging judgement.

 35

(a) DS5
 Parameter σ ∈

MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4
Parameter δ = 20 [2, 8] [2, 8] [4, 9] [5, 10]
Parameter δ = 19 [2, 8] [2, 8] [3, 9] [5, 10]
Parameter δ = 18 [3, 8] [3, 8] [6, 9] [7, 10]
Parameter δ = 17 [4, 8] [3, 8] [6, 9] [7, 10]
Parameter δ = 16 [3, 8] [3, 8] [6, 9] [7, 10]
Parameter δ = 15 [5, 8] [5, 8] [7, 9] [8, 10]
Parameter δ = 14 [5, 8] [5, 8] [7, 9] [9, 10]
Parameter δ = 13 [5, 11] [5, 12] [7, 12] [9, 12]
Parameter δ = 12 [5, 8] [5, 8] [8, 9] [9, 10]
Parameter δ = 11 [5, 8] [5, 8] [7, 9] [9, 10]
Parameter δ = 10 [6, 8] [5, 8] [8, 9] [9, 10]
Parameter δ = 9 [7, 8] [7, 8] [8, 9] {10}

(b) DS9

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 17 [1, 17] [1, 17] [4, 19] [4, 20]
Parameter δ = 16 [1, 17] [2, 17] [4, 19] [4, 20]
Parameter δ = 15 [3, 19] [2, 19] [4, 20] [6, 20]
Parameter δ = 14 [3, 19] [3, 19] [5, 20] [6, 20]
Parameter δ = 13 [2, 17] [2, 17] [4, 19] [5, 20]
Parameter δ = 12 [2, 17] [2, 17] [4, 19] [5, 20]
Parameter δ = 11 [3, 17] [3, 19] [5, 19] [5, 19]
Parameter δ = 10 [3, 17] [3, 19] [5, 19] [5, 19]
Parameter δ = 9 [3, 17] [3, 17] [4, 19] [5, 20]

(c) DS10

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 24 [1, 75] [1, 75] [1, 78] [1, 80]
Parameter δ = 23 [12, 75] [1, 75] [1, 78] [1, 80]
Parameter δ = 22 [12, 75] [1, 75] [1, 78] [1, 80]
Parameter δ = 21 [11, 75] [5, 75] [15, 78] [16, 80]
Parameter δ = 20 [14, 75] [15, 75] [15, 78] [16, 80]
Parameter δ = 19 [11, 74] [11, 77] [13, 77] [19, 79]
Parameter δ = 18 [11, 74] [12, 78] [15, 77] [17, 79]

(d) DS11

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 35 [1, 94] [1, 94] [1, 99] [1, 99]
Parameter δ = 32 [18, 94] [1, 94] [1, 99] [1, 99]
Parameter δ = 29 [24, 97] [15, 94] [1, 99] [1, 99]
Parameter δ = 26 [28, 93] [21, 90] [23, 90] [26, 92]
Parameter δ = 23 [23, 95] [25, 92] [29, 102] [30, 102]

(e) DS12
 Parameter σ ∈

MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4
Parameter δ = 46 [1, 120] [1, 120] [1, 134] [1, 135]
Parameter δ = 42 [23, 113] [1, 120] [1, 134] [1, 135]
Parameter δ = 38 [31, 125] [20, 120] [1, 134] [1, 135]
Parameter δ = 34 [30, 118] [20, 132] [33, 132] [37, 135]
Parameter δ = 30 [27, 120] [28, 134] [33, 132] [33, 135]
Parameter δ = 26 [24, 120] [22, 126] [31, 132] [32, 134]

 36

(f) DS13

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 88 [1, 400] [1, 400] [1, 411] [1, 411]
Parameter δ = 84 [44, 400] [1, 400] [1, 411] [1, 411]
Parameter δ = 80 [44, 382] [1, 400] [1, 411] [1, 411]
Parameter δ = 75 [51, 402] [40, 393] [1, 411] [1, 411]
Parameter δ = 70 [50, 406] [41, 405] [68, 404] [1, 411]
Parameter δ = 65 [46, 406] [44, 400] [69, 406] [65, 409]
Parameter δ = 60 [44, 400] [46, 405] [65, 409] [65, 410]
Parameter δ = 55 [44, 400] [50, 409] {54} Ф
Parameter δ = 50 [44, 400] [46, 408] Ф Ф

(g) DS14

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 129 [1, 610] [1, 610] [1, 620] [1, 620]
Parameter δ = 120 [70, 617] [1, 610] [1, 620] [1, 620]
Parameter δ = 110 [70, 610] [1, 610] [1, 620] [1, 620]
Parameter δ = 100 [73, 610] [72, 614] [101, 620] Ф
Parameter δ = 90 [70, 610] Ф Ф Ф

(h) DS15

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 178 [1, 902] [1, 902] [1, 918] [1, 920]
Parameter δ = 170 [102, 906] [1, 902] [1, 918] [1, 920]
Parameter δ = 160 [103, 902] [99, 102] Ф Ф
Parameter δ = 150 [102, 902] Ф Ф Ф

(i) DS16

 Parameter σ ∈
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4

Parameter δ = 300 [1, 1030] [1, 1030] [1, 1050] [1, 1052]
Parameter δ = 201 [1, 1030] [1, 1030] [1, 1050] [1, 1052]
Parameter δ = 190 [116, 1027] [1, 1030] [1, 1050] [1, 1052]
Parameter δ = 180 [116, 1030] Ф Ф Ф

5.4 Experimental results of eight UCI data sets

 Because we do not know the true dissimilarity measure of these UCI data sets, all

points of these UCI data sets are standardized to an interval [0, 600] in each dimension

in the experiments. When computing three information-theoretic measures (AMI, AVI,

and NMI), the class labels of these UCI data sets are regarded as their base cluster

labels.

 Table 9 presents the comparison results of clustering quality among several

clustering algorithms (CESynC algorithm (using Strategy2 + Method 1), SynC

algorithm, ESynC algorithm, DBSCAN algorithm, Mean Shift algorithm, AP algorithm,

K-Means algorithm, and FCM algorithm) using eight UCI data sets. In Table 9, by

intercomparing these clustering algorithms, we observe that CESynC algorithm gets

 37

the largest values of AMI and AVI in two UCI data sets (Letter-recognition and Cloud)

and larger (the same) values than (as) ESynC algorithm. So we can say that CESynC

algorithm sometimes gets better clustering results than some clustering algorithms in

some UCI data sets. From the final number of clusters in Table 9, we observe that

CESynC algorithm and ESynC algorithm can get better local synchronization results

than SynC algorithm.

Table 9 Comparison of the clustering quality among CESynC algorithm (using
Strategy2 + Method 1), SynC algorithm, ESynC algorithm, DBSCAN algorithm, Mean
Shift algorithm, AP algorithm, K-Means algorithm, and FCM algorithm by using eight
UCI data sets. In Table 9, parameter δ, Eps, or h in these clustering algorithms gets an
acceptable value, parameter k in K-Means and FCM gets the number of classes. In
CESynC algorithm, parameter MinPts is set as 2 for Iris and Cloud, parameter MinPts is
set as 1 for the other six UCI data sets, and parameter σ is set according to Eq. (12).
(a) The setting of parameters in several clustering algorithms

UCI Data Sets
parameters

(δ, σ) in
CESynC

parameter δ in
SynC and

ESynC

parameter k in
K-Means and

FCM

parameter
Eps in

DBSCAN

parameter h
in

Mean Shift
Iris (120, 10) 120 3 75 150

Wine (290, 170) 305 3 242.725 305
Wdbc (250, 200) 325 2 212 380
Glass (120, 100) 148 6 80 170

Ionosphere (600, 300) 615 2 350 1200
Letter-recognition (180, 80) 210 26 160 220

Segmentation (180, 100) 205 7 176 270
Cloud (320, 150) 380 2 350 350

(b) Three robust information-theoretic measures (AMI / AVI / NMI) and the number of clusters obtained
by using CESynC, SynC, ESynC, K-Means, FCM, AP, DBSCAN, and Mean Shift clustering algorithm

Measure
indexes of
algorithms

Name of
algorithms

Data sets

Iris Wine Wdbc Glass

AMI /
AVI /
NMI

CESynC
0.7143 /
0.7190 /
0.7265

0.6103 /
0.7294 /
0.7634

0.3650 /
0.4712 /
0.5134

0.3053 /
0.3479 /
0.4339

SynC
0.0050 /
0.0100 /
0.4697

3.2528e-16 /
6.5056e-16 /
0.4578

6.8369e-16 /
1.3673e-15 /
0.3226

0.0012 /
0.0025 /
0.5306

ESynC
0.7143 /
0.7190 /
0.7265

0.6057 /
0.7259 /
0.7615

0.3277 /
0.4205 /
0.4717

0.2872 /
0.3432 /
0.4540

K-Means
0.7107 /
0.7109 /
0.7145

0.8735 /
0.8769 /
0.8782

0.6190 /
0.6314 /
0.6320

0.3265 /
0.3301 /
0.3588

FCM
0.7888 /
0.7893 /
0.7919

0.3820 /
0.4669 /
0.4823

0.6006 /
0.6054 /
0.6060

0.2525 /
0.3630 /
0.4108

AP
0.3982 /
0.5468 /
0.6061

0.2977 /
0.4427 /
0.5382

0.1482 /
0.2526 /
0.3711

0.2423 /
0.3236 /
0.4257

DBSCAN
0.3859 /
0.5406 /
0.6540

0.1517 /
0.2113 /
0.4471

0.0404 /
0.0674 /
0.2449

0.1513 /
0.2227 /
0.4671

Mean Shift 0.7143 / 0.5819 / 0.0165 / 0.2861 /

 38

0.7190 /
0.7265

0.7184 /
0.7612

0.0213 /
0.0796

0.3107 /
0.4153

The
number of
clusters

CESynC 3 (+ 2 isolates) 3 (+ 15 isolates) 5 (+ 29 isolates) 6 (+ 16 isolates)
SynC 2 (+ 145 isolates) 0 (+178 isolates) 0 (+ 569 isolates) 1 (+ 212 isolates)
ESynC 3 (+ 2 isolates) 3 (+ 16 isolates) 3 (+ 44 isolates) 6 (+ 29 isolates)
K-Means 3 3 2 6
FCM 3 2 (+ 1 null cluster) 2 2 (+ 4 null clusters)
AP 11 21 36 (+ 9 isolates) 12 (+ 14 isolates)
DBSCAN 3 (+ 35 isolates) 3 (+ 75 isolates) 2 (+ 189 isolates) 6 (+ 81 isolates)

Mean Shift 3 (+ 2 isolates)
4 (+ 17 isolates + 1
null cluster)

3 (+24 isolates
+ 1 null cluster)

6 (+ 24 isolates)

Measure
indexes of
algorithms

Name of
algorithms

Data sets

Ionosphere Letter-recognition Segmentation Cloud

AMI /
AVI /
NMI

CESynC
0.1092 /
0.1745 /
0.3191

0.4282 /
-0.2557 /
0.4282

0.4669 /
0.5538 /
0.6442

1.0000 /
1.0000 /
1.0000

SynC
3.5016e-04 /
7.0007e-04 /
0.3339

0.0166 /
0.0317 /
0.5768

-1.6974e-15 /
-3.3948e-15 /
0.6033

2.4432e-04 /
4.8852e-04 /
0.3016

ESynC
0.1073 /
0.1701 /
0.3106

0.3971 /
15.4680 /
0.3971

0.4212 /
0.5093 /
0.6086

1.0000 /
1.0000 /
1.0000

K-Means
0.1246 /
0.1280 /
0.1299

0.3484 /
0.3540 /
0.3572

0.5286 /
0.5843 /
0.6103

0.9944 /
1.0056 /
0.9944

FCM
0.1211 /
0.1245 /
0.1264

0.0042 /
0.0069 /
0.0095

0.2574 /
0.3831 /
0.4454

0.9944 /
1.0056 /
0.9944

AP
0.1002 /
0.1688 /
0.2809

-
0.4897 /
0.6068 /
0.6781

0.1653 /
0.2838 /
0.4107

DBSCAN
0.0949 /
0.1663 /
0.3791

0.1736 /
2.3798 /
0.1736

0.3295 /
0.4015 /
0.5568

1.0000 /
1.0000 /
1.0000

Mean Shift
0.1445 /
0.1768 /
0.2126

0.3649 /
6.1353 /
0.3649

0.5048 /
0.5747 /
0.6447

1.0000 /
1.0000 /
1.0000

The
number of
clusters

CESynC 2 (+ 86 isolates) 30 (+ 48 isolates) 9 (+ 30 isolates) 2

SynC 0 (+ 350 isolates)
845 (+ 17823
isolates)

0 (+ 210 isolates) 5 (+ 2038 isolates)

ESynC 2 (+ 83 isolates) 26 (+ 10 isolates) 7 (+ 31 isolates) 2
K-Means 2 26 7 2

FCM 2
2 (+ 24 null
clusters)

2 (+ 5 null
clusters)

2

AP 14 (+ 44 isolates) - 17 (+ 7 isolates) 66 (+ 1 isolate)
DBSCAN 2 (+ 145 isolates) 28 (+ 319 isolates) 7 (+ 51 isolates) 2

Mean Shift 2 (+ 19 isolates)
26 (+ 3 isolates + 1
null cluster)

7 (+ 22 isolates) 2

 Note1: In the Letter-recognition data set, DBSCAN algorithm obtains 21 clusters and 243 isolates
when parameter δ = 160.0001, so we set parameter δ = 160 in DBSCAN. The sign ‘-‘ in the lines of AP
algorithm means that there is no results because the time cost is too larger.
 Note2: In Table 9, the largest values of AMI, AVI, and NMI in every data set are shown in bold.
5.5 Analysis and conclusions of experimental results

 From the comparison results of these figures and tables (Fig. 2, sfig. 4, and Tables

 39

4 - 9), we observe that CESynC algorithm has some superiority than ESynC algorithm

and SynC algorithm. We also find that ICESynC algorithm is superior to CESynC

algorithm in time cost because of the use of effective spatial index structures.

 From the simulations of some artificial data sets (from data0 – data6, DS0 - DS16),

we observe that the valid interval of parameter δ in CESynC algorithm is longer or has

some improvements than that in ESynC algorithm, DBSCAN algorithm, or Mean Shift

algorithm in some cases.

 From some display figures and tables, we observe that CESynC algorithm can

explore the correct clusters and isolates like DBSCAN algorithm in many cases. In

many kinds of data sets, CESynC algorithm, ESynC algorithm, and DBSCAN

algorithm can explore obvious clusters or isolates if selecting a proper value for

parameter δ or Eps, and SynC algorithm cannot explore obvious clusters in many data

sets.

 From simulations of some data sets, we observe that the iterative times of SynC

algorithm, AP algorithm, K-Means algorithm, and FCM algorithm is larger than that of

CESynC algorithm and ESynC algorithm. In many data sets, CESynC algorithm,

ESynC algorithm, Mean Shift algorithm, and DBSCAN algorithm have better ability

than SynC algorithm, K-Means algorithm, FCM algorithm, and AP algorithm in

exploring clusters and isolates. Specially, AP algorithm needs the longest time.

 CESynC algorithm is an improved clustering algorithm with broader clustering

adjustability than ESynC algorithm and SynC algorithm almost in many cases. Usually,

parameter δ and parameter σ have a long valid interval in many data sets with obvious

clusters. In simulations, we observe that if parameter δ and parameter σ get some

different values in their valid interval, the clustering results of CESynC algorithm are

the same except the time cost.

 Because of the limited page space, we only select some typical data sets used in

our experiments. For all experimental data sets, we observe that CESynC algorithm

improves in clustering quality or gets the same clustering results as ESynC algorithm.

For other data sets, CESynC algorithm is still superior to (or the same as) ESynC

algorithm in clustering quality. We believe that the selection of experimental data sets

is not biased.

6. Conclusions

 This paper presents an improved synchronization clustering method, CESynC

algorithm. For some data sets that ESynC algorithm and SynC algorithm cannot detect

 40

correct clusters, CESynC algorithm can obtain correct clusters. From some simulated

experiments of some artificial data sets, we observe that parameter δ in CESynC

algorithm has better valid interval than ESynC algorithm and SynC algorithm in some

cases. From the simulated experiments of nine artificial data sets, we observe that the

valid interval of parameter σ is affected by parameters δ and MinPts. From the

simulated experiments of eight UCI data sets, we observe that CESynC algorithm gets

better (or the same) clustering results than (or as) that of ESynC algorithm. From many

experiments, we observe that the clustering results of CESynC algorithm and ESynC

algorithm are often better than that of SynC algorithm. So we can say CESynC

algorithm can often obtain better clustering quality than ESynC algorithm and SynC

algorithm in some kinds of data sets. Further comparison experiments with some

classical clustering algorithms demonstrate the clustering effect of CESynC algorithm.

The major contributions of the paper can be summarized as follows:

(1) In order to conquer the shortcoming of ESynC algorithm that may regard a

whole irregular cluster as some micro-clusters, it develops a combined clustering

algorithm based on ESynC algorithm and a merging judgement process of

micro-clusters.

(2) It presents two concrete merging strategies and two judgement methods of

merging micro-clusters in CESynC algorithm.

(3) It validates the improved effect of ICESynC algorithm in time cost and that of

CESynC algorithm in clustering quality by some simulated experiments.

 CESynC algorithm is robust to outliers and can find obvious clusters with different

shapes. The number of clusters does not have to be fixed before clustering. Usually,

parameter δ has a long valid interval that can be determined by using an exploring

method listed in Chen (2015), the heuristic method described by Theorem 1 and

Property 1 presented in Chen (2017), or using the MDL-based method presented in

Böhm et al. (2010). Parameter σ also has a long valid interval that can be explored by

using Eq. (12).

 This work opens some possibilities for further improvement and investigation.

First, further improve ICESynC algorithm in time cost. For example, designing a

similarity-preserving hashing function that needs O(1) time complexity is valuable and

difficult in the process of constructing δ near neighbor point set. Second, explore the

relation between parameter δ and parameter σ and extend the applicability of CESynC

algorithm in more complex data sets. Third, implement CESynC algorithm on a cluster

 41

with a parallel programming model such as MapReduce framework.

Acknowledgments

 This work was supported by Chongqing Cutting-edge and Applied Foundation

Research Program of China (grant number: cstc2016jcyjA0521) and Chongqing Three

Gorges University of China (grant number: 16PY08).

Compliance with Ethical Standards:

Funding: This study was funded by Chongqing Cutting-edge and Applied Foundation

Research Program of China (grant number: cstc2016jcyjA0521) and Chongqing Three

Gorges University of China (grant number: 16PY08).

Conflict of Interest: Author Xinquan Chen declares that he has no conflict of interest.

Ethical approval: This article does not contain any studies with human participants

performed by any of the authors.

Informed consent: Informed consent was obtained from all individual participants

included in the study.

References

Agrawal, R., Gehrke, J., & Gunopolos, D., et al. (1998). Automatic subspace clustering

of high dimensional data for data mining applications. In Proceedings of ACM

SIGMOD (pp. 94-105).

Ankerst, M., Breunig, Markus M., Kriegel, Hans-Peter., & Sander, Jörg. (1999).

OPTICS: Ordering points to identify the clustering structure. In Proceedings of ACM

SIGMOD (pp. 49-60).

Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms.

New York, Plenum Press.

Böhm, C., Plant, C., & Shao, J., et al. (2010). Clustering by synchronization. In

Proceedings of ACM SIGKDD (pp. 583-592).

Chehreghani, M. H. (2017). Clustering by shift. In Proceedings of ICDM (pp.

793-798).

Chen, X. (2013). Clustering based on a near neighbor graph and a grid cell graph.

 42

Journal of Intelligent Information Systems, 40(3), 529-554.

Chen, X. (2014). Synchronization clustering based on a linearized version of Vicsek

model. arXiv: 1411.0189 [cs.LG]. http://arxiv.org/abs/1411.0189.

Chen, X. (2015). A new clustering algorithm based on near neighbor influence. Expert

Systems with Applications, 42(21), 7746-7758.

Chen, X. (2017). An effective synchronization clustering algorithm. Applied

Intelligence, 46(1), 135 - 157.

Chen, X. (2018). Fast synchronization clustering algorithms based on spatial index

structures. Expert Systems with Applications, 94, 276 - 290.

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5),

603-619.

Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large

clusters. Communication of the ACM, 51(1), 107-113.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996). A density-based algorithm for

discovering clusters in large spatial data sets with noise. In Proceedings of ACM

SIGKDD (pp. 226-231).

Frank, A., & Asuncion, A. (2010). UCI Machine Learning Repository Irvine,

University of California.

Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points.

Science, 315(16), 972-976.

Fukunaga, K., & Hostetler, L. (1975). The estimation of the gradient of a density

function, with applications in pattern recognition. IEEE Transactions on Information

Theory, 21(1), 32-40.

Grunwald, P. (2005). A tutorial introduction to the minimum description length

principle. Cambridge, MIT Press.

Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for

clustering large databases. In Proceedings of ACM SIGMOD (pp. 73-84).

Hang, W., Choi, K., & Wang, S. (2017). Synchronization clustering based on central

force optimization and its extension for large-scale datasets. Knowledge-Based Systems,

118, 31-44.

He, X., Gumbsch, T., Roqueiro, D., Borgwardt, K. (2017). Kernel conditional

clustering. In Proceedings of IEEE ICDM (pp. 157-166).

Horn, D., & Gottlieb, A. (2002). Algorithm for data clustering in pattern recognition

 43

problems based on quantum mechanics. Physical Review Letters, 88(1), 018702.

Huang, J. B., Kang, J. M., Qi, J. J., & Sun, H. L. (2013). A hierarchical clustering

method based on a dynamic synchronization model. Science in China Series F:

Information Sciences, 43(5), 599-610.

Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile

autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic

Control, 48(6), 998-1001.

Karypis, G., Han, E. H., & Kumar, V. (1999). CHAMELEON: A hierarchical clustering

algorithm using dynamic modeling. IEEE Computer, 32(8), 68-75.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: an introduction to

cluster analysis. John Wiley & Sons.

Li, T., Zhang, Y., Li, D., Liu, X., and Peng, Y. (2017). Fast compressive spectral

clustering. In Proceedings of IEEE ICDM (pp. 949-954).

Liu, A., Su, Y., Nie, W., & Kankanhalli, M. (2017). Hierarchical clustering multi-task

learning for joint human action grouping and recognition. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 39(1), 102-114.

Luxburg, U. V. (2007). A tutorial on spectral clustering. Statistics and Computing,

17(4), 395-416.

MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate

observations. In MSP (pp. 281-297).

Qin, J., Ma, Q., Gao, H., Shi, Y., & Kang, Y. (2017). On group synchronization for

interacting clusters of heterogeneous Systems. IEEE Transactions on Cybernetics,

47(12), 4122-4133.

Rodriguez, A. & Laio, A. (2014). Clustering by fast search and find of density peaks.

Science, 344(6191): 1492 - 1496.

Roy, S. & Bhattacharyya, D. K. (2005). An approach to find embedded clusters using

density based techniques. Lecture Notes in Computer Science, 3816, 523-535.

Schölkopf, B., Smola, A., & Müller, K. R. (1998). Nonlinear component analysis as a

kernel eigenvalue problem. Neural Computation, 10(5), 1299-1319.

Shao, J., He, X., Plant, C., Yang, Q., & Böhm, C. (2013a). Robust

synchronization-based graph clustering. In Proceedings of PAKDD (PP. 249-260).

Shao, J., He, X., Böhm, C., Yang, Q., & Plant, C. (2013b). Synchronization inspired

partitioning and hierarchical clustering. IEEE Transactions on Knowledge and Data

Engineering, 25(4), 893-905.

 44

Shao, J., Yang, Q., Dang, H.-V., Schmidt, B., and Kramer, S. (2016). Scalable

clustering by iterative partitioning and point attractor representation. ACM

Transactions on Knowledge Discovery from Data, 11(1), 5.

Shao, J., Gao, C., Zeng, W., Song, J., & Yang, Q. (2017a). Synchronization-inspired

co-clustering and its application to gene expression data. In Proceedings of ICDM (pp.

1075-1080).

Shao, J., Wang, X., Yang, Q., Plant, C., & Böhm, C. (2017b). Synchronization-based

scalable subspace clustering of high-dimensional data. Knowledge and Information

Systems, 52(1), 83-111.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles - a knowledge reuse framework for

combining multiple partitions. Journal of Machine Learning Research, 3, 583-617.

Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to data mining. Addison

Wesley.

Theodoridis, S., & Koutroumbas, K. (2006). Pattern recognition (3rd edition).

Academic Press.

Vicsek, T., Czirok, A., & Ben-Jacob, E., et al. (1995). Novel type of phase transitions

in a system of self-driven particles. Physics Review Letter, 75(6), 1226-1229.

Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for

clusterings comparison: Variants, properties, normalization and correction for chance.

Journal of Machine Learning Research, 11, 2837-2854.

Wang, L., & Liu, Z. (2009). Robust consensus of multi-agent systems with noise.

Science in China Series F: Information Sciences, 52(5), 824-834.

Wang, W., Yang, J., & Muntz, R. (1997). STING: A statistical information grid

approach to spatial data mining. In Proceedings of VLDB (pp. 186-195).

White, D. A., & Jain, R. (1996). Similarity indexing with the SS-tree. In Proceedings

of IEEE ICDE (pp. 516-523).

Zahn, C. T. (1971). Graph-theoretical methods for detecting and describing gestalt

clusters. IEEE Transactions on Computers, C-20(1), 68-86.

Zhang, T., Ramakrishnan R., & Livny, M. (1996). BIRCH: An efficient data clustering

method for very large databases. In Proceedings of ACM SIGMOD (pp. 103-114).

