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A combined clustering algorithm based on ESynC algorithm and a 

merging judgement process of micro-clusters 

Abstract: ESynC algorithm is inspired by SynC algorithm and a linear version of 

Vicsek model. When facing complex data distributions, ESynC algorithm may regard a 

whole irregular cluster as some micro-clusters. In order to conquer this shortcoming, a 

Combined clustering algorithm based on ESynC algorithm and a merging judgement 

process of micro-clusters (CESynC) is presented. CESynC algorithm uses ESynC 

algorithm to detect clusters or micro-clusters and a merging judgement process to 

merge those conjoint micro-clusters. For some data sets that ESynC algorithm and 

SynC algorithm cannot detect correct clusters, CESynC algorithm can obtain natural 

clusters. From some experiments of some artificial data sets, we observe that parameter 

δ in CESynC algorithm has better valid interval than ESynC algorithm and SynC 

algorithm in some cases. From the experiments of nine artificial data sets, we observe 

that the valid interval of parameter σ is affected by parameters δ and MinPts. From the 

experiments of eight UCI data sets, we observe that CESynC algorithm gets better (or 

the same) clustering results than (or as) that of ESynC algorithm. From many 

experiments, we observe that the clustering results of CESynC algorithm and ESynC 

algorithm are often better than that of SynC algorithm. So we can say CESynC 

algorithm can often obtain better clustering quality than ESynC algorithm and SynC 

algorithm in some kinds of data sets. Further comparison experiments with some 

classical clustering algorithms demonstrate the clustering effect of CESynC algorithm. 

Keywords: Synchronization clustering; SynC algorithm; ESynC algorithm; 

micro-cluster; merging judgement 

1. Introduction 

Clustering is an important method in data mining and machine learning. 

Clustering tries to uncover the hidden structure by exploring the systematic partitioning 

of the unlabeled data set. According to a predefined similarity(or dissimilarity) 

measure, clustering algorithms can be used in pattern recognition, image segmentation, 

document organization, data compression, information retrieval, and bioinformatics. 

The traditional clustering algorithms are mainly classified into partitioning-based 

methods (Bezdek, 1981; MacQueen, 1967), hierarchy-based methods (Guha et al., 

1998; Karypis et al., 1999; Zhang et al., 1996), density-based methods (Ankerst et al., 

1999; Ester et al., 1996; Roy et al., 2005), grid-based methods (Agrawal et al., 1998; 
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Wang et al., 1997), model-based methods (Theodoridis et al., 2006), and graph-based 

methods (Tan et al., 2005; Theodoridis et al., 2006; Zahn, C. T., 1971). Quantum 

clustering algorithms (Horn et al., 2002), spectral clustering algorithms (Luxburg, 2007; 

Schölkopf et al., 1998), affinity propagation clustering algorithms (Frey et al., 2007), 

synchronization clustering algorithms (Böhm et al., 2010; Chen, 2014, 2017, 2018; 

Hang et al., 2017; Huang et al., 2013; Shao et al., 2013a, 2013b, 2016, 2017a, 2017b) 

are some recent clustering methods. 

Recent ten years, several famous clustering algorithms were published. Affinity 

propagation (named as AP) algorithm (Frey et al., 2007) is a new type of clustering 

algorithm based on probability graph models. After AP algorithm was published, 

clustering based on probability graph models grew a new research direction. As we 

know, the first synchronization clustering algorithm (named as SynC) was proposed by 

Böhm et al.(2010). After that, synchronization clustering attracts some researchers. 

Some synchronization clustering methods (Chen, 2014, 2017, 2018; Hang et al., 2017; 

Huang et al., 2013; Shao et al., 2013a, 2013b, 2016, 2017a, 2017b) were published 

from different views. Clustering by fast search and find of density peaks (named as DP) 

algorithm (Rodriguez et al., 2014) was developed based on the assumption that “cluster 

centers can be characterized by a higher density than their neighbors and by a 

relatively large distance from points with higher densities”. In DP algorithm, the 

number of clusters can be detected automatically, outliers can be identified easily, and 

even nonspherical clusters can be explored quickly. Very likely, DP algorithm can lead 

a new research branch in clustering field. 

Synchronization means that some natural objects with similar rhythm will come 

into co-occurrence progressively. Some synchronization clustering models (Böhm et al., 

2010; Chen, 2014; Chen, 2017) simulate the basic synchronization process by 

imposing the interactions on local near neighbor objects. Synchronization clustering is 

also a new kind of clustering approach. The original SynC algorithm declares that it 

can detect the intrinsic structure of the unlabelled data set and handle outliers without 

any distribution assumption (Böhm et al., 2010). Inspired by the idea of SynC 

algorithm and a linear version of Vicsek model, an effective synchronization clustering 

algorithm (named as ESynC) was presented (Chen, 2017). ESynC algorithm can often 

get better local synchronization effect than SynC algorithm and a similar 

synchronization clustering algorithm based on the original version of Vicsek model. 

But when facing complex distributions, ESynC algorithm may regard a whole irregular 
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cluster as some micro-clusters. In order to conquer this shortcoming, this paper 

researches a Combined clustering algorithm based on ESynC algorithm and a merging 

judgement process of micro-clusters (named as CESynC). CESynC algorithm uses 

ESynC algorithm to detect clusters or micro-clusters and a merging judgement process 

to merge those conjoint micro-clusters. 

The idea of “preclustering and merging” in CESynC algorithm is useful for some 

data sets with complex distribution. When ESynC algorithm and SynC algorithm 

cannot explore some irregular clusters with complex distributions, it is necessary that 

adding a merging judgement process to merge those conjoint micro-clusters that are 

detected by ESynC algorithm. 

The remainder of this paper is organized as follows. Section 2 lists some related 

work. Section 3 gives some basic knowledge. Section 4 introduces CESynC algorithm. 

Section 5 validates CESynC algorithm by some simulated experiments. Conclusions 

and future work are presented in Section 6. 

2. Related work 

This paper is inspired by several papers (Böhm et al., 2010; Chen, 2014, 2017) 

and the idea of “preclustering and merging”. 

2.1 The origin and advance of synchronization clustering 

In 2010, a novel synchronization clustering (SynC) algorithm was presented by 

Böhm et al. (2010). SynC algorithm attempts to explore the intrinsic distribution 

structure of the data set and handle isolates by dynamic synchronization. In order to 

implement automatic clustering, those natural clusters can be detected by using the 

minimum description length (named as MDL) principle (GrÄunwald, 2005). 

In 2013, Huang et al. (2013) proposed a synchronization-based hierarchical 

clustering method basing on the work of Böhm et al. (2010). In order to find the 

intrinsic patterns of a complex graph, a novel and robust graph clustering algorithm, 

RSGC (Shao et al., 2013a), was proposed by regarding the graph clustering as a 

dynamic process towards synchronization. In order to explore meaningful levels of the 

hierarchical cluster structure, a novel dynamic hierarchical clustering algorithm, hSync 

(Shao et al., 2013b), was presented based on synchronization and the MDL principle. 

In 2014, inspired by the work of Böhm et al. (2010) and Vicsek model (Vicsek et 

al., 1995; Jadbabaie et al., 2003; Wang et al., 2009), Chen (2014) presented a shrinking 

synchronization clustering algorithm by using a linear weighted Vicsek model. 
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In 2016, an effective scalable synchronization clustering algorithm for large 

datasets named as CIPA (Shao, et al., 2016) was presented. CIPA algorithm can handle 

very large datasets by iteratively partitioning them into thousands of subsets and 

clustering each subset separately. 

In 2017, inspired by the work of Böhm et al. (2010) and Vicsek model, Chen 

(2017) proposed ESynC algorithm based on a linear version of Vicsek model. 

Simulated experiments validate that the linear version of Vicsek model is an effective 

synchronization model for clustering. Based on the metaphor of gravitational 

kinematics and central force optimization method, Hang et al. (2017) presented a local 

synchronization clustering algorithm, which can find clusters of those data sets with 

arbitrary size, shape, and density, and determine the number of clusters automatically. 

Qin et al. (2017) investigated group synchronization problem for multiple interacting 

clusters of nonidentical systems that are linearly or nonlinearly coupled. Based on 

Lyapunov method, they provided the sufficient conditions guaranteeing the group 

synchronization behavior and performed rigorous group synchronization analysis. To 

discover the co-cluster structure of gene expression data, a new synchronization-based 

co-clustering algorithm (named as CoSync) was presented (Shao et al., 2017a). 

CoSync algorithm can detect high-quality biologically relevant subgroups embedding 

in a given gene expression data matrix. In order to explore subspace clusters of some 

high-dimensional sparse data sets, a novel effective and efficient subspace clustering 

algorithm, ORSC (Shao et al., 2017b), was proposed. ORSC algorithm can detect 

correlation clusters in arbitrarily oriented subspaces and do not need to specify the 

subspace dimensionality or other difficult parameters. 

In 2018, Chen (2018) presents three fast synchronization clustering (named as 

FSynC) algorithms basing on the work of Böhm et al. (2010), R-tree structure, and the 

grid-based index method. FSynC algorithms have three improved versions of SynC 

algorithm by storing all data points in a R-tree structure or by combining 

multidimensional grid partitioning method and Red-Black tree structure to construct 

the near neighbor point sets of all points in each synchronization evolution (Chen, 

2018). 

2.2 The idea of “merging judgement” 

The idea of “merging judgement” is not presented originally. It is used in multiple 

fields of data mining. For example, a famous hierarchical clustering method, AGNES 

(Agglomerative Nesting) (Kaufman et al., 1990), uses the single link method and the 
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dissimilarity matrix to merge micro-clusters that have the least dissimilarity. The 

dissimilarity of merging two micro-clusters can use single link (smallest distance 

between an element in one micro-cluster and an element in the other), complete link 

(largest distance between an element in one micro-cluster and an element in the other), 

average (average distance between an element in one micro-cluster and an element in 

the other), or centroid (distance between the medoids of two micro-clusters). 

2.3 The new advance of other clustering methods 

Clustering is a pretreatment technique and a base in data mining field. New 

clustering methods are developed from different views. Recently, He et al. (2017) 

presented a kernel conditional clustering (named as KCC) algorithm by using kernel 

based conditional dependence measure as its objective function. KCC algorithm has no 

assumption about the cluster structure, the covariates, or the distribution of the data set.  

And it can both discover non-linearly separable clusters and detect the true cluster 

structures more accurately than some other alternative clustering methods.  

In order to obtain a more balanced partitioning and avoid the appearance of 

singleton clusters, Chehreghani (2017) used the sum of the squared size of the clusters 

as an additive regularization term for the min cut cost function and proposed an 

efficient local search algorithm to optimize the objective function.  

In order to avoid repeated computation of polynomial approximation when 

reconstructing the Laplacian matrix, a fast compressive spectral clustering (named as 

FCSC) algorithm (Li et al., 2017) was presented. FCSC algorithm can reduce the 

computation time significantly while preserving high clustering accuracy.  

In joint action grouping and modeling, a hierarchical clustering multi-task learning 

(named as HC-MTL) method was presented by formulating the objective function into 

the group-wise least square loss, which was regularized by the trace norm and group 

sparsity terms for joint multiple action learning (Liu et al., 2017). HC-MTL method 

can aid in discovering both shared-action relatedness and action-specific feature 

subspaces. 

3. Some basic knowledge 

Suppose there is a data set S = {X1, X2, …, Xn} in a d-dimensional Euclidean 

space. Naturally, we use Euclidean metric as our dissimilarity measure, dis(·, ·). In 

order to describe our algorithm clearly, some concepts are presented first. 

Definition 1 The δ near neighbor point set δ(P) of point P is defined as: 
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δ(P) = {X | 0 < dis(X, P) ≤ δ, X ≠ P, X  S},                 (1) 

where dis(X, P) is the dissimilarity measure between point X and point P in the data set 

S. Parameter δ is a predefined range threshold. 

Definition 2 (Chen, 2017). The linear version of Vicsek model for clustering used 

in ESynC algorithm is defined as: 

Point X = (x1, x2, ···, xd) is a vector in d-dimensional Euclidean space. If each point 

X is regarded as an agent based on a linear version of Vicsek model, with an interaction 

in the δ near neighbor point set δ(X), then the dynamics of point X over time according 

to Jadbabaie et al. (2003) and Wang et al. (2009) is described by: 

X(t+1) =   





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where X(t = 0) = (x1(0), x2(0), ···, xd(0)) represents the original location of point X, and 

X(t+1) describes the renewal location of point X at the t-step evolution. 

Definition 3 (Chen, 2017) The t-step average length of edges, AveLen(t), in a 

t-step δ near neighbor undirected graph Gδ(t) is defined as: 

AveLen(t) = 
 )(|)(|

1

tEe

e
tE

,                    (3) 

where E(t) is the t-step edge set of Gδ(t), and |e| is the length (or weight) of edge e. The 

average length of edges in Gδ(t) decreases to its limit 0, that is AveLen(t) → 0, as more 

δ near neighbor points synchronize together with time evolution. In ESynC algorithm, 

AveLen(t) can be used to characterize the degree of local synchronization. 

Property 1 The data set S = {X1, X2, …, Xn} using ESynC algorithm for clustering 

will obtain an effective result of local synchronization with some obvious clusters or 

isolates, if parameter δ satisfies: 

max{longestDistance(clusterk) | k = 1, 2, …, Kclu} ≤ δ < min{dismin(clusteri, clusterj) 

| i, j = 1, 2, …, Kclu},           (4) 

where longestDistance (clusterk) = max{ dis(P, Q) | P  clusterk, Q  clusterk, P ≠ Q} 

is the longest edge in the complete graph of the k-th cluster, dismin(clusteri, clusterj) = 

min{dis(P, Q) | P  clusteri, Q  clusterj, P ≠ Q}is the weight of the minimum edge 

connecting the i-th cluster and the j-th cluster, and Kclu is the number of clusters in the 

final synchronization step. 

Proof: Suppose the data set S = {X1, X2, …, Xn} has Kclu obvious clusters. If 

parameter δ is larger than or equal to max{longestDistance (clusterk) | k = 1, 2, …, Kclu}, 
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then data points in the same cluster will synchronize to a steady location. If parameter δ 

is less than min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu}, then data points in 

different clusters will not interactive and can not synchronize. 

Property 2 The data set S = {X1, X2, …, Xn} uses ESynC algorithm for clustering. 

If max{longestDistance(clusterk) | k = 1, 2, …, Kclu} > min{dismin(clusteri, clusterj) | i, j 

= 1, 2, …, Kclu}, then the data set S might obtain an effective result of local 

synchronization with some obvious clusters or isolates. That is: if we set δ > 

min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu}, some obvious clusters may be 

detected. 

Property 2 is validated by some simulations. 

Definition 4 A micro-cluster is a cluster or a part of a cluster that can be detected 

by using ESynC algorithm with a small value of parameter δ. Usually, the number of 

points in a micro-cluster should be larger than or equal to the threshold parameter 

MinPts. 

Note: This threshold MinPts is the similar to the parameter MinPts used in 

DBSCAN algorithm. Parameter MinPts is often set from 1 to 4 for many data sets. 

Property 3 For some data sets, some clusters have strange spatial distributions and 

min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu} is small. Parameter δ of ESynC 

algorithm has no valid interval. But some clusters might be detected by merging some 

conjoint micro-clusters which can be detected by using ESynC algorithm with a small 

value of parameter δ. 

Property 3 is also validated by some simulations. For example, seven 2-D data sets 

(data0 – data6) are used to validate this conclusion in subsection 5.2. 

Definition 5 Suppose the data set S = {X1, X2, …, Xn} using ESynC algorithm for 

clustering obtain Kclu micro-clusters, MCS = {MCSi | i = 1, 2, …, Kclu}. In Kclu 

micro-clusters, the Kclu steady locations (or Kclu mean locations in some cases) are 

often selected as Kclu micro-cores, MC = {MCi | i = 1, 2, …, Kclu}. Then the Minimum 

Spanning Tree (MST) of MC can be constructed by Prim algorithm with O(Kclu
2) time 

complexity. 

Furthermore, based on the MST of MC, an Minimum Connecting Bracket Tree 

(MCBT) of MCS can be constructed by replaced the weight of every edge in the MST 

of MC, dis(MCi, MCj), by a new weight, dismin(MCSi, MCSj). The new weight 

computing equation is: 

dismin(MCSi, MCSj) = min{dis(P, Q) | P  MCSi, Q  MCSj, i ≠ j},    (5) 
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4. A combined clustering algorithm based on ESynC algorithm and a 

merging judgement process of micro-clusters 

Although we use the Euclidean metric as our dissimilarity measure in this paper, 

this algorithm is by no means restricted to this metric and this kind of data space. If we 

can construct a proper dissimilarity measure in a hybrid-attribute space, this algorithm 

can still be used. 

4.1 The description of ESynC algorithm 

ESynC algorithm is developed by Chen (Chen, 2017). In order to make a 

difference between ESynC algorithm and this new method, we introduce it simply 

below. 

Algorithm name: an Effective Synchronization Clustering algorithm (ESynC). 

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and parameter 

δ. 

Output: The final convergent result S(T) = {X1(T), X2(T), …, Xn(T)} of the 

original data set S. 

The main procedure of ESynC algorithm is described by Table 1. 

Table 1 The main procedure of ESynC algorithm. 
Step1. Initialization: 

 1: IterativeStep t is set as zero firstly, that is: t ← 0; 

 2: for (i = 1; i ≤ n; i++) 

 3:  Xi(t) ← Xi; 

Step2. Execute the iterative synchronization process of the dynamical clustering: 

 4: while ((the dynamical clustering does not satisfy its convergent condition) and (t < 20)) 

 5: { 

 6:  for (i = 1; i ≤ n; i++) 

 7:  { 

 8:   Construct the δ near neighbor point set δ(Xi(t)) for each point Xi(t) (i = 1, 2, …, n) 

using Eq.(1) of Definition 1; 

 9:   Compute the renewal value, Xi(t+1), of Xi(t) using Eq.(2) of Definition 2; 

 10:  } 

 11:  Compute the t-step average length of edges of all points, AveLen(t), using Eq.(3) of 

Definition 3; 

 12:  IterativeStep t is increased by 1, that is: t++; 

 13:  if (AveLen(t) → 0) 

 14:   The dynamical clustering reaches its convergent result, and then exit from the 

while repetition; 

 15: } 

Step3. Finally we get a convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, where T is the times of the 
while repetition in Step2. The final convergent set S(T) reflects the natural clusters or isolates of the 
data set S. 

 

In the convergent result S(T) = {X1(T), X2(T), …, Xn(T)}, suppose there are K (K ≤ 

n) steady locations. If a steady location contains some points in S(T) such that the 
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number of points is larger than or equal to the threshold parameter MinPts, they can be 

regarded as a micro-cluster or a cluster. If a steady location contains only one point or 

several points of S(T) such that the number of points is less than MinPts, then it is an 

isolate or they are isolates. Suppose there are Kclu micro-clusters and Kiso isolates in the 

K steady locations. Here, K = Kclu
 + Kiso is satisfied. 

4.2 The description of CESynC algorithm 

CESynC algorithm has a different process with SynC algorithm (Böhm et al., 

2010) and ESynC algorithm (Chen, 2017). The basic flow of CESynC algorithm is 

presented by Fig. 1. 

Algorithm name: a Combined clustering algorithm based on ESynC algorithm 

and a merging judgement process of micro-clusters (CESynC). 

Input: data set S = {X1, X2, …, Xn}, dissimilarity measure dis(·, ·), and range 

parameter δ, and density threshold parameter MinPts (the minimum number of points 

in a micro-cluster or a cluster). 

Output: The final clustering result FCS = {FCS1, FCS2, …, FCSk} of the original 

data set S. 

The main procedure of CESynC algorithm is described by Table 2. 
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MCBT of Kclu micro-clusters
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Fig. 1 The basic flow of CESynC algorithm 

Table 2 The main procedure of CESynC algorithm. 
Step1. Call ESynC algorithm for the original data set S = {X1, X2, …, Xn}. The function call formal of 

this step is: 

 S(T) = {X1(T), X2(T), …, Xn(T)} ← ESynC(DataSet S, float δ); 

/* S(T) = {X1(T), X2(T), …, Xn(T)} record the final steady locations of some micro-clusters or isolates 

of the data set S. */ 

Step2. Fetch Kclu micro-clusters and Kiso isolates from S(T) = {X1(T), X2(T), …, Xn(T)}. Here, we 

mainly consider Kclu micro-clusters. The function call formal of this step is: 

 MCS = {MCS1, MCS2, …, MCSKclu} ← Fetch(S(T) , int MinPts); 

/* MCS = {MCS1, MCS2, …, MCSKclu} are Kclu micro-clusters of the data set S. */ 

Step3. Construct an MST from Kclu micro-cores (Kclu steady locations or Kclu mean locations of Kclu 

micro-clusters are selected as Kclu micro-cores), MC = {MC1, MC2, …, MCKclu}, using Prim algorithm. 

The function call formal of this step is: 

 mst(MC) = {e1, e2, …, eKclu-1} ← Prim(MC);  /* Suppose mst(MC) = {e1, e2, …, eKclu-1} is sorted 

by an increased sequence. */ 

 Or further construct an MCBT from Kclu micro-clusters based on the mst(MC) according to 

Definition 5. The function call formal of this step is: 

 mcbt(MCS) = {ce1, ce2, …, ceKclu-1} ← ReplaceWeights(MCS, mst(MC));  /* Suppose 

mcbt(MCS) = {ce1, ce2, …, ceKclu-1} is sorted by an increased sequence such that ce1 ≤ ce2 …≤ ceKclu-1. 

*/ 

Step4. Merge Kclu micro-clusters, MCS = {MCS1, MCS2, …, MCSKclu}, if they are satisfied with the 

merging condition, based on the mst(MC) or mcbt(MCS). The function call formal of this step is: 

 FCS = {FCS1, FCS2, …, FCSk} ← Merge(MCS, mst(MC) or mcbt(MCS)); 

/* FCS = {FCS1, FCS2, …, FCSk} are k clusters of the data set S after the merging process. */ 

Step5. Finally we get a set with k clusters, FCS = {FCS1, FCS2, …, FCSk}. The final set FCS may 
reflect the natural clusters of the data set S. 

Note: In Step4, the merging step in CESynC algorithm has two implement merging strategies and 

merging judgement methods that are presented in section 4.3. 

4.3 The merging strategies and judgement methods of merging micro-clusters in 

CESynC algorithm 

Here we present two concrete merging strategies and two judge methods of 

merging micro-clusters for CESynC algorithm. 

4.3.1 Strategy 1: The MST-based inflexion-point strategy 

This strategy is designed by searching the inflexion-point from the mst(MC) = {e1, 

e2, …, eKclu-1}. That is: 

 (Sa). First fetch Kclu micro-cores from Kclu micro-clusters (for example, select Kclu 

steady locations), MC = {MC1, MC2, …, MCKclu}; 

The final k clusters after the 
above merging operation 
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/* MC = {MC1, MC2, …, MCKclu} are Kclu micro-cores of Kclu micro-clusters. */ 

 (Sb). In Step3 of CESynC algorithm, it is implemented concretely by: 

mst(MC) = {e1, e2, …, eKclu-1} ← Prim(MC);  /* Suppose mst(MC) = {e1, e2, …, 

eKclu-1} is sorted by an increased sequence such that e1 ≤ e2 …≤ eKclu-1. */ 

 (Sc). Select some minimum edges from mst(MC) = {e1, e2, …, eKclu-1}. These 

selected edges are less than the other edges. Suppose there are NumMinMst minimum 

edges. Usually, (Kclu - NumMinMst) is equal to the right number of clusters in those 

data sets with obvious clusters. There are four cases in mst(MC) = {e1, e2, …, eKclu-1}. 

 Case 1: e1 ≤ … ≤ ej-1 ≤ ej ≤ ej+1 ≤ ej+2 ≤ … ≤ eKclu-1. 

In this case, we either consider the merging operation of {e1, e2, …, eKclu-1}, or do 

not consider any merging operation. 
 /* If the (Kclu – 1) edges of mst(MC) = {e1, e2, …, eKclu-1} are increased steadily and have no change 

suddenly, then the Kclu micro-clusters are either Kclu disjoint clusters or one cluster that can be 

constructed by merging the Kclu micro-clusters. */ 

 Case 2: e1 ≤ … ≤ ej-1 ≤ ej  ej+1 ≤ ej+2 ≤ … ≤ eKclu-1, such that 

1
1,2,..., 2
arg max ( )

clu

i i
i K

j e e
 

  ，where ej and ej+1 are two near neighbor edges with maximal 

diversification in the mst(MC). 

In this case, we only consider the merging operations of {e1, e2, …, ej}. 
 /*  In the mst(MC) = {e1, e2, …, eKclu-1}, if the first j edges {e1, e2, …, ej} are increased steadily 

and there is a sudden change between ej and ej+1, then {e1, e2, …, ej} should be used to consider the 

merging operations of the corresponding (j+1) micro-clusters */ 

 Case 3: e1 ≤ … ≤ ej-1 ≤ ej ej+1 ≤ ej+2 ≤ …≤ ej+l-1 ≤ ej+l ej+l+1 ≤ ej+l+2 ≤ … ≤ eKclu-1. 

In this case, we either consider the merging operation of {e1, e2, …, ej}, or 

consider the merging operation of {e1, e2, …, ej, ej+1, …, ej+l}. 

 Case 4: Like Case 3, there are three or three above sudden change in mst(MC) = 

{e1, e2, …, eKclu-1}. 

In this case, we either consider the merging operation of {e1, e2, …, ej}, or 

consider the merging operation of {e1, e2, …, ej, ej+1, …, ej+l}, or ….. 

 (Sd). Merge two near neighbor micro-clusters connected by any edge in the 

NumMinMst minimum edges of mst(MC) if they can be merged. That is: 

 for (i = 1; i ≤ NumMinMst; i++) 
 { 
  if (two near neighbor micro-clusters connected by ei can be merged) 

   The two near neighbor micro-clusters should be merged. 

 } 
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4.3.2 Strategy 2:The MCBT-based inflexion-point strategy 

This strategy is also a concrete algorithm based on the Minimum Connecting 

Bracket Tree of MCS = {MCS1, MCS2, …, MCSKclu}. That is: 

 (Sa). First fetch Kclu micro-cores of Kclu micro-clusters (for example, select Kclu 

steady locations), MC = {MC1, MC2, …, MCKclu}; 

 (Sb). In Step3 of CESynC algorithm, it is implemented concretely as follows. 

First constructing an MST from Kclu micro-cores by using Prim algorithm, then 

constructing an MCBT of Kclu micro-clusters based on mst(MC) according to 

Definition 5. Finally sort all edges in the MCBT of MCS. After that, we can obtain an 

edge set mcbt(MCS) = {ce1, ce2, …, ceKclu-1} such that ce1 ≤ ce2 …≤ ceKclu-1. That is: 

mst(MC) = {e1, e2, …, eKclu-1} ← Prim(MC);  /* Suppose mst(MC) = {e1, e2, …, eKclu-1} 

is sorted by an increased sequence such that e1 ≤ e2 …≤ eKclu-1. */ 

mcbt(MCS) = {ce1, ce2, …, ceKclu-1} ← ReplaceWeights(MCS, mst(MC));  /* 

Suppose mcbt(MCS) = {ce1, ce2, …, ceKclu-1} is sorted by an increased sequence such that ce1 ≤ ce2 …≤ 

ceKclu-1. */ 

 (Sc). Just like the step (Sc) of Strategy 1, select some minimum edges from 

mcbt(MCS) = {ce1, ce2, …, ceKclu-1}. These selected edges are less than the other edges. 

Suppose there are NumMinMcbt minimum edges. Usually, (Kclu - NumMinMcbt) is 

equal to the right number of clusters in those data sets with obvious clusters. There are 

also four cases in mcbt(MCS) = {ce1, ce2, …, ceKclu-1} just like that in mst(MC). 

 (Sd). Merge two near neighbor micro-clusters connected by any edge in the 

NumMinMcbt minimum edges of mcbt(MCS) if they can be merged. That is: 

 for (i = 1; i ≤ NumMinMcbt; i++) 
 { 
  if (two near neighbor micro-clusters connected by cei can be merged) 

   The two near neighbor micro-clusters should be merged. 

 } 

4.3.3 Two judgement methods of merging two micro-clusters in Strategy 1 

In step (Sd) of Strategy 1, the following any judgement method of merging two 

micro-clusters can be used. 
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(1) Method 1: The middle-point judgement method 

In the front NumMinMst edges of the increased edge set mst(MC) = {e1, e2, …, 

eKclu-1}, suppose edge ei (i = 1, 2, …, NumMinMst) connects two micro-cores, MCu and 

MCv, of two micro-clusters, MCSu and MCSv. We compute the middle point in the line 

of the two micro-cores MCu and MCv, Line(MCu, MCv). The computation equation of 

the middle point in the line Line(MCu, MCv) is presented by: 

middlepoint(MCu, MCv) = (MCu + MCv) / 2                   (6) 

One kind of density measure of the middle point can be used to judge the merging 

of two micro-clusters. Suppose σ(middlepoint(MCu, MCv)) is the σ near neighbor point 

set of point middlepoint(MCu, MCv), and |σ(middlepoint(MCu, MCv))| is the number of 

points in σ(middlepoint(MCu, MCv)). The density measure index, |σ(middlepoint(MCu, 

MCv))|, can be used to judge the merging of two micro-clusters, MCSu and MCSv. 

The judgement rule of merging two near neighbor micro-clusters in Strategy 1 is: 

if (|σ(middlepoint(MCu, MCv))| ≥ MinPts) 

  Two micro-clusters, MCSu and MCSv, can be merged; 

else 

  Two micro-clusters, MCSu and MCSv, can not be merged; 

Here, parameter σ is a range threshold and parameter MinPts is a density threshold. 

(2) Method 2: The three-points judgement method 

In the front NumMinMst edges of the increased edge set mst(MC) = {e1, e2, …, 

eKclu-1}, suppose edge ei (i = 1, 2, …, NumMinMst) connects two micro-cores, MCu and 

MCv, of two micro-clusters, MCSu and MCSv. We compute three points in the line of 

the two micro-cores MCu and MCv, Line(MCu, MCv).  

The first point is the middle point of Line(MCu, MCv), middlepoint(MCu, MCv). 

The computation equation of middlepoint(MCu, MCv) is presented by Eq. (6). 

The second point of Line(MCu, MCv), leftpointσ(MCu, MCv), is a left point near 

middlepoint(MCu, MCv) with a distance that is equal to parameter σ. 

The third point of Line(MCu, MCv), rightpointσ(MCu, MCv), is a right point near 

middlepoint(MCu, MCv) with a distance that is equal to parameter σ. 

Easily, we can get two computation equations of the second point and the third 

point in the line Line(MCu, MCv). 

leftpointσ(MCu, MCv) = ( , ) ( )
( , )u v v u

u v

middlepoint MC MC MC MC
dis MC MC


    (7) 
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rightpointσ(MCu, MCv) = ( , )+ ( )
( , )u v v u

u v

middlepoint MC MC MC MC
dis MC MC


  (8) 

One kind of density measure of three points, leftpointσ(MCu, MCv), 

middlepoint(MCu, MCv), and rightpointσ(MCu, MCv), can be used to judge the merging 

of two micro-clusters, MCSu and MCSv. Just like the above, the three density measure 

indexes, |σ(leftpointσ(MCu, MCv))|, |σ(middlepoint(MCu, MCv))|, and |σ(rightpointσ(MCu, 

MCv))|, are used to judge the merging of two micro-clusters, MCSu and MCSv. 

The judgement rule of merging two micro-clusters is: 

if ((|σ(leftpoint(MCu, MCv))| ≥ MinPts) and (|σ(middlepoint(MCu, MCv))| ≥ MinPts) 

and (|σ(rightpoint(MCu, MCv))| ≥ MinPts)) 

  Two micro-clusters, MCSu and MCSv, can be merged; 

else 

  Two micro-clusters, MCSu and MCSv, can not be merged; 

4.3.4 Two judgement methods of merging two micro-clusters in Strategy 2 

In step (Sd) of Strategy 2, the following any judgement method of merging two 

micro-clusters can be used. 

(1) Method 1: The middle-point judgement method 

In the front NumMinMcbt edges of the increased edge set mcbt(MCS) = {ce1, 

ce2, …, ceKclu-1}, suppose edge cei (i = 1, 2, …, NumMinMcbt) connects two nearest 

points, MPu and MPv, of two micro-clusters, MCSu and MCSv. We compute the middle 

point in the line of two nearest points MPu and MPv, Line(MPu, MPv). The computation 

equation of the middle point in the line Line(MPu, MPv) is presented by: 

middlepoint(MPu, MPv) = (MPu + MPv) / 2                   (9) 

One kind of density measure of the middle point in the line Line(MPu, MPv) can be 

used to judge the merging of two micro-clusters. Suppose σ(middlepoint(MPu, MPv)) is 

the σ near neighbor point set of point middlepoint(MPu, MPv), and |σ(middlepoint(MPu, 

MPv))| is the number of points in σ(middlepoint(MPu, MPv)). The density measure 

index, |σ(middlepoint(MPu, MPv))|, can be used to judge the merging of two 

micro-clusters, MCSu and MCSv. 

The judgement rule of merging two near neighbor micro-clusters in Strategy 2 is: 

if (|σ(middlepoint(MPu, MPv))| ≥ MinPts) 

  Two micro-clusters, MCSu and MCSv, can be merged; 
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else 

  Two micro-clusters, MCSu and MCSv, can not be merged; 

(2) Method 2: The three-points judgement method 

In the front NumMinMcbt edges of the increased edge set mcbt(MCS) = {ce1, 

ce2, …, ceKclu-1}, suppose edge cei (i = 1, 2, …, NumMinMcbt) connects two nearest 

points, MPu and MPv, of two micro-clusters, MCSu and MCSv. We compute three points 

in the line of two nearest points MPu and MPv, Line(MPu, MPv). 

The first point is the middle point of Line(MPu, MPv), middlepoint(MPu, MPv). The 

computation equation of middlepoint(MPu, MPv) is presented by Eq. (9). 

The second point of Line(MPu, MPv), leftpointσ(MPu, MPv), is a left point near the 

middle point with a distance that is equal to parameter σ. 

The third point of Line(MPu, MPv), rightpointσ(MPu, MPv), is a right point near the 

middle point with a distance that is equal to parameter σ. 

Easily, we can get two computation equations of the second point and the third 

point in the line Line(MPu, MPv). 

leftpointσ(MPu, MPv) = ( , ) ( )
( , )u v v u

u v

middlepoint MP MP MP MP
dis MP MP


    (10) 

rightpointσ(MPu, MPv) = ( , )+ ( )
( , )u v v u

u v

middlepoint MP MP MP MP
dis MP MP


   (11) 

Here, according to Definition 5, there is dis(MPu, MPv) = dismin(MCSu, MCSv). 

One kind of density measure of three points in the line Line(MPu, MPv), 

leftpointσ(MPu, MPv), middlepoint(MPu, MPv), and rightpointσ(MPu, MPv), can be used 

to judge the merging of two micro-clusters, MCSu and MCSv. Just like the above, the 

three density measure indexes, |σ(leftpointσ(MPu, MPv))|, |σ(middlepoint(MPu, MPv))|, 

and |σ(rightpointσ(MPu, MPv))|, are used to judge the merging of two micro-clusters, 

MCSu and MCSv. 

The judgement rule of merging two micro-clusters is: 

if ((|σ(leftpoint(MPu, MPv))| ≥ MinPts) and (|σ(middlepoint(MPu, MPv))| ≥ MinPts) 

and (|σ(rightpoint(MPu, MPv))| ≥ MinPts)) 

  Two micro-clusters, MCSu and MCSv, can be merged; 

else 

  Two micro-clusters, MCSu and MCSv, can not be merged; 

4.4 Time complexity analysis of CESynC algorithm 

 The time complexity of the original ESynC algorithm is Time = O(Tdn2), where T 
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is the times of synchronization, n is the number of data points, and d is the dimension 

of data points. An improved version of ESynC algorithm by using some efficient index 

structures (such as R-tree, R*-tree, et al.), Time = O(Tdn·logn) can be obtained in many 

low-dimensional data sets. So Step1 of CESynC algorithm needs Time = O(Tdn2), even 

Time = O(Tdn·logn). 

In Step2, the simplest implementation of fetching Kclu steady locations and Kiso 

isolates from S(T) = {X1(T), X2(T), …, Xn(T)} needs Time = O(dn2). Another 

implementation with a little trick by recording current steady locations when scanning 

each point of the data set needs Time = O(dn·(Kclu + Kiso)). 

In Step3, constructing an MST from Kclu micro-cores using Prim algorithm needs 

Time = O(d·(Kclu)
2). Constructing an MCBT from Kclu micro-clusters based on the 

mst(MC) needs Time =  
( , )

( )u v
e u v MST

O d cluster cluster


  . 

In Step4, if each edge that connects two micro-clusters needs to judge the merging 

operation, CESynC algorithm needs O(Kcl - 1) judgements. If two micro-clusters need 

to be merged, then two subsets that contain their corresponding data points need to do 

a union operation. If use a disjoint-set data structure, the union operation is very simple 

and efficient. 

Step5 needs Time = O(n) if using a disjoint-set data structure. 

4.5 The setting of parameters in CESynC algorithm 

4.5.1 The setting of range parameter δ in CESynC algorithm 

Parameter δ is important for clustering quality in CESynC algorithm and ESynC 

algorithm. In CESynC algorithm, ESynC algorithm is called at first. In the stage of 

merging micro-clusters, parameter δ is not used again. So the setting of range 

parameter δ in CESynC algorithm is the same as that in ESynC algorithm and SynC 

algorithm. In Böhm et al. (2010), parameter δ is optimized by the MDL principle. 

Similarly, two other methods were presented to estimate parameter δ that is used in 

CNNI algorithm (Chen, 2015). How to select a proper value for parameter δ is 

discussed in Chen (2017, 2018). They are summarized below. 

(1) The optimization of parameter δ in Böhm et al. (2010) 

Parameter δ can affect the results of clusters. In Böhm et al. (2010), parameter δ is 

optimized by a heuristic method and the MDL principle. In the heuristic method 

presented by Böhm et al. (2010), parameter δ is initialized with the average value of 

the k-nearest neighbor distance determined from the data set for a small k. For example, 
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k = 3 is recommended in their experiments. Then parameter δ is increased with a 

reasonable step size. 

(2) The heuristic selection of parameter δ 

If parameter δ is satisfied with Eq. (4), then the data set S = {X1, X2, …, Xn} using 

ESynC algorithm for clustering will obtain an effective result of local synchronization 

with some obvious clusters or isolates. 

But sometimes there is max{longestDistance(clusterk) | k = 1, 2, …, Kclu} > 

min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu} for some data sets. In this case, if we 

set δ > min{dismin(clusteri, clusterj) | i, j = 1, 2, …, Kclu}, some obvious clusters may be 

detected. 

 (3) A linear-searching exploring method of parameter δ 

Usually, parameter δ has a very long valid interval for many kinds of data sets 

with obvious clusters. Some simulated experiments in Chen (2017) and this paper also 

validate this conclusion. Some times, parameter δ have several long valid intervals for 

different clustering levels. So we can explore the valid interval of parameter δ by the 

linear-searching method. 

4.5.2 The setting of the range parameter σ in Method 1 and Method 2 of CESynC 

algorithm 

Parameter σ affects the merging selection in CESynC algorithm. Parameter σ is 

often designed by the following rule: 

σ ∈ [σmin, σmax].                      (12) 

Usually, min 2
NumMinMcbtce      and ( 1)

max 2
NumMinMcbtce      are satisfied in many data 

sets. In the mcbt(MCS) = {ce1, ce2, …, ceKclu-1}, (ceNumMinMcbt/2, ce(NumMinMcbt+1)/2) is 

often an inflexion-point of mcbt(MCS). Here 2
NumMinMcbtce    is the integer ceiling of 

ceNumMinMcbt/2 and ( 1)

2
NumMinMcbtce  

   is the integer floor of ce(NumMinMcbt+1)/2). 

In subsection 5.3.4, we explore the relation between parameter σ and parameter δ 

in CESynC algorithm by using nine artificial data sets. We observe that the valid 

interval of parameter σ is affected by parameters δ and MinPts. 

4.5.3 The setting of parameter MinPts in CESynC algorithm 

Parameter MinPts is a density threshold that is used to filter isolates and to judge 

the merging operation of two micro-clusters. In our simulations, it is set from 1 to 4. 

When MinPts = 1, it means that there is no isolates in the synchronization clustering 
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stage of CESynC algorithm. When MinPts = 2, 3, or 4, those isolates that its number of 

points is less than MinPts can be filtered after the synchronization clustering.  

Usually, the valid interval of parameter δ in CESynC algorithm is longer when 

MinPts = 1 or 2, and it is shorter when MinPts = 3 or 4. 

4.6 The improvement of CESynC algorithm 

In CESynC algorithm, one improved version of ICESynC algorithm can be 

obtained by combining multidimensional grid partitioning method and Red-Black tree 

structure or using R-tree structure to construct the near neighbor point sets of all data 

points. The improving method based on spatial index structures is introduced in Chen 

(2018). 

4.7 The convergence of CESynC algorithm 

Because the merging operation of CESynC algorithm is a judging-and-merging 

process, so the convergence of CESynC algorithm is completely depended on the 

convergence of ESynC algorithm. According to Chen (2017) and the simulation, 

CESynC algorithm is also convergent. 

4.8 Two extreme cases of CESynC algorithm 

CESynC algorithm has two extreme cases. One case is the number of initial 

micro-clusters after the synchronization clustering stage of CESynC algorithm is equal 

to the actual number of clusters. In this case, parameter δ in CESynC algorithm is set in 

the valid interval of parameter δ in ESynC algorithm. At this time, NumMinMst or 

NumMinMcbt is equal to zero. So the merging judgement of micro-clusters is not 

needed. 

Another case is when MinPts = 1 and parameter δ in CESynC algorithm is set as a 

small value that is less than the minimum distance of the data set, the number of initial 

micro-clusters after the synchronization clustering stage of CESynC algorithm is equal 

to the number of points. At this time, NumMinMst or NumMinMcbt is equal to (n – 1). 

So CESynC algorithm needs a merging judgement process of all points. In this case, 

the MST of micro-clusters is the same as the MCBT of micro-clusters and CESynC 

algorithm is similar to an MST-based clustering algorithm (Chen, 2013). 

5. Simulated experiments 

5.1 Experimental design 

5.1.1 Experimental environment and the description of experimental data sets 

Our experiments are finished in a personal computer (Capability Parameters: 
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Intel(R) Celeron(R) CPU 3855U 1.6GHz, 8.00G Memory). Experimental programs are 

developed using C and C++ language under Windows 7. 

To verify the improvements in clustering quality or clustering validity of CESynC 

algorithm, there will be some experimental comparison among SynC algorithm, 

ESynC algorithm and several classical clustering algorithm on some artificial data sets 

and eight UCI data sets (Frank and Asuncion, 2010) in the next sections. To validate 

the improvements in time cost between ICESynC algorithm (an Improved version of 

CESynC algorithm in time complexity) and CESynC algorithm, there will be an 

experimental comparison of four data sets. 

The original location of some 2-D and 3-D experimental data sets (data0 - data 6, 

DS0 - DS5, DS9) are presented in sfig. 1 and sfig. 2 of Online Resource 1 of 

Supplementary Material. Seventeen kinds of artificial data sets (DS0 - DS16) are 

produced in an interval [0, 600] in each dimension by two functions presented in 

Online Resource 2 of Supplementary Material. Eight UCI data sets are standardized to 

an interval [0, 600] in each dimension. The original location of three 2-D and 3-D 

artificial UCI data sets are presented in sfig. 3 of Online Resource 1 of Supplementary 

Material. Table 3 presents the description of the experimental data sets. 

Table 3 The description of experimental data sets 
(a) The description of seven 2-D data sets (data0 is created by a program and data1- data6 are drawn by 
hand in a 2-D region referencing the original DBSCAN paper) 
Data Sets Number of Points (n) Number of clusters With noise

data0 400 1 or 2 or 3 or 4 yes 
data1 300 2 no 
data2 300 3 no 
data3 300 4 no 
data4 300 4 no 
data5 300 4 yes 
data6 300 1 or 2 or 3 no 

(b) The description of sixteen kinds of artificial data sets 
Data Sets Predefined (Actual) 

Number of Clusters 
With Noise Cluster 

Semidiameter 
Dimension (d) 

DS0 9 (8) no 30 2 
DS1 5 (5) yes 40 2 
DS2 5 (4) no 50 2 
DS3 7 (6) yes 30 2 
DS4 7 (5) no 40 2 
DS5 12 (11) no 30 2 
DS6 12 (12) no 30 4 
DS7 12 (12) no 30 6 
DS8 12 (12) no 30 8 
DS9 5 (5) no 30 2 

DS10 5 (5) no 30 4 
DS11 5 (5) no 30 6 
DS12 5 (5) no 30 8 
DS13 5 (5) no 30 20 
DS14 5 (5) no 30 40 
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DS15 5 (5) no 30 80 
DS16 5 (5) no 30 100 
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(c) The description of eight UCI data sets (Frank and Asuncion, 2010) 
UCI  

Data Sets 
Number  
of Points 

(n) 

Dimension 
(d) 

Class Distribution Number 
of Classes

Iris 150 4 {Setosa: 50, Versicolor: 50, Virginica: 50} 3 
Wine 178 13 {1: 59, 2: 71, 3: 48} 3 
Wdbc 569 30 {B: 357, M: 212} 2 
Glass 214 9 {Window: {FB: 70, FV: 17, NFB: 76}, 

Non-window: {C: 13, T: 9, H: 29}} 
6 

Ionosphere 351 34 {Good: 225, Bad: 126} 2 
Letter-recognition 20000 16 {A: 443, B: 460, C: 449, …, Z: 408} 26 

Segmentation 210 19 {Brickface: 30, Sky: 30, Foliage: 30, Cement: 
30, Window: 30, Path: 30, Grass: 30} 

7 

Cloud 2048 10 {1: 2014, 2: 2014} 2 
 

5.1.2 Measure criteria of performance of algorithms 

All comparison results of these algorithms are presented by some tables and 

figures. The clustering quality and efficiency of CESynC algorithm are evaluated and 

compared using the following several criteria. 

(1) The efficiency of algorithms is measured by time cost (second). The smaller 

the time cost is, the higher the efficiency is. 

(2) Clustering quality of clustering algorithms is measured by display figures of 

clustering results, the final number of clusters, and three robust information-theoretic 

measures (Adjusted Mutual Information (AMI) (Vinh et al., 2010), Adjusted Variation 

of Information (AVI) (Vinh et al., 2010), and Normalized Mutual Information (NMI) 

(Strehl et al., 2002)). According to Vinh et al. (2010), the higher the value of three 

measures gets, the better the clustering quality of algorithms is. In simulations, we use 

the Matlab code from Vinh et al. (2010) to compute AMI and NMI. According to two 

papers (Strehl et al., 2002; Vinh et al., 2010), we implement a Matlab program to 

compute AVI. 

5.1.3 The description of experiments and the setting of parameters 

In our simulated experiments, the maximum times of synchronization evolution in 

the while repetition of SynC algorithm, ESynC algorithm, and CESynC algorithm is 

set as 20. 

In section 5.2, CESynC algorithm (using Strategy 1 + Method 1) will be compared 

with SynC algorithm, ESynC algorithm, and some other classic clustering algorithms 

(K-Means (MacQueen, 1967), FCM (Bezdek, 1981), AP (Frey et al., 2007), DBSCAN 

(Ester et al., 1996), Mean Shift (Fukunaga et al., 1975; Comaniciu et al., 2002) in 

clustering quality by using seven 2-D artificial data sets (data0 – data6). 

In section 5.3, CESynC algorithm (using (Strategy 1 + Method 1) and (Strategy 2 
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+ Method 1)) will be compared with some other clustering algorithms in clustering 

quality and time cost by using some artificial data sets (from DS0 - DS16). The 

relation between parameter σ and parameter δ in CESynC algorithm is explored by 

using nine artificial data sets (from DS5 - DS16) in this section. 

In section 5.4, CESynC algorithm (using Strategy 2 + Method 1) will be compared 

with some other clustering algorithms in clustering quality by using eight UCI data 

sets. 

In the experiments, range parameters δ and σ, and density threshold parameter 

MinPts are used in CESynC algorithm. Range parameter δ is also used in ESynC 

algorithm and SynC algorithm. Range parameter Eps (has similar function to 

parameter δ) and density threshold parameter MinPts are used in DBSCAN algorithm. 

In the simulations, parameter MinPts is set as 4 in DBSCAN algorithm. Bandwidth 

parameter h (has similar function to parameter δ) is used in Mean Shift algorithm. 

Parameter k, the predefined number of clusters, is used in K-Means  algorithm and 

FCM algorithm. 

5.2 Experimental results of seven 2-D artificial data sets (data0 – data6) 

5.2.1 Comparison of the clustering results among CESynC algorithm (using Strategy 1 

+ Method 1) and some other clustering algorithms 

 Fig. 2 presents the clustering results of seven 2-D artificial data sets (data0 – data6) 

by using CESynC algorithm (using Strategy 1 + Method 1). In Online Resource 3 of 

Supplementary Material of this paper, sfig. 4 presents the clustering results of seven 

2-D artificial data sets (data0 – data6) by using SynC algorithm, ESynC algorithm, 

DBSCAN algorithm, Mean Shift algorithm, AP algorithm, K-Means algorithm, and 

FCM algorithm. 
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(a) 4 Clusters of data0 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 18, 

MinPts = 4) 
 

 
(b) 2 Clusters of data1 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 14, 

MinPts = 2) 

 
(c) 3 Clusters of data2 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 14, 

MinPts = 2) 
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(d) 4 Clusters of data3 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 14, 

MinPts = 4) 

 
(e) 4 Clusters of data4 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = σ = 12, 

MinPts = 4) 

 
(f) 4 Clusters and 9 isolates of data5 identified by CESynC algorithm (using Strategy 1 + Method 1, 

δ = σ = 12, MinPts = 4) 
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(g) 3 Clusters of data6 identified by CESynC algorithm (using Strategy 1 + Method 1, δ = 27, σ = 

18, MinPts = 4) 
Fig. 2 The clustering results of seven 2-D artificial data sets (data0 – data6) by 

using CESynC algorithm. In Fig. 2, the original location of data points are draw by 
small square with green color, the steady locations of Kclu microclusters that are 
obtained by synchronization evolution based on ESynC algorithm are draw by large 
sphere with red color, and the (Kclu - 1) edges connected Kclu steady locations are draw 
by thin line with blue color. 
5.2.2 Comparison of the valid interval of parameters δ, Eps, or h among CESynC 

algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift 

algorithm 

Table 4. Comparison of the valid interval of parameter δ, Eps, or h among CESynC 
algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift 
algorithm using seven 2-D artificial data sets. In CESynC, parameter MinPts is set as 2 
for data1 and data2, and it is set as 4 for other five data sets. In CESynC, parameter σ is 
set according to Eq. (12). 
(a) The valid interval of parameter δ, Eps, or h among CESynC, SynC, ESynC, DBSCAN, and Mean 
Shift 

Data 
sets 

The valid interval of parameter δ, Eps, or h The [ek , ek+1] 
in the MST of 
 the complete 
graph of the 
data set 

CESynC 
(Strategy1 + 
Method 1) 

CESynC 
(Strategy2 + 
Method 1) 

SynC ESynC DBSCAN Mean Shift 

data0 [14, 15] or  
[18, 83] 

[15, 17] or 
[18, 83] 

Null [35, 40] ∪ 

[54, 78] ∪ 
{47, 51, 52, 
80} 

{18} [46, 113] [16.23, 24.19] 

data1 [14, 16] [14, 31] Null Null [24, 31] Null [23.35, 31.06] 
data2 [12, 19] [12, 19] Null Null [17, 41] Null [15.3, 41.68] 
data3 [13, 18] ∪

[34, 62] 
[15, 62] Null [34, 62] [13, 28] [44, 49] [12.37, 28.43] 

data4 [11, 14] [13, 14] Null Null [13, 22] Null [11.66, 22.85] 
data5 {12} {12} Null Null [11, 18] Null [10, 18.68] 
data6 [26, 46] or 

[18, 25]  
∪  {77} 
∪ [83, 91] 
∪  [93, 
130] or 
[131, +∞) 

[24, 28] Null [47, 66] or 
{77} ∪ 
[83, 91] ∪ 
[93, 130] or 
[131, +∞) 

[19, +∞) 
[72, 156] 
or {169} 
∪  [171, 
+∞) 

Null 
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(b) The number of clusters / isolates obtained by using CESynC, SynC, ESynC, DBSCAN, Mean Shift, 
and MST-based clustering algorithm 

Data 
sets 

The number of clusters / isolates 
CESynC 
(Strategy1 + 
Method 1) 

CESynC 
(Strategy2 + 
Method 1) 

SynC ESynC DBSCAN 
Mean 
Shift 

MST-based 
clustering 

data0 3 / 0 or  
4 / 0 

3 / 0 or  
4 / 0 

- 4 / 0 4 / 0 4 / 0 3 / 0 

data1 2 / 0 2 / 0 - - 2 - 2 / 0 
data2 3 / 0 3 / 0 - - 3 - 3 / 0 
data3 4 / 0 4 / 0 - 4 / 0 4 4 / 0 4 / 0 
data4 4 / 0 4 / 0 - - 4 - 4 / 0 
data5 4 / 9 4 / 9 - - 4 / 9 - 4 / 9 
data6 3 / 0 or  

2 / 0 or  
1 / 0 

1 / 0 - 3 / 0 or  
2 / 0 or  
1 / 0 

2 / 0 or  
1 / 0 

2 / 0 or  
1 / 0 

1 / 0 

 Table 4 presents the comparison results among these clustering algorithms. Here, 

[ek , ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 4, intercomparing 

CESynC algorithm (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC 

algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift algorithm, we 

observe that the valid interval of parameters δ in CESynC algorithm is longer or has 

some improvements than that in ESynC algorithm in some cases. In this simulation, the 

valid interval of parameter δ between CESynC algorithm (Strategy1 + Method 1) and 

CESynC algorithm (Strategy1 + Method 2) has little difference. 

5.3 Experimental results of some artificial data sets (from DS0 - DS16) 

5.3.1 Comparison of the valid interval of parameter δ, Eps, or h among CESynC 

algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift 

algorithm using some artificial data sets (from DS0 - DS16, n = 2000) 

Table 5 presents the comparison results among these clustering algorithms. Here, 

[ek , ek+1] can be obtained from Eq.(8) of Chen (2015). In Table 5, intercomparing 

CESynC algorithm (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC 

algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift algorithm, we 

observe that the valid interval of parameter δ in CESynC algorithm is longer or has 

some improvements than that in ESynC algorithm in some cases. In this simulation, the 

valid interval of parameter δ between CESynC algorithm (Strategy1 + Method 1) and 

CESynC algorithm (Strategy1 + Method 2) has little difference. 
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Table 5. Comparison of the valid interval of parameter δ, Eps, or h among CESynC 
algorithm, SynC algorithm, ESynC algorithm, DBSCAN algorithm, and Mean Shift 
algorithm using seventeen artificial data sets (from DS0 – DS16). In CESynC 
algorithm, parameter MinPts is set as 2 for DS0 – DS16, and parameter σ is set 
according to Eq. (12). 
(a) The valid interval of parameter δ, Eps, or h among CESynC, SynC, ESynC, DBSCAN, and Mean 
Shift 
Data 
sets 

The valid interval of parameter δ, Eps, or h The [ek , ek+1] 
in the MST of
 the complete 
graph of the 
data set 

CESynC 
(Strategy1 + 
Method 1) 

CESynC 
(Strategy2 + 
Method 1) 

SynC ESynC DBSCAN Mean 
Shift 

DS0 [16, 43] [16, 43] Null [19, 40] [10, 15] [29, 57] [8.54, 15.34] 
DS1 [22, 33] [22, 33] Null [24, 33] [10, 14] Null [9.00, 14.94] 
DS2 [20, 142] [20, 142] Null [56, 142] [12, 55] [86, 123] [8.94, 55.19] 
DS3 [16, 28] [16, 28] Null [19, 28] [9, 16] [29, 50] [8.54, 16.53] 
DS4 {11, 18} ∪ 

[14, 15] ∪ 
[22, 38] 

{11, 18} ∪ 

[14, 15] ∪
[22, 38] 

Null Null [10, 14] Null [9.90, 14.29] 

DS5 {12, 16} ∪
[19, 43] 

{12, 16} ∪ 
[19, 43] 

Null [21, 43] [10, 17] [31, 34] [9.06, 17.29] 

DS6 [27, 145] [27, 145] Null [27, 145] [27, 112] [35, 145] [26.42, 
112.41] 

DS7 [39, 191] [39, 191] Null [39, 191] [39, 150] [44, 204] [38.25, 
150.64] 

DS8 [53, 276] [53, 276] Null [53, 276] [53, 241] [53, 272] [52.80, 
241.80] 

DS9 [11, 14] ∪
[17, 72] 

[11, 14] ∪
[17, 72] 

Null [18, 72] [7, 35] [26, 69] [6.00, 35.95] 

DS10 [24, 187] [24, 187] Null [24, 187] [24, 151] [35, 198] [23.17, 
151.11] 

DS11 [35, 223] [35, 223] Null [35, 223] [35, 188] [39, 244] [34.45, 
188.28] 

DS12 [46, 275] [46, 275] Null [46, 275] [46, 240] [47, 288] [45.88, 
240.39] 

DS13 [88, 826] [88, 826] Null [88, 826] [88, 800] [88, 842] [87.94, 
800.24] 

DS14 [129, 1239] [129, 1239] Null [129, 1239] [139, 
1220] 

[139, 
1266] 

[138.37, 
1220.47] 

DS15 [178, 1824] [178, 1824] Null [178, 1824] [204, 
1805] 

[188, 
1848] 

[203.83, 
1805.51] 

DS16 [201, 2078] [201, 2078] Null [201, 2078] [232, 
2060] 

[223, 
2100] 

[231.34, 
2060.60] 
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(b) The number of clusters / isolates obtained by using CESynC, SynC, ESynC, DBSCAN, Mean Shift, 
and MST-based clustering algorithm 

Data 
sets 

The number of clusters / isolates 
CESynC 
(Strategy1 + 
Method 1) 

CESynC 
(Strategy2 + 
Method 1) 

SynC ESynC DBSCAN Mean Shift 
MST-based 
clustering 

DS0 8 / 0 8 / 0 - 8 / 0 8 / 0 8 / 0 8 / 0 
DS1 5 / 9 5 / 9 - 5 / 9 5 / 9 5 / 9 5 / 9 
DS2 4 / 0 4 / 0 - 4 / 0 4 / 

0 
4 / 0 4 / 0 

DS3 6 / 17 6 / 17 - 6 / 17 6 / 17 6 / (16 ~ 
22) 

6 / 17 

DS4 5 / 0 5 / 0 - - 5 / 0 - 5 / 0 
DS5 11 / 0 11 / 0 - 11 / 0 11 / 0 11 / 0 11 / 0 
DS6 12 / 0 12 / 0 - 12 / 0 12 / 0 12 / 0 12 / 0 
DS7 12 / 0 12 / 0 - 12 / 0 12 / 0 12 / 0 12 / 0 
DS8 12 / 0 12 / 0 - 12 / 0 12 / 0 12 / 0 12 / 0 
DS9 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS10 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS11 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS12 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS13 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS14 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS15 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 
DS16 5 / 0 5 / 0 - 5 / 0 5 / 0 5 / 0 5 / 0 

 

5.3.2 Comparison of the clustering quality among CESynC algorithm and some other 

clustering algorithms using some artificial data sets (from DS1 – DS16, n = 2000) 

Table 6 presents the comparison results of the clustering quality among CESynC 

algorithm (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC algorithm, 

ESynC algorithm, DBSCAN algorithm, Mean Shift algorithm, AP algorithm, K-Means 

algorithm, and FCM algorithm by using sixteen kinds of artificial data sets (from DS1 

– DS16).  

Table 6. Comparison of the clustering quality of several clustering algorithms 
(CESynC (using (Strategy1 + Method 1) and (Strategy2 + Method 1)), SynC, ESynC, 
and several classical clustering algorithms) using sixteen artificial data sets from DS1 
to DS16 (n = 2000). In Table 6, parameter δ, Eps, h, or k in these clustering algorithms 
gets its minimum value from its valid interval or an acceptable value. In CESynC 
algorithm, parameter MinPts is set as 2 for DS1 - DS16, and parameter σ is set 
according to Eq. (12). 
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(a) The setting of parameters in several clustering algorithms 

UCI Data Sets 
parameter 

δ in 
CESynC 

parameter δ in
SynC and 

ESynC

parameter k in
K-Means and 

FCM

parameter 
Eps in 

DBSCAN 

parameter 
h in 

Mean Shift
DS1 δ = 22 δ = 24 k = 5 Eps = 10 h = 38 
DS2 δ = 20 δ = 56 k = 4 Eps = 12 h = 86 
DS3 δ = 16 δ = 19 k = 6 Eps = 9 h = 29 
DS4 δ = 11 δ = 43 k = 5 Eps = 10 h = 69 
DS5 δ = 19 δ = 21 k = 11 Eps = 10 h = 31 
DS6 δ = 27 δ = 27 k = 12 Eps = 27 h = 35 
DS7 δ = 39 δ = 39 k = 12 Eps = 39 h = 44 
DS8 δ = 53 δ = 53 k = 12 Eps = 53 h = 53 
DS9 δ = 17 δ = 18 k = 5 Eps = 7 h = 26 

DS10 δ = 24 δ = 24 k = 5 Eps = 24 h = 35 
DS11 δ = 35 δ = 35 k = 5 Eps = 35 h = 39 
DS12 δ = 46 δ = 46 k = 5 Eps = 46 h = 47 
DS13 δ = 88 δ = 88 k = 5 Eps = 88 h = 88 
DS14 δ = 129 δ = 129 k = 5 Eps = 139 h = 139 
DS15 δ = 178 δ = 178 k = 5 Eps = 204 h = 188 
DS16 δ = 201 δ = 201 k = 5 Eps = 232 h = 223 

(b) Three robust information-theoretic measures (AMI /AVI / NMI) and the number of clusters / isolates 
obtained by using CESynC, SynC, ESynC, K-Means, FCM, AP, DBSCAN, and Mean Shift clustering 
algorithm 
Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

DS1 DS2 DS3 DS4 

AMI / 
AVI /  
NMI 

CESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

SynC 
0.1260 / 
0.2238 / 
0.4977 

0.0859 / 
0.1583 / 
0.4417 

0.1619 / 
0.2787 /  
0.5314 

0.1126 /  
0.2024 /  
0.4816 

ESynC 
1.0000 /  
1.0000 /  
1.0000 

1.0000 /  
1.0000 /  
1.0000

1.0000 /  
1.0000 /  
1.0000

0.9957 / 
0.9959 /  
0.9959 

K-Means 
0.9785 /  
0.9881 /  
0.9882 

1.0000 /  
1.0000 /  
1.0000

0.7039 /  
0.7497 /  
0.7542 

0.8235 /  
0.8442 /  
0.8448 

FCM 
0.9785 /  
0.9881 /  
0.9882 

0.9522 /  
0.9557 / 0.9557

0.9683 /  
0.9839 /  
0.9842 

0.9864 /  
0.9873 /  
0.9873 

AP 
0.4091 /  
0.5790 /  
0.6448 

0.3254 /  
0.4910 /  
0.5766 

0.4550 /  
0.6223 /  
0.6792 

0.3844 /  
0.5554 /  
0.6268 

DBSCAN 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

Mean Shift 
0.9725 /  
0.9727 /  
0.9730 

1.0000 / 
1.0000 / 
1.0000

0.9996 /  
0.9998 /  
0.9998 

0.9180 /  
0.9244 /  
0.9246 

The 
number of 
clusters / 
isolates 

CESynC 5 / 9 4 / 0 6 / 17 5 / 0 
SynC 889 / 0 1050 / 0 730 / 0 941 / 0 
ESynC 5 / 9 4 / 0 6 / 17 5 / 0 
K-Means 5 4 / 0 6 / 0 5 / 0 
FCM 5 4 / 0 6 / 0 5 / 0 
AP 50 56 / 0 48 / 0 53 / 0 
DBSCAN 5 / 9 4 / 0 6 / 17 5 / 0 
Mean Shift 5 / 9 4 / 0 6 / 16 5 / 0 
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Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

DS5 DS6 DS7 DS8 

AMI / 
AVI / 
NMI 

CESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

SynC 
0.1397 /  
0.2452 /   
0.5911 

0.0012 /  
0.0025 /  
0.5720 

0.0019 /  
0.0037 /  
0.5722 

5.3818e-15 /  
1.0764e-14 /  
0.5718 

ESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

K-Means 
0.7896 /  
0.8212 /  
0.8239 

0.9057 /  
0.9277 /  
0.9288 

0.9057 /  
0.9277 /  
0.9288 

0.9530 /  
0.9649 /  
0.9654 

FCM 
0.9968 /  
0.9968 /  
0.9968 

0.2725 /  
0.4283 / 
0.5228 

0.2725 /  
0.4283 /  
0.5228 

0.2781 /  
0.4348 /  
0.5273 

AP 
0.6054 /  
0.7542 /  
0.7862 

0.6827 /  
0.8114 / 0.8319

0.6827 /  
0.8114 /  
0.8319 

0.7963 /  
0.8866 /  
0.8947 

DBSCAN 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

Mean Shift 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

The 
number of 
clusters / 
isolates 

CESynC 11 / 0 12 / 0 12 / 0 12 / 0 
SynC 1023 / 0 1990 / 0 1985 / 0 2000 / 0 
ESynC 11 / 0 12 / 0 12 / 0 12 / 0 
K-Means 11 / 0 12 / 0 12 / 0 12 / 0 
FCM 11 / 0 2 / 0 2 / 0 2 / 1 
AP 47 / 0 37 / 0 37 / 0 23 / 0 
DBSCAN 11 / 0 12 / 0 12 / 0 12 / 0 
Mean Shift 11 / 0 12 / 0 12 / 0 12 / 0 

 

Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

DS9 DS10 DS11 DS12 

AMI / 
AVI /  
NMI 

CESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

SynC 
0.1740 /  
0.2964 /   
0.5095 

0.0022 /  
0.0044 /  
0.4607 

1.2712e-14 /  
2.5423e-14 /  
0.4602 

1.2712e-14 /  
2.5423e-14 / 
0.4602 

ESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

K-Means 
1.0000 / 
1.0000 / 
1.0000 

0.8273 /  
0.8648 /  
0.8660 

0.8273 /  
0.8646 /  
0.8659 

0.6546 /  
0.7308 /  
0.7365 

FCM 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

0.4077 /  
0.5748 /  
0.6304 

0.6550 /  
0.7916 /  
0.8096 

AP 
0.4287 /  
0.6002 /  
0.6596 

0.4361 /  
0.6073 /  
0.6649 

0.4827 /  
0.6511 /  
0.6979 

0.5071 /  
0.6729 /  
0.7147 
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DBSCAN 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

Mean Shift 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

The 
number of 
clusters / 
isolates 

CESynC 5 / 0 5 / 0 5 / 0 5 / 0 
SynC 596 / 0 1976 / 0 2000 / 0 2000 / 0 
ESynC 5 / 0 5 / 0 5 / 0 5 / 0 
K-Means 5 / 0 5 / 0 5 / 0 5 / 0 
FCM 5 / 0 5 / 0 2 / 0 3 / 0 
AP 41 / 0 39 / 0 28 / 0 24 / 0 
DBSCAN 5 / 0 5 / 0 5 / 0 5 / 0 
Mean Shift 5 / 0 5 / 0 5 / 0 5 / 0 

 

Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

DS13 DS14 DS15 DS16 

AMI / 
AVI / 
NMI 

CESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

SynC 
1.2712e-14 / 
2.5423e-14 / 
0.4602 

1.2712e-14 / 
2.5423e-14 / 
0.4602 

1.2712e-14 / 
2.5423e-14 / 
0.4602 

1.2712e-14 / 
2.5423e-14 / 
0.4602 

ESynC 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

K-Means 
0.8273 /  
0.8647 /  
0.8659 

0.4178 /  
0.5894 /  
0.6467 

0.8273 /  
0.8648 /  
0.8660 

0.5894 /  
0.6696 /  
0.6768 

FCM 
0.4178 /  
0.5894 /  
0.6467 

0.4178 /  
0.5894 /  
0.6467 

0.4178 / 0.5894 / 
0.6467 

0.4182 /  
0.5872 /  
0.6428 

AP 
0.6215 /  
0.7666 /  
0.7896 

0.6800 /  
0.8095 /  
0.8255 

0.6988 / 0.8227 / 
0.8367 

0.6998 /  
0.8234 /  
0.8372 

DBSCAN 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

Mean Shift 
1.0000 / 
1.0000 / 
1.0000 

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000

1.0000 / 
1.0000 / 
1.0000 

The 
number of 
clusters / 
isolates 

CESynC 5 / 0 5 / 0 5 / 0 5 / 0 
SynC 2000 / 0 2000 / 0 2000 2000 / 0 
ESynC 5 / 0 5 / 0 5 / 0 5 / 0 
K-Means 5 / 0 2 / 0 5 / 0 5 / 0 
FCM 2 / 0 2 / 0 2 / 0 3 / 1 
AP 14 / 0 11 / 0 10 / 0 10 / 0 
DBSCAN 5 / 0 5 / 0 5 / 0 5 / 0 
Mean Shift 5 / 0 5 / 0 5 / 0 5 / 0 

Note: In Table 6, the largest values of AMI, AVI and NMI and acceptable number of clusters in every 

data set are shown in bold. 

5.3.3 Comparison of the time cost among CESynC algorithm, ICESynC algorithm, 

SynC algorithm, ISynC algorithm, ESynC algorithm, and IESynC algorithm using four 

artificial data sets (from DS1, DS2, DS3, and DS5, n = 10000) 
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Table 7 presents the comparison results of time cost among CESynC algorithm 

ICESynC algorithm, SynC algorithm, ISynC algorithm, ESynC algorithm, and IESynC 

algorithm by using four artificial data sets (from DS1, DS2, DS3, and DS5). 

Table 7. Comparison of time cost among three synchronization clustering algorithms 
and their corresponding improved versions based on R-tree (SynC, ISynC, ESynC, 
IESynC, CESynC, and ICESynC) by using four artificial data sets. In Table 7, the 
number of data points n = 10000, and parameter δ in these clustering algorithms gets 
its minimum value from its valid interval. In CESynC algorithm, parameter MinPts is 
set as 2 for DS1 – DS5, and parameter σ is set according to Eq. (12). 
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(a) The setting of parameter in several clustering algorithms 

 
Name of 
algorithms 

Data sets 
DS1 DS2 DS3 DS5 

The value of 
parameter 

CESynC, 
ICESynC 

δ = 22 δ = 20 δ = 16 δ = 19 

SynC, ISynC,  
ESynC, IESynC

δ = 24 δ = 56 δ = 19 δ = 21 

 

 

Measure indexes  
of algorithms 

Name of algorithms
Data sets 
DS1 DS2 DS3 DS5 

Spend time  
(second) 

CESynC 225 364 367 152 
ICESynC 64 76 95 30 
SynC 367 388 365 363 
ISynC 63 112 61 48 
ESynC 126 290 165 126 
IESynC 34 137 48 28 

Note: The bold in Table 7 marks the best results of IESynC algorithm or ICESynC algorithm. 

5.3.4 Exploration of the relation between parameter σ and parameter δ in CESynC 

algorithm using nine artificial data sets (from DS5 - DS16, n = 2000) 

Table 8 presents the valid interval of parameter σ among several different values 

of parameter δ for MinPts = 2, 3, 4 in CESynC algorithm (using Strategy2 + Method 1) 

using nine artificial data sets. From Table 8, we observe that the valid interval of 

parameter σ is affected by parameters δ and MinPts. In the valid interval of parameter σ 

for MinPts = 1, 2, 3, 4, conjoint micro-clusters will be merged, and disjoint 

micro-clusters can not be merged. From Table 8, we also observe that, if MinPts = 2 

and without the distortion of isolates, the valid interval of parameter σ satisfies: 

( 1)

2 2[ , ]NumMinMcbtNumMinMcbt
cece        .                    (13) 

When using MCBT-based method, the correct number of clusters locates in the 

inflexion-point of mcbt(MCS) = {ce1, ce2, …, ceKclu-1}, (ceNumMinMcbt /2, ce(NumMinMcbt+1) 

/2). If there is distortion of isolates, the valid interval of parameter σ is near to 

( 1)

2 2[ , ]NumMinMcbtNumMinMcbt
cece       . When MinPts = 1, Eq. (13) is satisfied in many cases. When 

MinPts = 3 and MinPts = 4, this conclusion is no more correct. 

Table 8 Exploration of the relation between parameter σ and parameter δ in CESynC 
algorithm (using Strategy2 + Method 1) using nine artificial data sets (from DS5 – 
DS16, n = 2000). In Table 8, one or several lines of parameter δ for MinPts = 1, 2, 3, 4 
that are shown in bold in the valid interval of parameter σ means that CESynC 
algorithm has no isolates, and parameter σ ∈Ф means that CESynC algorithm gets one 
or no micro-cluster, so there is no merging judgement. 
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(a) DS5 
 Parameter σ ∈ 

MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 
Parameter δ = 20 [2, 8] [2, 8] [4, 9] [5, 10] 
Parameter δ = 19 [2, 8] [2, 8] [3, 9] [5, 10] 
Parameter δ = 18 [3, 8] [3, 8] [6, 9] [7, 10] 
Parameter δ = 17 [4, 8] [3, 8] [6, 9] [7, 10] 
Parameter δ = 16 [3, 8] [3, 8] [6, 9] [7, 10] 
Parameter δ = 15 [5, 8] [5, 8] [7, 9] [8, 10] 
Parameter δ = 14 [5, 8] [5, 8] [7, 9] [9, 10] 
Parameter δ = 13 [5, 11] [5, 12] [7, 12] [9, 12] 
Parameter δ = 12 [5, 8] [5, 8] [8, 9] [9, 10] 
Parameter δ = 11 [5, 8] [5, 8] [7, 9] [9, 10] 
Parameter δ = 10 [6, 8] [5, 8] [8, 9] [9, 10] 
Parameter δ = 9 [7, 8] [7, 8] [8, 9] {10} 

 
(b) DS9 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 17 [1, 17] [1, 17] [4, 19] [4, 20] 
Parameter δ = 16 [1, 17] [2, 17] [4, 19] [4, 20] 
Parameter δ = 15 [3, 19] [2, 19] [4, 20] [6, 20] 
Parameter δ = 14 [3, 19] [3, 19] [5, 20] [6, 20] 
Parameter δ = 13 [2, 17] [2, 17] [4, 19] [5, 20] 
Parameter δ = 12 [2, 17] [2, 17] [4, 19] [5, 20] 
Parameter δ = 11 [3, 17] [3, 19] [5, 19] [5, 19] 
Parameter δ = 10 [3, 17] [3, 19] [5, 19] [5, 19] 
Parameter δ = 9 [3, 17] [3, 17] [4, 19] [5, 20] 

 
(c) DS10 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 24 [1, 75] [1, 75] [1, 78] [1, 80] 
Parameter δ = 23 [12, 75] [1, 75] [1, 78] [1, 80] 
Parameter δ = 22 [12, 75] [1, 75] [1, 78] [1, 80] 
Parameter δ = 21 [11, 75] [5, 75] [15, 78] [16, 80] 
Parameter δ = 20 [14, 75] [15, 75] [15, 78] [16, 80] 
Parameter δ = 19 [11, 74] [11, 77] [13, 77] [19, 79] 
Parameter δ = 18 [11, 74] [12, 78] [15, 77] [17, 79] 

 
(d) DS11 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 35 [1, 94] [1, 94] [1, 99] [1, 99] 
Parameter δ = 32 [18, 94] [1, 94] [1, 99] [1, 99] 
Parameter δ = 29 [24, 97] [15, 94] [1, 99] [1, 99] 
Parameter δ = 26 [28, 93] [21, 90] [23, 90] [26, 92] 
Parameter δ = 23 [23, 95] [25, 92] [29, 102] [30, 102] 

 
 

(e) DS12 
 Parameter σ ∈ 

MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 
Parameter δ = 46 [1, 120] [1, 120] [1, 134] [1, 135] 
Parameter δ = 42 [23, 113] [1, 120] [1, 134] [1, 135] 
Parameter δ = 38 [31, 125] [20, 120] [1, 134] [1, 135] 
Parameter δ = 34 [30, 118] [20, 132] [33, 132] [37, 135] 
Parameter δ = 30 [27, 120] [28, 134] [33, 132] [33, 135] 
Parameter δ = 26 [24, 120] [22, 126] [31, 132] [32, 134] 
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(f) DS13 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 88 [1, 400] [1, 400] [1, 411] [1, 411] 
Parameter δ = 84 [44, 400] [1, 400] [1, 411] [1, 411] 
Parameter δ = 80 [44, 382] [1, 400] [1, 411] [1, 411] 
Parameter δ = 75 [51, 402] [40, 393] [1, 411] [1, 411] 
Parameter δ = 70 [50, 406] [41, 405] [68, 404] [1, 411] 
Parameter δ = 65 [46, 406] [44, 400] [69, 406] [65, 409] 
Parameter δ = 60 [44, 400] [46, 405] [65, 409] [65, 410] 
Parameter δ = 55 [44, 400] [50, 409] {54} Ф 
Parameter δ = 50 [44, 400] [46, 408] Ф Ф 

 
(g) DS14 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 129 [1, 610] [1, 610] [1, 620] [1, 620] 
Parameter δ = 120 [70, 617] [1, 610] [1, 620] [1, 620] 
Parameter δ = 110 [70, 610] [1, 610] [1, 620] [1, 620] 
Parameter δ = 100 [73, 610] [72, 614] [101, 620] Ф 
Parameter δ = 90 [70, 610] Ф Ф Ф 

 
(h) DS15 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 178 [1, 902] [1, 902] [1, 918] [1, 920] 
Parameter δ = 170 [102, 906] [1, 902] [1, 918] [1, 920] 
Parameter δ = 160 [103, 902] [99, 102] Ф Ф 
Parameter δ = 150 [102, 902] Ф Ф Ф 

 
(i) DS16 

 Parameter σ ∈ 
MinPts = 1 MinPts = 2 MinPts = 3 MinPts = 4 

Parameter δ = 300 [1, 1030] [1, 1030] [1, 1050] [1, 1052] 
Parameter δ = 201 [1, 1030] [1, 1030] [1, 1050] [1, 1052] 
Parameter δ = 190 [116, 1027] [1, 1030] [1, 1050] [1, 1052] 
Parameter δ = 180 [116, 1030] Ф Ф Ф 

 

5.4 Experimental results of eight UCI data sets 

 Because we do not know the true dissimilarity measure of these UCI data sets, all 

points of these UCI data sets are standardized to an interval [0, 600] in each dimension 

in the experiments. When computing three information-theoretic measures (AMI, AVI, 

and NMI), the class labels of these UCI data sets are regarded as their base cluster 

labels. 

 Table 9 presents the comparison results of clustering quality among several 

clustering algorithms (CESynC algorithm (using Strategy2 + Method 1), SynC 

algorithm, ESynC algorithm, DBSCAN algorithm, Mean Shift algorithm, AP algorithm, 

K-Means algorithm, and FCM algorithm) using eight UCI data sets. In Table 9, by 

intercomparing these clustering algorithms, we observe that CESynC algorithm gets 
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the largest values of AMI and AVI in two UCI data sets (Letter-recognition and Cloud) 

and larger (the same) values than (as) ESynC algorithm. So we can say that CESynC 

algorithm sometimes gets better clustering results than some clustering algorithms in 

some UCI data sets. From the final number of clusters in Table 9, we observe that 

CESynC algorithm and ESynC algorithm can get better local synchronization results 

than SynC algorithm. 

Table 9 Comparison of the clustering quality among CESynC algorithm (using 
Strategy2 + Method 1), SynC algorithm, ESynC algorithm, DBSCAN algorithm, Mean 
Shift algorithm, AP algorithm, K-Means algorithm, and FCM algorithm by using eight 
UCI data sets. In Table 9, parameter δ, Eps, or h in these clustering algorithms gets an 
acceptable value, parameter k in K-Means and FCM gets the number of classes. In 
CESynC algorithm, parameter MinPts is set as 2 for Iris and Cloud, parameter MinPts is 
set as 1 for the other six UCI data sets, and parameter σ is set according to Eq. (12). 
(a) The setting of parameters in several clustering algorithms 

UCI Data Sets 
parameters 

(δ, σ) in 
CESynC 

parameter δ in 
SynC and 

ESynC

parameter k in 
K-Means and 

FCM

parameter 
Eps in 

DBSCAN 

parameter h 
in 

Mean Shift
Iris (120, 10) 120 3 75 150 

Wine (290, 170) 305 3 242.725 305 
Wdbc (250, 200) 325 2 212 380 
Glass (120, 100) 148 6 80 170 

Ionosphere (600, 300) 615 2 350 1200 
Letter-recognition (180, 80) 210 26 160 220 

Segmentation (180, 100) 205 7 176 270 
Cloud (320, 150) 380 2 350 350 

  
(b) Three robust information-theoretic measures (AMI / AVI / NMI) and the number of clusters obtained 
by using CESynC, SynC, ESynC, K-Means, FCM, AP, DBSCAN, and Mean Shift clustering algorithm 

Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

Iris Wine Wdbc Glass 

AMI / 
AVI / 
NMI 

CESynC 
0.7143 / 
0.7190 / 
0.7265 

0.6103 / 
0.7294 / 
0.7634 

0.3650 / 
0.4712 / 
0.5134 

0.3053 / 
0.3479 / 
0.4339 

SynC 
0.0050 / 
0.0100 / 
0.4697 

3.2528e-16 / 
6.5056e-16 / 
0.4578 

6.8369e-16 / 
1.3673e-15 / 
0.3226 

0.0012 /  
0.0025 /  
0.5306 

ESynC 
0.7143 / 
0.7190 / 
0.7265 

0.6057 / 
0.7259 / 
0.7615 

0.3277 / 
0.4205 / 
0.4717 

0.2872 / 
0.3432 / 
0.4540 

K-Means 
0.7107 / 
0.7109 / 
0.7145 

0.8735 / 
0.8769 / 
0.8782 

0.6190 / 
0.6314 / 
0.6320

0.3265 / 
0.3301 / 
0.3588 

FCM 
0.7888 / 
0.7893 / 
0.7919 

0.3820 / 
0.4669 / 
0.4823 

0.6006 / 
0.6054 / 
0.6060 

0.2525 / 
0.3630 / 
0.4108 

AP 
0.3982 / 
0.5468 / 
0.6061 

0.2977 / 
0.4427 / 
0.5382 

0.1482 / 
0.2526 / 
0.3711 

0.2423 / 
0.3236 / 
0.4257 

DBSCAN 
0.3859 / 
0.5406 / 
0.6540 

0.1517 / 
0.2113 / 
0.4471 

0.0404 / 
0.0674 / 
0.2449 

0.1513 / 
0.2227 / 
0.4671 

Mean Shift 0.7143 / 0.5819 / 0.0165 / 0.2861 / 
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0.7190 / 
0.7265 

0.7184 / 
0.7612 

0.0213 / 
0.0796 

0.3107 / 
0.4153 

The 
number of 
clusters 

CESynC 3 (+ 2 isolates) 3 (+ 15 isolates) 5 (+ 29 isolates) 6 (+ 16 isolates) 
SynC 2 (+ 145 isolates) 0 (+178 isolates) 0 (+ 569 isolates) 1 (+ 212 isolates) 
ESynC 3 (+ 2 isolates) 3 (+ 16 isolates) 3 (+ 44 isolates) 6 (+ 29 isolates) 
K-Means 3 3 2 6 
FCM 3 2 (+ 1 null cluster) 2 2 (+ 4 null clusters) 
AP 11 21 36 (+ 9 isolates) 12 (+ 14 isolates) 
DBSCAN 3 (+ 35 isolates) 3 (+ 75 isolates) 2 (+ 189 isolates) 6 (+ 81 isolates) 

Mean Shift 3 (+ 2 isolates) 
4 (+ 17 isolates + 1 
null cluster) 

3 (+24 isolates 
+ 1 null cluster) 

6 (+ 24 isolates) 

 
Measure 
indexes of 
algorithms 

Name of 
algorithms 

Data sets 

Ionosphere Letter-recognition Segmentation Cloud 

AMI / 
AVI / 
NMI 

CESynC 
0.1092 /  
0.1745 /  
0.3191 

0.4282 /  
-0.2557 /  
0.4282 

0.4669 /  
0.5538 /  
0.6442 

1.0000 / 
1.0000 / 
1.0000 

SynC 
3.5016e-04 /  
7.0007e-04 /  
0.3339 

0.0166 /  
0.0317 /  
0.5768 

-1.6974e-15 /  
-3.3948e-15 /  
0.6033 

2.4432e-04 /  
4.8852e-04 /  
0.3016 

ESynC 
0.1073 /  
0.1701 / 
0.3106 

0.3971 /  
15.4680 /  
0.3971 

0.4212 /  
0.5093 /  
0.6086 

1.0000 / 
1.0000 / 
1.0000 

K-Means 
0.1246 /  
0.1280 /  
0.1299 

0.3484 /  
0.3540 /  
0.3572 

0.5286 /  
0.5843 /  
0.6103 

0.9944 /  
1.0056 /  
0.9944 

FCM 
0.1211 /  
0.1245 /  
0.1264 

0.0042 /  
0.0069 /  
0.0095 

0.2574 /  
0.3831 /  
0.4454 

0.9944 /  
1.0056 /  
0.9944 

AP 
0.1002 /  
0.1688 /  
0.2809 

- 
0.4897 /  
0.6068 /  
0.6781

0.1653 /  
0.2838 /  
0.4107 

DBSCAN 
0.0949 /  
0.1663 /  
0.3791 

0.1736 /  
2.3798 /  
0.1736 

0.3295 /  
0.4015 /  
0.5568 

1.0000 / 
1.0000 / 
1.0000 

Mean Shift 
0.1445 /  
0.1768 /  
0.2126 

0.3649 /  
6.1353 /  
0.3649 

0.5048 /  
0.5747 /  
0.6447 

1.0000 / 
1.0000 / 
1.0000 

The 
number of 
clusters 

CESynC 2 (+ 86 isolates) 30 (+ 48 isolates) 9 (+ 30 isolates) 2 

SynC 0 (+ 350 isolates) 
845 (+ 17823 
isolates) 

0 (+ 210 isolates) 5 (+ 2038 isolates) 

ESynC 2 (+ 83 isolates) 26 (+ 10 isolates) 7 (+ 31 isolates) 2 
K-Means 2 26 7 2 

FCM 2 
2 (+ 24 null 
clusters) 

2 (+ 5 null 
clusters) 

2 

AP 14 (+ 44 isolates) - 17 (+ 7 isolates) 66 (+ 1 isolate) 
DBSCAN 2 (+ 145 isolates) 28 (+ 319 isolates) 7 (+ 51 isolates) 2 

Mean Shift 2 (+ 19 isolates) 
26 (+ 3 isolates + 1 
null cluster) 

7 (+ 22 isolates) 2 

 
 Note1: In the Letter-recognition data set, DBSCAN algorithm obtains 21 clusters and 243 isolates 
when parameter δ = 160.0001, so we set parameter δ = 160 in DBSCAN. The sign ‘-‘ in the lines of AP 
algorithm means that there is no results because the time cost is too larger. 
 Note2: In Table 9, the largest values of AMI, AVI, and NMI in every data set are shown in bold. 
5.5 Analysis and conclusions of experimental results 

 From the comparison results of these figures and tables (Fig. 2, sfig. 4, and Tables 
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4 - 9), we observe that CESynC algorithm has some superiority than ESynC algorithm 

and SynC algorithm. We also find that ICESynC algorithm is superior to CESynC 

algorithm in time cost because of the use of effective spatial index structures. 

 From the simulations of some artificial data sets (from data0 – data6, DS0 - DS16), 

we observe that the valid interval of parameter δ in CESynC algorithm is longer or has 

some improvements than that in ESynC algorithm, DBSCAN algorithm, or Mean Shift 

algorithm in some cases. 

 From some display figures and tables, we observe that CESynC algorithm can 

explore the correct clusters and isolates like DBSCAN algorithm in many cases. In 

many kinds of data sets, CESynC algorithm, ESynC algorithm, and DBSCAN 

algorithm can explore obvious clusters or isolates if selecting a proper value for 

parameter δ or Eps, and SynC algorithm cannot explore obvious clusters in many data 

sets. 

 From simulations of some data sets, we observe that the iterative times of SynC 

algorithm, AP algorithm, K-Means algorithm, and FCM algorithm is larger than that of 

CESynC algorithm and ESynC algorithm. In many data sets, CESynC algorithm, 

ESynC algorithm, Mean Shift algorithm, and DBSCAN algorithm have better ability 

than SynC algorithm, K-Means algorithm, FCM algorithm, and AP algorithm in 

exploring clusters and isolates. Specially, AP algorithm needs the longest time. 

 CESynC algorithm is an improved clustering algorithm with broader clustering 

adjustability than ESynC algorithm and SynC algorithm almost in many cases. Usually, 

parameter δ and parameter σ have a long valid interval in many data sets with obvious 

clusters. In simulations, we observe that if parameter δ and parameter σ get some 

different values in their valid interval, the clustering results of CESynC algorithm are 

the same except the time cost. 

 Because of the limited page space, we only select some typical data sets used in 

our experiments. For all experimental data sets, we observe that CESynC algorithm 

improves in clustering quality or gets the same clustering results as ESynC algorithm. 

For other data sets, CESynC algorithm is still superior to (or the same as) ESynC 

algorithm in clustering quality. We believe that the selection of experimental data sets 

is not biased. 

6. Conclusions 

 This paper presents an improved synchronization clustering method, CESynC 

algorithm. For some data sets that ESynC algorithm and SynC algorithm cannot detect 
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correct clusters, CESynC algorithm can obtain correct clusters. From some simulated 

experiments of some artificial data sets, we observe that parameter δ in CESynC 

algorithm has better valid interval than ESynC algorithm and SynC algorithm in some 

cases. From the simulated experiments of nine artificial data sets, we observe that the 

valid interval of parameter σ is affected by parameters δ and MinPts. From the 

simulated experiments of eight UCI data sets, we observe that CESynC algorithm gets 

better (or the same) clustering results than (or as) that of ESynC algorithm. From many 

experiments, we observe that the clustering results of CESynC algorithm and ESynC 

algorithm are often better than that of SynC algorithm. So we can say CESynC 

algorithm can often obtain better clustering quality than ESynC algorithm and SynC 

algorithm in some kinds of data sets. Further comparison experiments with some 

classical clustering algorithms demonstrate the clustering effect of CESynC algorithm. 

The major contributions of the paper can be summarized as follows: 

(1) In order to conquer the shortcoming of ESynC algorithm that may regard a 

whole irregular cluster as some micro-clusters, it develops a combined clustering 

algorithm based on ESynC algorithm and a merging judgement process of 

micro-clusters. 

(2) It presents two concrete merging strategies and two judgement methods of 

merging micro-clusters in CESynC algorithm. 

(3) It validates the improved effect of ICESynC algorithm in time cost and that of 

CESynC algorithm in clustering quality by some simulated experiments. 

 CESynC algorithm is robust to outliers and can find obvious clusters with different 

shapes. The number of clusters does not have to be fixed before clustering. Usually, 

parameter δ has a long valid interval that can be determined by using an exploring 

method listed in Chen (2015), the heuristic method described by Theorem 1 and 

Property 1 presented in Chen (2017), or using the MDL-based method presented in 

Böhm et al. (2010). Parameter σ also has a long valid interval that can be explored by 

using Eq. (12). 

 This work opens some possibilities for further improvement and investigation. 

First, further improve ICESynC algorithm in time cost. For example, designing a 

similarity-preserving hashing function that needs O(1) time complexity is valuable and 

difficult in the process of constructing δ near neighbor point set. Second, explore the 

relation between parameter δ and parameter σ and extend the applicability of CESynC 

algorithm in more complex data sets. Third, implement CESynC algorithm on a cluster 
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with a parallel programming model such as MapReduce framework. 
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