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Abstract. Free logics are a family of logics that are free of any existential
assumptions. Unlike traditional classical and non-classical logics, they
support an elegant modeling of nonexistent objects and partial functions
as relevant for a wide range of applications in computer science, philosophy,
mathematics, and natural language semantics. While free first-order logic
has been addressed in the literature, free higher-order logic has not been
studied thoroughly so far. Contributions of this paper include (i) the
development of a notion and definition of free higher-order logic in terms
of a positive semantics (partly inspired by Farmer’s partial functions
version of Church’s simple type theory), (ii) the provision of a faithful
shallow semantical embedding of positive free higher-order logic into
classical higher-order logic, (iii) the implementation of this embedding in
the Isabelle/HOL proof-assistant, and (iv) the exemplary application of
our novel reasoning framework for an automated assessment of Prior’s
paradox in positive free quantified propositional logics, i.e., a fragment of
positive free higher-order logic.
Keywords: Knowledge representation and reasoning, Interactive and auto-
mated theorem proving, Philosophical foundations of AI, Partiality and
undefinedness, Prior’s paradox

1 Introduction

The proper handling of nonexistence and partiality constitutes a key challenge not
only for applications of formal methods in philosophy and mathematics, but also
for computational approaches to artificial intelligence and natural language [13,
15, 14]. In a “free logic” terms do not necessarily have to denote existing objects,
allowing for theories involving both partial and total functions. For that reason,
we expect free logical theories to become increasingly relevant for a wide range
of application domains, including but not limited to knowledge representation
in artificial intelligence. Free higher-order logics provide elegant solutions to the
handling of some well known paradoxes in knowledge representation and reasoning,
many of which are beyond first-order logic. Moreover, free logics are well suited
to represent abstract objects and to support hypothetical reasoning with fictive
(and concrete) entities, and can therefore also be applied in metaphysics, ethics
and law.

Modern interactive and automated theorem provers, however, are typically
developed for (classical) notions of logic, in which only total functions are
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supported natively. Instead of investing time and effort in the development of new
theorem provers for free first-order and higher-order logics, a promising approach
for the implementation of such logics in existing higher-order theorem provers
are shallow semantical embeddings (SSEs) [5]. We have successfuly applied the
SSE approach and we are currently integrating the results reported in this paper
in the LogiKEy framework [9] for expressive, pluralistic normative reasoning.

The contributions of this paper manifold. They include (i) the development of
a notion and definition of free higher-order logic in terms of a positive semantics
(partly inspired by Farmer’s partial functions version of Church’s simple type the-
ory [12]), (ii) the provision of a faithful shallow semantical embedding of positive
free higher-order logic into classical higher-order logic, (iii) the implementation
of this embedding in the Isabelle/HOL proof-assistant, and (iv) the exemplary
application of our novel reasoning framework for an automated assessment of
Prior’s paradox [27] in positive free quantified propositional logics, i.e., a fragment
of positive free higher-order logic.

Prior, coinciding with Kaplan [17], showed that paradoxes can arise quickly in
particular philosophical theories that include both sets and propositions. Bacon,
Hawthorne, and Uzquiano [3] discovered that universal instantiation, or, better,
the rejection of it, is key to blocking certain paradoxes inherent in such higher-
order logics. Logics without existential assumptions, i.e., free logics, just naturally
reject the principle of universal instantiation. The family of paradoxes considered
by Bacon et al. is represented by what we will call Prior’s paradox/theorem in
this paper. Prior’s theorem states:

Q∀p. (Qp → ¬p) → ∃p. (Qp ∧ p) ∧ ∃p. (Qp ∧ ¬p)

Reading Qp as, for instance, ‘Kaplan believes that p’, Prior’s theorem says that
if Kaplan believes that everything that he believes is false, then he believes
something true and also believes something false – a logical self-contradiction
that should be resolved, and in fact is resolved in free higher-order logic, as we
will discuss and demonstrate later in this paper.

The paper structure is as follows: §2 briefly recaps classical higher-order logic
(HOL), before positive free higher-order logic (PFHOL) is introduced in §3. §4
presents a faithful embedding of PFHOL in HOL, and §5 discusses its encoding
in Isabelle/HOL. §6 applies the encoded embedding to “solve” Prior’s paradox,
and the paper is then concluded in §7.

2 Classical Higher-Order Logic (HOL)

The simple theory of types is a classical higher-order logic defined on top of the
simply typed λ-calculus. Church’s original definitions as generalized by Henkin
[16] to extensional type theory, the logical basis of most automated theorem
proving systems for higher-order logic, are summarized below.
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2.1 Syntax

The main components of Church’s type theory are types and terms; more precisely,
typed terms. The set of simple types τ is freely generated from a set of two base
types {o, i} and the right associative function type constructor →. Intuitively, o
is the type of standard truth values and i is the type of individuals. τ is thus
defined by α, β := o | i | (α → β). τ o ⊂ τ , the set of simple types of (goal)
type o, is given by β := o | (α → β) (with α ∈ τ ). τ i ⊂ τ , the set of simple
types of (goal) type i, is analogously given by β := i | (α → β) (with α ∈ τ ).

Starting with some nonempty, countable sets of typed constant symbols Cα

and some nonempty, countable sets of typed variable symbols Vα, the simply
typed terms of HOL are defined by the following formation rules (where α, β ∈ τ ,
Pα ∈ Cα and xα ∈ Vα):

s, t := Pα | xα | (sα→β tα)β | (λxα. sβ)α→β

Moreover, we assume the following constant symbols to be part of our “signature”:
¬o→o ∈ Co→o, ∨o→o→o ∈ Co→o→o, =α→α→o∈ Cα→α→o, ∀(α→o)→o ∈ C(α→o)→o,
ι(α→o)→α ∈ C(α→o)→α. These constant symbols, which we call logical constants,
have a fixed denotation according to their intuitive meaning. For example, the
definite description ι(α→o)→α(λxα. so)α→o denotes the unique object x of type
α ∈ τ satisfying so if it exists and an arbitrary object of type α otherwise (we
may view this object as an error object). It offers the possibility to define an
if-then-else operator as follows:

iteo→α→α→α := λso. λxα. λyα. ι(λzα. (s → z = x) ∧ (¬s → z = y))

Further logical constants can be introduced as abbreviations, e.g., ∧ o→o→o :=
λxo. λyo. ¬ (¬x∨¬y) and ∃(α→o)→o := λpα→o.¬∀(λxα.¬(p x)) with α ∈ τ . All
constant symbols, which are not logical constants, are uninterpreted.

Terms of type o are formulas, nonformula terms of type α ∈ τ o are called
predicates. Formulas whose leftmost nonparenthesis symbol is either equality or
some nonlogical constant or variable are called atomic formulas. A variable x is
bound in a term s if it occurs in the scope of a quantifier in s. x is free in s when
it is not bound in s.

Some syntax conventions: Type information may be omitted if clear from
the context. For each binary operator op with prefix notation ((op s) t) we may
fall back to its infix notation (s op t) to improve readability. Likewise, the binder
notation {∀, ι}(x. s) may be used as shorthand for {∀, ι}(λx. s). In the remainder
of this thesis, a matching pair of parentheses in a type or term may be dropped
when they are not necessary, assuming that, in addition to the generally known
rules, (s t), the application, and (λx. s), function abstraction, are left and right
associative, respectively, and that application has a smaller scope than abstraction.

2.2 Semantics

A frame D is a set {Dα : α ∈ τ } of nonempty sets (formally domains) Dα such
that Di is chosen freely, Do = {T,F} where T 6= F and T represents truth and F
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represents falsehood, and Dα→β is the set of all total functions from domain Dα

to codomain Dβ . A standard model is a tuple M = 〈D, I 〉 where D is a frame
and I is a family of typed interpretation functions, i.e., I = {Iα : α ∈ τ }. Each
interpretation function Iα maps constants of type α to appropriate objects of
Dα. The logical constants =, ¬, ∨, ∀ and ι are interpreted as follows:
I(=α→α→o) := id ∈ Dα→α→o s.t. for all d, d′∈ Dα,

id(d, d′) = T iff d is identical to d′

I(¬o→o) := not ∈ Do→o s.t. not(T) = F and not(F) = T
I(∨o→o→o) := or ∈ Do→o→o s.t. or(v1, v2) = T iff v1 = T or v2 = T
I(∀(α→o)→o) := all ∈ D(α→o)→o s.t. for all f ∈ Dα→o,

all(f) = T iff f(d) = T for all d ∈ Dα

I(ι(α→o)→α) := desc ∈ D(α→o)→α s.t. for all f ∈ Dα→o,

desc(f) = d ∈ Dα if f(d) = T and for
all d′∈ Dα: if f(d′) = T, then d′= d,

otherwise desc(f) = e,
where e is an arbitrary object in Dα

gα is a variable assignment mapping variables of type α to corresponding objects
in Dα. Thus, g = {gα : α ∈ τ } is a family of typed variable assignments. g [x→d]
denotes the assignment that is identical to g, except for variable xα, which is
now mapped to dα. The value J sα KM,g of a HOL term sα in a standard model M
under variable assignment g is an object d ∈ Dα which is defined as follows:

JPα KM,g := I(Pα)

Jxα KM,g := g(xα)

J (sα→β tα)β KM,g := J sα→β KM,g(J tα KM,g)

J (λxα. sβ)α→β KM,g := the function f from Dα into Dβ

s.t. for all d ∈ Dα: f(d) = J sβ KM,g[x→d]

A formula s is true in a standard model M under variable assignment g if and
only if J so KM,g = T, denoted by M, g � s. A formula s is valid in M , denoted by
M � s, if and only if M, g � s for all variable assignments g. Moreover, a formula
s is (generally) valid, denoted by � so, if and only if s is valid in all standard
models M .

As a consequence of Gödel’s incompleteness theorem, Church’s type theory
with respect to the ordinary semantics based on standard models is incomplete.
However, Henkin [16] introduced a generalized notion of model in which the
function domains contain enough but not necessarily all functions: In a standard
model a domain Dα→β is defined as the set of al l total functions from Dα to
Dβ . In a Henkin model (or general model) the domains Dα→β in the underlying
frame are some nonempty sets of total functions, Dα→β ⊆ { f | f : Dα → Dβ},
containing at least sufficiently many of them so that the valuation function
remains total.
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For Henkin’s generalized notion of semantics, sound and complete proof calculi
exist [16, 1, 2]. Any standard model is obviously also a Henkin model. Hence, any
formula that is valid in all Henkin models must be valid in all standard models
as well. Therefore, the semantics employed in this paper are Henkin’s general
models. For truth, validity, and general validity in a Henkin model, the above
definitions are adapted in the obvious way.

For further details on the semantics of HOL, we refer to the literature [7, 6].

3 Positive Free Higher-Order Logic (PFHOL)

Free logic, a term coined by Lambert [19], refers to a family of logics that are
free of existential presuppositions in general and with respect to the denotation
of terms in particular. Terms of free logic may denote existent1 objects, but are
not necessarly required to do so. Quantification is treated as in classical logic,
meaning that quantifiers range over the existing objects only. In the following,
we will pursue an inner-outer dual-domain approach for the representation of
the relationship between existing and nonexisting objects. The inner-outer dual-
domain approach specifies that some domain D contains both existing and
nonexisting objects, whereas the quantification domain E, a subdomain of D,
contains solely the existing ones.

A free logic is known to be positive if it allows atomic formulas with terms
that do not denote to be either true or false [30, 20]. For example, even though
isHuman(Pegasus) is usually denied, hasLegs(Pegasus) may be regarded a
valid formula since the denotation of Pegasus is a mythological creature that is
usually depicted in the form of a winged horse (with legs).

3.1 Syntax

Except for terms, all definitions and terminology for PFHOL correspond to
those presented in §2.1 for HOL. Simply typed terms of PFHOL essentially
also have the same structure as terms of HOL, but we additionally include the
nonlogical constant symbol E!α→o ∈ Cα→o in the “signature”. Apart from that,
the denotation of the universal quantifier changes since quantification in free logic
is traditionally limited to existing objects only. Moreover, not only quantifiers
have existential import: Definite descriptions of free logic denote a unique object
satisfying some property if and only if it exists and is defined [4].

3.2 Semantics

The following proposal of a positive semantics for free higher-order logic unifies
two sophisticated concepts that were worked out independently by Benzmüller
and Scott [8] and Farmer [12].
1 In the paper at hand, the terms existent/existing and defined are used interchange-

ably even though a differentiation is advisable. The same applies to the terms
nonexistent/nonexisting and undefined.
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⊥i

Di

Ei

T
Fo = F

Do = Eo

Fi→o

Di→o = Ei→o

Fig. 1. Schematics of domains Di, Do and Di→o

While frames are defined exactly as in HOL, a subframe E is a set {Eα :
α ∈ τ } of nonempty sets (formally domains) Eα such that Eα ⊂ Dα for each
α ∈ τ i and Eα = Dα for each α ∈ τ o.2 We assume, inspired by Farmer,
that ⊥α ∈ Dα \ Eα for all α ∈ τ i with ⊥α→β (d) := ⊥β for all d ∈ Dα.
Furthermore, each set Dα with α ∈ τ o contains the element Fα defined inductively
by Fo := F and Fα→β (d) := Fβ for all d ∈ Dα. The purpose of these objects
is to propagate the nondenotation of a term up through all terms containing it
with ⊥i symbolizing ‘the undefinedness’ among individuals. Their intended use
will be explained in the further course of this section. Exemplary schematics of
the most important domains can be found in Fig. 1. A standard model is a triple
M = 〈D,E, I 〉 where D is a frame, E is a subframe and I is a family of typed
interpretation functions, i.e., I = {Iα : α ∈ τ }. Each interpretation function Iα
maps constants of type α to appropriate elements of Dα. The nonlogical constant
E! and the logical constants =, ¬, ∨, ∀ and ι are interpreted as follows:

I(E!α→o) := ex ∈ Eα→o s.t. for all d ∈ Dα, ex(d) = T iff d ∈ Eα

I(=α→α→o) := id ∈ Eα→α→o s.t. for all d, d′∈ Dα,

id(d, d′) = T iff d is identical to d′

I(¬o→o) := not ∈ Eo→o s.t. not(T) = F and not(F) = T

I(∨o→o→o) := or ∈ Eo→o→o s.t. or(v1, v2) = T iff v1 = T or v2 = T
I(∀(α→o)→o) := all ∈ E(α→o)→o s.t. for all f ∈ Dα→o,

all(f) = T iff f(d) = T for all d ∈ Eα

2 Restricting nondenotation to the domain of individuals, i.e., to define Ei ⊂ Di and for
all α 6= i, Eα = Dα, is reasonable, but complicates the definition of strict functions.
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I(ι(α→o)→α) := desc ∈ E(α→o)→α s.t. for all f ∈ Dα→o,

desc(f) = d ∈ Eα if f(d) = T and for
all d′∈ Eα: if f(d′) = T, then d′= d,

otherwise desc(f) = ⊥α if α ∈ τ i and
desc(f) = Fα if α ∈ τ o

The value J sα KM,g of a PFHOL term sα in a standard model M under the variable
assignment g, defined in the same way as in HOL, is an object d ∈ Dα and
evaluated as follows:

JPα KM,g := I(Pα)

Jxα KM,g := g(xα)

J (sα→β tα)β KM,g := J sα→β KM,g(J tα KM,g)

J (λxα. sβ)α→β KM,g := the function f from Dα into Dβ

s.t. for all d ∈ Dα: f(d) = J sβ KM,g[x→d]

The application is hereby defined in a nonstrict manner. A strict function appli-
cation would be defined like this (with α → β ∈ τ i):

J (sα→ β tα)β KM,g :=

{
J sα→ β KM,g(J tα KM,g) if J tα KM,g ∈ Eα

3

⊥β else

A strictly applied function results in undefined if one of its arguments is undefined.
In simple type theory, arguments are typically processed one after another. To
be able to pass the undefined state of a once applied argument through any
other possibly following arguments, the objects ⊥α were added to each relevant
domain Dα. ⊥α→β maps any argument of type α to ⊥β until ⊥i appears. This
way, undefinedness is transmitted until the evaluation of the application has
reached its end.4 Predicates, on the other hand, need no such special treatment.
In positive free logic, (atomic) formulas denote truth or falsehood even if one of
the arguments is undefined.

The definitions of truth, validity, and general validity in PFHOL are equivalent
to the corresponding definitions in HOL. The partiality characteristic for free
logic is implemented by a trick that exploits the objects ⊥α, which enables the
functions in each domain Dα→β to remain total. Hence, the generalization of
standard models to Henkin models is equally applicable to PFHOL.5

3 Farmer also checked the function itself for existence. But since the distinction between
existing and nonexisting functions – in contrast to existing/nonexisting individuals –
is unusual and not well-defined, this was left out.

4 Restraining applications like this could lead to malformed evaluations, i.e., evaluated
terms might not receive the actually intended value. For instance, the ite operator
must be handled separately when the then- or else-parts are meant to be undefined.

5 As shown by Farmer and Schütte [29], it is possible to give a Henkin-style completeness
proof for free higher-order logic that is defined based on a partial valuation function.
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4 Embedding of PFHOL in HOL

To provide a shallow embedding of PFHOL in HOL, the “signature” of HOL has
to be enriched with an additional nonlogical constant Eα→o ∈ Cα→o denoting a
unary predicate that enables an explicit distinction of existing and nonexisting
objects in the domain Dα. Moreover, we assume a fixed error object eα in each
domain Dα with α ∈ τ , which is meant to be the object that is returned by the
definite description of type (α → o) → α if no such object exists. We redefine
the interpretation of ι thus as follows:
I(ι(α→o)→α) := desc ∈ D(α→o)→α s.t. for all f ∈ Dα→o,

desc(f) = d ∈ Dα if f(d) = T and for
all d′∈ Dα: if f(d′) = T, then d′= d,

otherwise desc(f) = eα

Obviously, for all α ∈ τ o: (∀xα. (Eα→o xα)o)o = T, and (Eα→o eα)o = F for each
α ∈ τ i. Then, a HOL term [ sα ] is assigned to each PFHOL term sα according
to the following translation function:6

[Pα ] = Pα

[xα ] = xα

[ (E!α→o sα)o ] = (Eα→o [ sα ])o

[ ((=F

α→α→o sα)α→o tα)o ] = ((=H

α→α→o [ sα ])α→o [ tα ])o

[ (¬F

o→o so)o ] = (¬H

o→o [ so ])o

[ ((∧F

o→o→o so)o→o to)o ] = ((∧H

o→o→o [ so ])o→o [ to ])o

[ (∀F

(α→o)→o(λxα. so)α→o)o ] = (∀H

(α→o)→o(λxα. ((E x)o →H

o→o→o [ so ])o)α→o)o

[ (ιF(α→o)→α(λxα. so)α→o)α ] = (ιH(α→o)→α(λxα. ((E x)o ∧H

o→o→o [ so ])o)α→o)α

[ (sα→β tα)β ] = ([ sα→β ] [ tα ])β

[ (λxα. sβ)α→β ] = (λxα. [ sβ ])α→β

Note, that operators of HOL and PFHOL are annotated with H and F , respectively.

The main trick of this translation is that the existential import of the quantifier
and description operator is secured by cleverly exploiting the additional predicate
Eα→o as a guard. When mapping definite descriptions, [ (ιF(α→o)→α(λxα. so)α→o)α ]

6 A similar translation, although for free first-order logic, was provided and proved to
be sound and complete by Meyer and Lambert [24] and Benzmüller and Scott [8].



Positive Free Higher-Order Logic and its Automation 9

could also be translated into

(iteH

o→α→α→α

(∃H

(α→o)→o(λxα.

(((Eα→o xα)o ∧H

o→o→o [ so ])o

∧H

o→o→o (∀
H

(α→o)→o(λyα.(((Eα→o yα)o →H

o→o→o [ so ])o

→H

o→o→o (yα =H

α→α→o xα)o)o)α→o)o)o)α→o)o

(ιH(α→o)→α(λxα. ((Eα→o xα)o ∧H

o→o→o [ so ])o)α→o)α

eα)α

using the if-then-else operator ite to ensure that the classical description definitely
returns the error object eα in case of no such existing object. But due to our
previously done redefinition of classical definite description, this is not really
necessary for this embedding. Furthermore, it is noteworthy that any term ∃Fx. s
is translated into ¬H∀Hx. E x →H ¬Hs, which is the same as ∃Hx. E x ∧H s .

Next, we establish the faithfulness of this embedding.

Theorem 1. �PFHOL so if and only if �HOL [ so ] .

The proof of Thm. 1 is sketched in App. A; for full details see Makarenko [23].

5 Implementation in Isabelle/HOL

We have encoded the embedding from §4 in Isabelle/HOL [25]. This encoding
starts out with a declaration of the base type i for individuals; the type o of
HOL is associated with the predefined type bool in Isabelle/HOL.

typedecl i

Next, we define an existence predicate E for each of the base and compound types.
The single quote in 'a indicates that this is a type variable, meaning that the
definition given hereupon is polymorphic. The prefix ‘f’ in this and all upcoming
definitions stands for ‘free’.

consts fExistence :: "'a ⇒ bool" ("E")

Then, we introduce a new constant e for every type and, in accordance with the
definitions in §4, we postulate e of type i to be nonexistent and e of type bool

to be False. Furthermore, True and False are declared as existent.

consts fUndef :: "'a" ("e")

axiomatization where fUndefIAxiom: "¬E (e::i)"

axiomatization where fFalsehoodBAxiom: "(e::bool) = False"

axiomatization where fTrueAxiom: "E True"

axiomatization where fFalseAxiom: "E False"
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The embedding of the propositional logical connectives is straightforward. PFHOL
operators are presented in bold-face fonts to distinguish them from HOL operators.

definition fIdentity :: "'a ⇒ 'a ⇒ bool" (infixr "=" 56)

where "φ = ψ ≡ φ = ψ"

definition fNot :: "bool ⇒ bool" ("¬_" [52]53)

where "¬φ ≡ ¬φ"

definition fOr :: "bool ⇒ bool ⇒ bool" (infixr "∨" 51)

where "φ ∨ ψ ≡ φ ∨ ψ"

Now, for embedding the existential import of the universal quantifier, we utilize
the existence predicate E of the respective type exactly as discussed in §4.
Isabelle/HOL supports the introduction of syntactic sugar for binding notations,
which we adopt in the following definition in order to support the more intuitive
notation ∀x. P x instead of writing ∀(λx. P x) or ∀P .

definition fForall :: "('a ⇒ bool) ⇒ bool" ("∀")

where "∀Φ ≡ ∀x. E x ⟶ Φ x"

definition fForallBinder:: "('a ⇒ bool) ⇒ bool" (binder "∀" [8]9)

where "∀x. φ x ≡ ∀φ"

For the encoding of the PFHOL operator ι, we rely on Isabelle/HOL’s own
definite description operator THE. Unlike the embedding from §4, we must here
specify the exact object that will be returned if there is no unique object that
has the desired property. We use Isabelle/HOL’s if-then-else operator for this:

definition fThat :: "('a ⇒ bool) ⇒ 'a" ("I")

where "IΦ ≡ if ∃x. E x ∧ Φ x ∧ (∀y. (E y ∧ Φ y) ⟶ (y = x))

then THE x. E x ∧ Φ x

else e"

definition fThatBinder:: "('a ⇒ bool) ⇒ 'a" (binder "I" [8]9)

where "Ix. φ x ≡ Iφ"

We also introduced binder notation for I. Further PFHOL operators are embedded
as follows:

definition fAnd :: "bool ⇒ bool ⇒ bool" (infixr "∧" 52)

where "φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)"

definition fImp :: "bool ⇒ bool ⇒ bool" (infixr "→" 49)

where "φ → ψ ≡ ¬φ ∨ ψ"

definition fEquiv :: "bool ⇒ bool ⇒ bool" (infixr "↔" 50)

where "φ ↔ ψ ≡ φ → ψ ∧ ψ → φ"

definition fExists :: "('a ⇒ bool) ⇒ bool" ("∃")

where "∃Φ ≡ ¬(∀(λy. ¬(Φ y)))"

definition fExistsBinder :: "('a ⇒ bool) ⇒ bool" (binder "∃" [8]9)

where "∃x. φ x ≡ ∃φ"

For experiments and tests, and for the Isabelle/HOL sources, see Makarenko [23],
which is avialable at: https://github.com/stilleben/Free-Higher-Order-Logic.
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6 Automated Assessment of Prior’s Paradox

In our practical experiments, we benefit from the fact that Isabelle/HOL integrates
powerful reasoning tools such as the model finder Nitpick [10] and the meta-prover
Sledgehammer [26], which invokes third-party resolution provers, SMT solvers,
and higher-order provers as Satallax [11] and Leo-III [32].

Applying the meta-prover Sledgehammer together with our embedding of
PFHOL in HOL onto Prior’s theorem, we end up with the following result:

axiomatization where fTrueAxiom: "E True"

axiomatization where fFalseAxiom: "E False"

lemma "(Q (∀p. (Q p → (¬p)))) → ((∃p. Q p ∧ p) ∧ (∃p. Q p ∧ (¬p)))"

using Defs by (smt fFalseAxiom fTrueAxiom)

The theorem is valid. But as we can cleary see, the theorem is proved using
the axioms fTrueAxiom and fFalseAxiom stipulating that both truth values are
defined. We try it again without these:

lemma "(Q (∀p. (Q p → (¬p)))) → ((∃p. Q p ∧ p) ∧ (∃p. Q p ∧ (¬p)))"

nitpick [user_axioms=true, show_all, format=2]

oops

Nitpick found a counterexample for card i = 3:

Free variable:

Q = (λx. _)(True := True, False := True)

Constants:

E = (λx. _)(True := True, False := False)

E = (λx. _)(i1 := False, i2 := False, i3 := True)

e = i2

e = False

This time the model finder Nitpick found a countermodel. Observe, that in
this countermodel one of the two truth values is undefined, namly False. This
essentially coincides with the countermodel provided by Bacon, Hawthorne, and
Uzquiano. However, on a metaphysical level, it is highly questionable to shift
even one of the truth values into the undefined range. Bacon et al. themselves
did not find this approach for overcoming the paradox very promising and have
constructed other countermodels as a substitute, which we could not reproduce
with the embedding of PFHOL in HOL as presented in this paper. For these coun-
termodels, at least three different truth values are required, and hence trivalent
or other many-valued free higher-order logics should be used for that. Research
has already been conducted in this direction, which, so far, has concentrated
mainly on using deep embeddings [33] as opposed to adapting shallow ones [31].

An alternative option, which has been implemented and explored by Makarenko
in Isabelle/HOL [23, see §5], is to embed and automated the free semantics as
specifically developed by Bacon et al. to overcome this particular paradox. The
semantical theory they introduce is a positive free higher-order logic based on set
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theory where only (possible) worlds are taken as primitive, and the validity of
propositions is then modeled as world dependent. The embedding of this ‘modal’
positive free logic has proved useful and adequate in dealing with the paradox,
as was confirmed by verifying further, more reasonable countermodels to Prior’s
theorem.

It is worth mentioning that there is currently a growing interest to further
adapt the definitions of §3 and the embedding of §4 to develop proper notions of
modal and intensional positive free higher-order logic and to embed them faithfully
in HOL. An interesting application, and related ongoing work, includes the
exploitation of free logic machinery in Kirchner’s embedding of hyperintensional
second-order modal logic and abstract object theory in Isabelle/HOL [18, see
footnote 7 and §5], which has been used for the encoding, assessment and further
exploration of Zalta’s “Principia Logico-Metaphysica” [34].

7 Conclusion

Positive free higher-order logic and its characteristics of non-existent objects and
partial functions has been faithfully represented in an adequately modified version
of simple type theory. A key point of the inner-outer dual-domain approach is
that partiality is only simulated instead of inherently accomodating it, such that a
classical logic environment could be maintained. Subsequently, our embedding was
implemented in Isabelle/HOL to support interactive and automated reasoning.
We applied this embedding to Prior’s paradox and reconstructed some of the
results of Bacon, Hawthorne, and Uzquiano. This shows that certain paradoxes
can fruitfully be addressed in free higher-order logic. However, we were also able
to verify that two-valued free logic is not enough to resolve the issue. Our ongoing
research therefore also addressed other variants of free logic. Traditionally, the
family of free logics involves not only positive free logic, but also negative [28],
neutral [22], and supervaluational [4] free logic whose semantics differ in the way
how atomic formulas with terms that do not denote are treated. Furthermore, free
many-valued logic or even a free logic with more than one notion and/or degree
of nonexistence could be imagined. Some of these variants have already been
successfully embedded and tested in Isabelle/HOL [23], as for example negative
free higher-order logic and partly also supervaluational free higher-order logic,
others are still under development. Of special interest are in particular neutral
free higher-order logic and, as also indicated in the previous section, many-valued
(positive) free higher-order logic. Obviously, a mixture between shallow and deep
embedding appears conceivable in this context and worth investigating. Fact is,
nondenoting terms have always been and will always be an intriguing subject in
logic, and, due to the lack of theorem provers for free logic, the development of
an appropriate definition of free logic suitable for embedding in HOL as well as
the automation of free logic via a semantical embedding seems more important
than ever.
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Appendix
A Proof of Theorem 1

For the proof of the theorem, we first need to elaborate how to transform a
PFHOL model M into a HOL model M ∗, and a PFHOL variable assignment g into
a HOL variable assignment g ∗. We assume, that D ∗

α = Dα and C ∗
α \ {Eα→o} =

Cα\{E!α→o} for all α ∈ τ , and set eα= ⊥α for each α ∈ τ i and eα= Fα for each
α ∈ τ o. Then, M = 〈D,E, I 〉 corresponds to the model M ∗= 〈D ∗, I ∗〉 where I ∗

is a family of interpretation functions that assigns the standard interpretation
to the logical constants =, ¬, ∨, ∀ and ι of HOL as described in §2. For all
other constants Pα 6= Eα→o, Pα ∈ C ∗

α : I ∗(Pα) = I(Pα). The nonlogical constant
Eα→o ∈ C ∗

α is interpreted as follows:
I ∗(Eα→o) := ex ∈ D ∗

α→o s.t. for all d ∈ D ∗
α, ex(d) = T iff d ∈ Eα

We further assume V ∗
α = Vα for all α ∈ τ , and hence, for all xα ∈ V ∗

α and α ∈ τ ,
g ∗
α(xα) = gα(xα).

Next, we first need to establish the following lemma.

Lemma 1. For all PFHOL models M and PFHOL variable assignments g,

J sα KM,g = J [ sα ] KM
∗,g∗ .

The detailed proof of this lemma can be found in Makarenko’s thesis [23].

Theorem 1. �PFHOL so if and only if �HOL [ so ] .

Proof.

(→) The proof is by contraposition:

Assume 2PFHOL so . Then, there exists a PFHOL model M and a variable assignment
g such that J so KM,g = F . By Lemma 1, J so KM,g = J [ so ] KM

∗,g∗ = F . Hence, 2HOL

[ so ] .

(←) Analogous to above by contraposition and Lemma 1.

Therefore, the embedding of PFHOL in HOL is sound and complete.


