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Abstract—Major industry-led initiatives such as RISC-V and
OpenTitan strive for verified, customizable and standardized
products, based on a combination of Open Source Hardware
(OSHW) and custom intellectual property (IP), to be used in
safety and security-critical systems. The protection of these
products against reverse-engineering-based threats such as IP
Theft and IP Piracy, Hardware Trojan (HT) insertion, and
physical attacks is of equal importance as for closed source
designs. OSHW generates novel threats to the security of a
design and the protection of IP. This paper discusses to what
extent OSHW reduces the difficulty of attacking a product. An
analysis of the reverse engineering process shows that OSHW
lowers the effort to retrieve broad knowledge about a product
and decreases the success of related countermeasures. In a case
study on a RISC-V core and an AES design, the red team uses
knowledge about OSHW to circumvent logic locking protection
and successfully identify the functionality and the used locking
key. The paper concludes with an outlook on the secure protection
of OSHW.

Index Terms—reverse engineering, open source hardware, IP
protection, IC trust, IP obfuscation, hardware security

I. INTRODUCTION

The past years have seen a rise in the availability of
Open Source Hardware (OSHW) designs. Both the RISC-
V Community and the commercial partnership behind the
OpenTitan Project [1] have driven the availability of com-
plex and verified OSHW processor designs. Groups like the
OpenHW Group [2] create high-quality OSHW designs with
industrial quality verification, with 9 RISC-V cores currently
under development. Many other companies are also dedicated
to producing fully open source processors. OSHW implemen-
tations of cryptographic algorithms are commonly produced or
even required for competitions on cryptographic algorithms [3]
and are often also freely available on the internet. Websites
such as OpenCores have provided implementations ranging
from arithmetic cores to interfaces and entire processors since
1999 [4].

This development is of interest in particular for processor
designs. In the past, many processor designs were created by
one company and used by others as Third-Party Intellectual
Property (3PIP) black or gray boxes. One prominent example,
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ARM Ltd, developed the original advanced RISC machine
(ARM) architecture, and licenses the architecture or its im-
plementations to different companies [5]. Other companies
prefer to develop their own architectures in-house, or buy
the license for an existing architecture and develop only the
implementation in-house. For both scenarios, the core can only
be verified by the licensing company or in-house, and cannot
be easily verified by an external party.

New development in OSHW allows for a more complete
verification and an increased trust in the design. Since every
party can verify the implementation, and the community
actively supports this effort, security through obscurity is
replaced by security through verification. A prominent ex-
ample is OpenTitan [1], an open-source project to design
a silicon root-of-trust. The project aims for transparency,
trustworthiness, and security, by open-sourcing as much of
the design process as possible. In particular for companies
or research institutes unable to develop their own processor
design, using OSHW is a low-cost and verifiable method to
build a chip. Furthermore, as the source code is open source
rather than a black box, the design is easily customizable,
and own Intellectual Property (IP) can easily be added to the
design.

The effect of using OSHW in design for security, however,
should be studied. When knowledge of a hardware design is
made public, this information is made public to attackers, too.
In Integrated Circuit (IC) trust and security, this has a direct
effect on the ability to reverse engineer the design [6]. This
can lead to three attack scenarios:

• IP theft or piracy
• Reverse Engineering (RE) to insert Hardware Trojans

(HTs)
• RE to identify attack vectors

Each of these scenarios can occur during different steps in
the life of a chip (see Figure 1). IP Theft or IP Piracy occurs
once the design leaves the company, either for verification,
fabrication or once it becomes available on the market and
can be cloned by an end user. RE to identify attack vectors
is done by an end user unless the attacker is actively working
with a foundry. Finally, HT insertion can occur either via 3PIP
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Figure 1: Life of a chip, attack procedures (blue) and attack scenario entry points (orange)

at the beginning of the design flow, or during fabrication by
the foundry.

The additional attacker knowledge provided by the OSHW
design elements has a different impact on each of the three
attack scenarios. This additional knowledge also affects coun-
termeasures against reverse engineering, which are simpler to
break if the entire design or part of the design is open source.

The effect of using OSHW, and consequently the effect on
the success of RE and the corresponding attacks depends on
the extent of the used OSHW. Similar to software design,
in silicon hardware development, OSHW can be used as a
building block for proprietary designs, or the design is OSHW
in its entirety.

This work will analyze the effect of previous design knowl-
edge on each of the three attack scenarios. In section II,
the attack scenarios affected by OSHW will be discussed.
Section III describes the impact of OSHW on the level of
difficulty to perform netlist abstraction during RE. Section
IV discusses the effect on RE countermeasures. Section V
presents a red team vs blue team based case study of the RE
of components of a RISC-V design and an AES design. The
functionality of an unknown but OSHW design is recovered,
and the logic obfuscation broken using a SAT-Attack. Finally,
viable countermeasures are discussed in section VI.

II. RISKS AND ATTACK SCENARIOS

A. IP Theft and IP Piracy

If solely OSHW is used for the development of a chip, IP
piracy is not a significant risk. If the chip is reverse engineered
to clone the design, the only effort stolen is the effort to lay out
and verify the design for the specific technology. For a foundry,
this may be economically beneficial, however, for an end user,
the effort to reverse engineer the chip from the ground up is too
high to be viable. Generally, neither overbuilding, nor patent
infringement or business secret leakage must be protected
against.

If the OSHW is complemented by proprietary in-house
designs such as cryptographic accelerators, interfaces, or other
implementations, the risk significantly increases. As explained
in section III and shown in section V, the use of OSHW
reduces the difficulty to identify design components and high-
lights the proprietary parts, consequently making IP piracy of
these components much simpler.

B. Hardware Trojan Insertion
The threat of HT insertion in 3PIP is minimized, if not

eliminated, by the use of OSHW designs, as the design can
be verified easily, not only by the designer, but by anyone
using the design. However, the threat of HT insertion during
fabrication at the foundry increases significantly. As with IP
Piracy, if the entire design, or components of the design,
are open source, the effort to reverse engineer the design is
greatly reduced, and thus, it becomes much easier to identify
suitable insertion points for HTs. Previous work shows that it
is possible to insert a variety of HTs into a RISC-V design
without high overhead [7] If the design consists of OSHW
as well as proprietary hardware, the foundry may decide to
forgo identification of the additional hardware, and only use
the open source components of the design to insert a HT.

C. Identification of Attack Vectors
This attack, most commonly carried out by the end user,

seeks to identify vulnerable points within the chip to carry
out subsequent attacks, such as side channel, fault or probing
attacks. Generally, the effort to reverse engineer the design
from the chip as an end user is relatively large, so that it only
becomes viable for a chip in significant attacks scenarios, for
example by state actors. However, if the attacker is able to
work together with a foundry, and thus has access to layout
data, this kind of attack becomes viable for any chip. Again,
if the design, or part of the design used for the chip is open
source, the effort to reverse engineer and identify suitable
attack vectors is significantly reduced.

Additionally, an adversary can leverage its knowledge about
OSHW to search for vulnerabilities in the OSHW sources in-
stead of reverse engineering the hardware. This knowledge can
be acquired through manufacturer’s public announcements,
datasheets or by (possibly superficial) RE. For example, an
attacker could inspect the source code of a RISC-V design
and find vulnerabilities such as [8], a severe bug in the case
study’s RISC-V design that allows to trigger a machine-level
Denial of Service (DoS) from user-level software.

In summary, the attack scenarios of interest when consid-
ering OSHW are (1) IP Theft, when OSHW is mixed with
proprietary hardware, (2) the insertion of HTs by the foundry,
and (3) the identification of design weaknesses to be exploited
by subsequent hardware attacks.



III. IMPACT ON THE REVERSE ENGINEERING WORKFLOW

To understand the impact of open source knowledge of the
design on each of these attack scenarios, we must understand
how RE is impacted. It is clear that the most probable
and prominent attack scenarios on OSHW occur when the
attacker has access to the netlist. Furthermore, physical RE, as
described in [9], i.e., the processes to retrieve the netlist from
the physical chip, is not significantly improved by knowledge
of the design. Thus, we will focus on functional RE of the
netlist, which was gained either through extraction from layout
data from the foundry, or through physical RE, see Figure 1.
Functional RE, also known as netlist abstraction, generally
consists of two parts: (1) the partitioning of the entire design
into smaller submodules, and (2) the identification of the
functionality of these submodules. Some submodules might
represent or contain a Finite State Machine (FSM). An FSM
is determined by first identifying state flip-flops, and then
recovering the FSM [10].

A. Netlist Partitioning

Partitioning seeks to group the logic gates of a netlist into
functional submodules. Solutions can be divided into data-
path-identification-based and graph-based methods. In [11],
the data path is identified by grouping similar gates into words,
and finding the connections between these. Partitioning is then
done by cutting out modules between connected groups of
words. This idea was later improved by combining control
signal based data path identification, PCA based methods
and similarity scores [12]. Graph-based methods leverage
the idea that functional submodules will create structural
clusters within the netlist (i.e., form follows function). Several
approaches have been proposed: early methods use graph
clustering algorithms to identify possible submodules [13],
later circuit embeddings were used to generate hierarchical
clusters [14]. More recently, graph neural networks (GNNs)
have been used to partition the netlist [15].

However, none of these methods can partition the netlist
into perfect and functional submodules. Instead, in most cases
errors occur, i.e., logic gates are assigned to the wrong
submodule. Furthermore, each method has parameters, which
must be chosen correctly to achieve quality results. For data-
path based methods, such parameters are common word sizes,
or metrics to calculate similarity between gates. For graph-
based methods, parameters distinctive to the clustering method
are required, which will often control the number, size, and
density of the resulting clusters. For machine learning based
approaches, parameters are required for feature extraction, as
well as for the machine learning hyperparameters.

In an OSHW, the partitioning is at least partially known.
This provides feedback to tune the parameters and to verify
the resulting partitioning, increasing the quality of the results.
Even when only some components of the design are open
source, it becomes simple to separate this part from unknown
or proprietary components, greatly reducing the effort to
partition the rest of the design.

B. Identification of Functionality

The second step concerns the identification of the func-
tionality of the submodules. In general, this is done by
comparison to something known, called the golden model. The
golden model can be described, among other possibilities, as
a template based description or a boolean description of the
functionality, an Register Transfer Level (RTL) implementa-
tion or gate-level netlist, or as a structural interpretation.

To test whether a design matches a golden model within
a golden model library (i.e., a large set of known designs,
compiled of smaller and larger design building blocks), the
functionality can be identified using either formal methods
(more exact) [11], or fuzzy methods (less exact) [15], [16].
Fuzzy methods are used when the design contains errors,
either from physical reverse engineering, or due to partitioning,
as errors within the submodules mean that formal methods
can no longer be used [16]. However, a perfect partitioning
into submodules allows for the use of formal methods if the
submodules are not design-specific. A perfect partitioning thus
facilitates a more exact identification of the functionality.

When the design is unknown (closed source), submodules
will be matched against standard building blocks and known
commercial IP (e.g., arithmetic circuits, interfaces, etc). This
results in many smaller identified submodules and some
unidentified submodules, which must then be puzzled together
into a larger functional description of the design. However, if
the design is open source, it becomes trivial to add the entire
design as well as all submodules to the golden model library,
and thus a match is guaranteed. In the best case, partitioning of
the design is not needed, as the entire design can be matched.

If the design is customized, or if only part of the design
is open source, proprietary hardware and customisations can
be easily partitioned out (section III-A). The focus could then
lie on identifying the functionality of unknown, proprietary
hardware, because the additional OSHW can be identified
easily and efficiently. Proprietary hardware will be especially
valuable, because it is the most custom and specialized part
of the design, making it attractive for attacks, like IP theft.

C. FSM Identification

A common way to reconstruct an FSM is to first identify
which flip-flops contain state information [17]. This informa-
tion and the knowledge of the reset state are then used to
extract the FSM [10], [18]. The first step is the more difficult,
as state flip-flops must be identified out of all flip-flops in
the design or submodule, and no perfect method yet exists
[17], [19]. One approach is to identify state flip-flops as being
less similar in their fan-in behavior compared to other flip-
flops, but this comparison requires a number of parameters,
and results vary in quality [17], [19].

The reconstruction of an FSM can be significantly sim-
plified when using OSHW. If the correct number of state
flip-flops and their fan-in behavior are known, state flip-flop
identification methods based on [17] can perform considerably
better, because knowledge about the targeted state flip-flops



can support the parameter choice. Additionally, matching-
based attacks are usually not applicable for FSMs, because
of their high variability [18], [20]. However, if an open source
design and a perfect partition are used, the perfect matching
library could also allow the identification of the respective
FSMs.

IV. IMPACT ON COMMON REVERSE ENGINEERING
COUNTERMEASURES

RE countermeasures can be divided into three categories:
split-manufacturing, logic locking and IC camouflaging [21].
Both IC camouflaging and split-manufacturing are layout level
methods to thwart the extraction of the complete gate-level
netlist, in the first case by the end user, and in the second
case by the foundry. OSHW might have few or no impact
on these countermeasures, but might increase the weaknesses
and high associated costs which exist for many of the proposed
implementations [21], [22]. However, in the context of OSHW,
we focus on attacks that are based on functional instead of
physical RE, so we assume an available gate-level netlist, see
section III. Therefore, we discuss the third countermeasure,
logic locking, in more detail and show why this method is not
adequate to protect OSHW.

Logic locking targets the prevention of IP counterfeiting, IP
theft, and HT insertion during the manufacturing process in the
foundry [23], [24]. It obfuscates the design by corrupting the
output if a wrong secret locking key is applied [25], [26].

There exist several attack methods to overcome logic lock-
ing. In [21], attack methods are categorized into four groups:
oracle-less, oracle-guided, sequential oracle-guided, and t-
probed oracle. Usually, the extraction of the complete, correct
locking key is targeted, but there are application scenarios,
where an approximate locking key or no locking key is
sufficient. For a successful HT insertion, only the location of
some specific control wires might be necessary, independent
of the remaining, locked circuit [7], [21]. Consequently, the
general identification of estimated functionalities of circuit
parts might be sufficient.

In an OSHW scenario, all oracles-less threat models become
oracle-guided threat models, as the oracle is always provided
by the OSHW design. Then, one dominant requirement for
a successful attack is information about an unlocked version
of the obfuscated design, either in form of an oracle for a
SAT-based attack [27], [28] or in form of known and labeled
component library entries for a matching-based attack [16].
If logic locking is used to protect OSHW, one can conclude
that it has less effect than if it is used for commercial IP.
The open source IP serves as information about the unlocked
version for the obfuscated design. Consequently, SAT-based
attacks will be enabled for products that are not yet available
on the market, and matching-based attacks are significantly
improved due to a perfect unlocked library component. This
will be further explored in a case study in section V.

Table I: Design Metrics and Hierarchy.

Red Team Blue Team

#PIs #POs #Gates #PIs #POs #Gates

ex stage 586 744 46,656 1,042 939 36,663
– alu (590) 135 65 2,933 725 65 3,844
– branch unit 269 264 1,538 207 261 965
– lsu 385 463 16,987 442 1,118 19,705
– mult 142 69 24,297 144 69 12,424

– divider 138 69 3,839 143 69 2,600
– multplier 141 68 20,332 143 69 9,943

key expand 129 256 7,526 271 256 5,739
– rcon 1 16 81 2 16 70
– S-Box(×8) (141) 8 8 646 149 8 734

V. CASE STUDY

We use a red team vs blue team approach to illustrate the
effect of OSHW on the ability to reverse engineer a design.
The blue team seeks to securely fabricate an OSHW-based
design, by introducing logic locking into parts of the design.
The red team seeks to insert a HT in this design, by identifying
the correct functionality of the blue team implementation
and breaking the obfuscation. Extracting the correct key and
breaking the obfuscation is, as mentioned above, not explicitly
necessary for HT insertion, but does allow for easier insertion
of larger HTs.

To achieve this goal, the red team first investigates the open
source design to identify suitable parameter choices for RE,
and to eventually break the obfuscation of the design. Both
teams use the same RTL code, but synthesize the designs with
different synthesis options and tools, different cell libraries and
different optimizations, to create the netlist.

In the first experiment, we show that using the same base
design, synthesized using different synthesis tools and tech-
nologies, good choices for partitioning parameters correlate.
We also show that this is not the case for different designs.
We focus on graph-based clustering to partition the designs,
as these methods can achieve very good results, but are also
very dependent on good parameter choices [13]. The red team
then use this information to find an ideal parameter choice to
partition the blue team design.

In a second experiment, the red team identifies the function-
ality of each partition. Using the ideal partitioning from the
first experiment, the red team matches each partition of the
blue team design against a library of designs, including the
red team implementation of the design, to identify the most
closely matching module, as done in [16].

Both experiments are done for two scenarios. The first
scenario focuses on the functionality identification of part of
a RISC-V CVA6 (Ariane) Core [29]. Both teams synthesize
the execution stage (ex_stage) and the blue team locks
specific parts of the design using random logic locking [25].
The second scenario focuses on the key expand module
(key_expand) of an AES core. In this scenario, the goal
of the red team goes beyond functional identification. Exact
knowledge of the open source design is used to first partition
the design with 100% accuracy. The identification of the
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correct golden model of a locked S-Box reveals the original
functionality. In an additional experiment, the red team seeks
to break the logic locking key of the S-box. The perfect func-
tionality identification is a prerequisite to perform a successful
SAT-attack on the locked S-box to find the correct key.

Both the ex_stage and the key_expand include several
submodules. The module hierarchy and design metrics are
shown in Table I. It shows the number of primary inputs
(#PIs), the number of primary outputs (#POs) and the number
of logic gates (#Gates) for each implementation and module.
Submodules locked by the blue team are marked with a
padlock, the number of respective key input bits is given in
parentheses. Note that the number of gates differ between the
red and blue team implementations due to different synthesis
options, tools, cell libraries, and optimizations. Differences in
synthesis options can also result in merged or removed unused
inputs and outputs, which accounts for the different #PIs and
#POs. Furthermore, the #PIs vary greatly due to the addition
of the locking key.

A. Correlation of Method and Parameter Choices for Parti-
tioning

One of the main weaknesses of graph-based partitioning
methods is that there are a wide variety of methods and pa-
rameters to choose from. It is difficult to choose which method
to use, if no ground truth is available and no knowledge from
a similar design guides the choice of the clustering method
and its parameters. Without knowing the ground truth, each
method and parameter choice is as valid as every other. While
results are generally good, they are often not optimal. It may
be possible to combine the results of different methods, but
this will also not lead to an optimal method and parameter
choice.

However, we can show that for similar designs, the partition-
ing quality correlates for similar parameters. A good choice
of method and parameter can thus be used for similar designs,
but does not necessarily translate across designs. We use a

set of clustering methods to partition the designs, and assess
quality with respect to the ground truth.

To measure the quality of a partitioning, we use the normal-
ized mutual information score (NMI). This is calculated using
the estimated entropy of the ground truth of the partitions
H(T ), the estimated entropy of the cluster-based partitions
H(C), and the mutual information between both I(T ;C) such
that

NMI(T,C) =
2× I(T ;C)

[H(T ) +H(C)]

A NMI of 0 corresponds to no match between the partitions,
and a NMI of 1 corresponds to a perfect match. To measure the
quality of a single partition, we use the f1 score, as the NMI
is not well-defined for single partitions. It takes into account
the number of true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN), and is calculated as
the harmonic mean of precision (P) and recall (R),

P =
TP

TP + FP
, R =

TP

TP + FN
,

such that

f1 =
2(P ×R)

P +R
.

Figure 2 shows the partition quality results for both designs
and both the blue and red team implementations. We evaluate
four clustering methods (α, β, γ, δ), of which two require
parameters (γ, δ). The parameters choices are not linear, but
are ordered. For the key_expand module, several methods
result in partitions with a NMI of 0. Most commonly this is
caused when the clustering method returns only one partition
that contains every gate, while the ground truth consists of
several partitions.

In a real-world scenario, an attacker can never calculate
the NMI score for the blue team design, as the attacker
does not know the ground truth of the partitions of the blue
team implementation. During the attack, the red team only
knows the parameters for their implementation, and from these



Table II: Partitioning and Functional Identification Results

Metric Red Team Blue Team Matching Rank

ex stage (δ3) NMI 0.86 0.88 2
– alu f1 0.78 1.0 2
– branch unit f1 0.36 0.38 3
– lsu f1 0.98 0.98 1
– mult

– divider f1 0.96 0.83 13
– multiplier f1 1.0 0.97 14

key expand (β) NMI 0.90 0.88 1
– rcon f1 0.52 0.96 90
– S-Box (x8) f1 0.96 0.95 1

parameters estimates the best parameters for the blue team
implementation. For this purpose, the best NMI scores for
both red team implementations are highlighted in bold. The
red team chooses the corresponding method to attack the blue
team implementation.

We can gain two main insights. First, when focusing on
the ex_stage design, the partition quality correlates for
the red and blue team implementations. A good red team
result generally would result in a good result for the blue
team implementation. The same applies to the key_expand,
although for method δ, the results of the blue team implemen-
tation lag behind the results of the red team implementation.
Furthermore, choosing the highlighted best method for the
red team implementations for both designs results in a good
result when attacking the blue team implementation. Thus,
we can use knowledge of the OSHW implementation to
choose a suitable clustering-based partitioning method and the
corresponding parameters. It is not always possible to find the
best method, however the results are good enough that the next
step can be performed.

The second main insight is that there is no global best
method; the results differ for the two different designs. The
best choice in method and parameter set for the key_expand
is different from the choice for ex_stage and vice versa.
Thus, the red team chose method β for the key_expand
and method δ3 for the ex_stage.

The results when choosing these methods for both imple-
mentations and their submodule are summarized in Table II.
The result for the entire design is calculated using the NMI,
while each single submodule is compared using the f1 score
against the ground truth. Figure 3 and Figure 4 provide a visual
representation of the partitioning of both the red and blue team
implementations. Each node corresponds to a netlist standard
cell.

For the key_expand (Figure 3), the eight tightly clustered
partitions on the outside represent the S-Boxes, while the
logic locking key inputs are highlighted in red near the center
of Figure 3b. The remaining gates in the center are the rcon
module and glue logic. As can be seen in Table II, the
rcon was not well identified in the red team implementation,
however, in the blue team implementation it could be iden-
tified. This can be visually verified as well, in the red team
implementation, all gates at the center are badly partitioned,
while for the blue team implementation, the rcon consists

(a) Red Team netlist graph for key_expand

(b) Blue Team netlist graph for key_expand

Figure 3: Comparison of red team and blue team netlists of
the key_expand design. Nodes and edges represent cells and
wires. Eight clusters on the outside each represent a S-Box.
Glue logic and the rcon module are connected to each S-Box
and are clustered near the center of each graph. In (b), the logic
locking key inputs are shown in red in the center.

of the brown cells between two S-boxes near the bottom
left. For both implementations, the S-Boxes are clearly
partitioned.

Figure 4 shows the visualization of the ex_stage. The
multiplier is on the left side in blue, the lsu is on
the right in brown, purple represents the divider and
incorporated adder logic and finally the alu is located in



the top left side in light green. In the blue team imple-
mentation, Figure 4b, the logic locking key gates are also
highlighted in red in the alu. Table II shows that, for the
ex_stage, the partitioning results were good for the red team
implementation, however, the alu and branch_unit were
partitioned together, resulting in less than ideal f1 scores. For
the blue team implementation, the alu could be partitioned
perfectly, this is most likely due to the larger number of gates,
due to the added locking mechanism. The good partitioning
of the divider did not fully transfer to the blue team
implementation, since the branch_unit was now included
in this partition. However, even here, all results are sufficient
for functional identification of the modules.

For both designs, the results for the blue team implementa-
tion are at least as good, if not better, than the results of the red
team implementation. Without previous knowledge regarding
parameter and method choice, gained from analyzing the
OSHW design, the effort to correctly partition the blue team
implementation by the red team would have been significantly
higher, as every method is equally viable, but many produce
significantly worse results.

B. Functionality Identification

In the second step, the red team seeks to verify whether they
can identify the correct golden model for a locked design, to
identify to correct functionality. A similar method to [16] was
used, where the partitioned (and, if applicable, locked) blue
team implementation is the unknown design, and the golden
model library consists of approx. 620 other modules of similar
sizes. Matching is done based on structural features of the
modules. To conform to the open source scenario, the red
team implementation was included in the golden model library.
The machine learning method outputs a list of decreasingly
matching library modules for each partitioned module. Table
II shows the rank of the correct module among the list. A
rank of 1 is the optimum result, as the closest match is
the correct match. A matching rank of 15 implies that 15
other designs were considered a closer match. Even though
different synthesis tools, cell libraries and optimizations were
used, and the imperfect partitioned modules were used, the
golden model could always be identified within the top 15
matches, except for the rcon submodule. However, this
module contains very few gates, so that the structural features
used to describe the module were too few to characterize
and match it. Furthermore, the matching ranks of both the
divider and the multiplier were imperfect. However,
the highly ranked matches were other multipliers and dividers
of different sizes. This occurs because multipliers and dividers
are both structurally very similar, changes in size commonly
only occur due to different input sizes. It is trivial to manually
check which multiplier and divider is the correct one according
to the input number and size.

As discussed in section III-B, the best case scenario occurs
when the entire design can be matched, as this means that
partitioning is not required to completely identify the function-
ality of the design. This was possible for both the ex_stage

(a) Red Team netlist graph for ex_stage

(b) Blue Team netlist graph for ex_stage

Figure 4: Comparison of red team and blue team implemen-
tation of the ex_stage design. The multiplier is on the
left side in blue, the lsu is on the right in brown, purple
represents the divider and incorporated adder logic, and
the alu is located in the top left side in light green. In (b)
the logic locking key gates are highlighted in red in the alu.

and key_expand. For the attack scenario of HT insertion,
both designs are considered broken after this step, as the
functionality of each module and submodule is identified. As
discussed in section IV, even without recovering the locking
key, insertion points for HTs can be found. However, as
mentioned, for the insertion of larger and more complex HTs,
breaking the locking key can be beneficial.

In a closed source attack scenario, in the best case, no
similar design is available for matching in the golden model
library, and so this step only identifies similar, but not identical
functionality. This greatly increases the security of the design,
as the IP is not completely identified, and thus the insertion
of HTs becomes significantly more difficult.



C. Breaking the obfuscated key_expand

In this final experiment, the red team recovers the logic
locking key of one of the designs. First, the partitioning of
the blue team implementation of the S-box was manually
verified, using information from the red team implementation.
In particular the locking key inputs were not partitioned to be
part of the extracted S-box, so these, and the path between
the S-Box and the inputs were added. Then, the red team
implementation, identified to be a matching golden model
during the previous experiment, was used as an oracle for
a SAT-Attack. It was possible to successfully recover all 141
locking keys of the extracted S-box using the original SAT-
based attack [27] on the key_expand.

VI. COUNTERMEASURES AGAINST NETLIST
ABSTRACTION WITH OPEN SOURCE HARDWARE

A. Logic Locking

As discussed in section IV, logic locking based methods
which are only secure in an oracles-less threat model are
broken in an OSHW scenario and oracle-based attacks are
easy to carry out. However, the success of the attack in the
above described case study highly depends on practical, real-
life considerations. For example, the attack in its current im-
plementation requires the correct mapping of PIs/POs between
the original and the locked netlist. Additional constraints on
the naming of the signals and the format of the netlist (i.e.,
simplified Bench format) involve manual efforts, which might
be impractical for large circuits. Similarly, we also evaluated
RANE [30], an open source CAD-based tool, which performs
both oracle-guided and oracle-less attacks on combinational
and sequential logic locking. Even though it is a promising
tool, with fewer limitations on the format of the circuits and
the technology library, RANE still did not always manage
to unlock our designs successfully. However, these practical
difficulties do not rehabilitate the security of logic locking, as
they can be overcome with ease.

Furthermore, SAT-based attacks might become computa-
tionally infeasible when unlocking large designs (e.g., full
cores) with big key input sizes. In those scenarios, the assump-
tion of a powerful oracle is often deemed to be unrealistic.
However, in the context of OSHW, the availability of the
golden model (i.e., the powerful oracle), and the ability to
partition the design into smaller submodules, makes RE much
easier. When done on partitioned and correctly identified
modules, the unlocking becomes feasible again. As such, logic
locking based countermeasures alone do not provide a realistic
method to secure designs against RE and subsequent HT
insertion in an OSHW use case.

B. Customization

As previously discussed, customized components and ad-
ditional proprietary hardware will be more easily identifiable
when used with OSHW. However, if the open source design is
strongly customized, it may protect against simplified RE. In
particular when data word sizes, number and functionality of
the submodules and the FSMs are changed, the simplified RE

process may be hindered. The necessary amount and best type
of customization is a subject for future work. Furthermore, this
also influences the success of logic locking. If, for example,
modified OSHW is used, it might not be applicable as oracle
for SAT-based or SAT-related attacks.

C. Insertion of Dummy Wires

Correct partitioning is important for the identification of
the functionality of the netlist, and thus required to carry out
attacks on the design. Hence, methods that increase the errors
created during partitioning will also create a more secure de-
sign. In the area of IC camouflaging, the idea of using dummy
wires and cells has been proposed to make the extraction
of the correct netlist more difficult [21]. A similar proposal,
where additional wires are added between submodules, which
are functionally never reached, may encumber graph-based
partitioning methods [31]. The structure and connectivity of
the gates will no longer reflect on the functional affiliation
of the gates, while the correct functionality is maintained.
This obfuscation may be broken by logic optimization, more
research into such a method against netlist partitioning is
required.

D. Post-Silicon Testing and Hardware Trojan Detection

While the pre-silicon verification of IP becomes signif-
icantly easier with the use of OSHW, the prevention of
HT insertion during fabrication is made more difficult. To
counteract this trade-off, more importance could be placed on
post-silicon HT detection. Detection methods can be classified
into destructive and non-destructive methods [32]. However,
methods which require additions or modifications to the de-
sign, for example for fingerprinting or Design for Test (DfT)
methods, may be circumvented by the foundry more easily in
an OSHW scenario.

Test-based approaches generally attempt to verify correct
functionality of the chip post fabrication by, if applicable,
attempting to activate the HT trigger, and monitoring any
abnormal activity [32]. Using OSHW may support this effort,
as the required test vectors can be created, verified, and
used by the entire community. However, the test vectors are
then also known to an attacker. Furthermore, while test-based
methods show high potential in identifying many HT, they are
not able to identify all types of HT [33].

Side-channel based techniques seek to verify the function-
ality of the chip compared to a golden circuit by comparing
side-channel based characteristics [32]. However, since true
golden circuits are not usually available, simulated traces are
often used. These have not been shown to successfully identify
HT in real-life scenarios. Furthermore, even when a golden
chip is available, side-channel abnormalities can also occur
due to other factors, and can be difficult to measure precisely
enough to successfully identify a HT [32]. Thus, depending
on the size, location, complexity and functionality of the HT,
non-destructive methods cannot be guaranteed to identify HT.

Invasive methods are significantly more costly, but also
significantly more accurate and successful, allowing for a



complete verification of the chip. Larger and more complex
HT may be identified through optical analysis of the top
few metal layers of the IC [32], however, for a complete
verification of the design, a full optical reverse engineering
of the design is necessary [34].

In general, the specific attack scenario and cost-benefit
trade-off should always be considered before choosing the
appropriate countermeasures [6]. We believe that a combina-
tion of the above discussed countermeasures can be used to
successfully ensure and verify that a OSHW-based design is
unmodified during fabrication.

VII. CONCLUSION

While OSHW is low cost, verifiable and customizable, it
does allow for easier reverse engineering of the functionality
of the design. This allows for easier attacks against the security
of the IC. The strength of this effect depends on the attack
scenario, as well as on how much of the design is open source.
However, mixing open source and proprietary hardware is also
not the solution, as OSHW greatly simplifies the functional RE
of the proprietary hardware.

We show that logic locking is insufficient for the OSHW
scenario. In particular, RE countermeasures that are only
deemed secure without an oracle can be easily broken in
the OSHW scenario. To protect a device with OSHW against
RE-based attacks, novel logic locking solutions need to be
developed that strive to make the circuit indistinguishable in
its form and function from a random boolean function [35].

However, OSHW also improves security by simplifying RE
for beneficial use cases. Simplified RE allows one to find HTs
using manual inspection or using a RE-based HT-detection
methods with better accuracy. Although we show that OSHW
is facing new security challenges, we strongly believe that it
is the correct way towards achieving provable security against
HT insertion and other hardware attacks.
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