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Abstract—In this article, we propose new methods to compute multiple roots of polynomials in floating-point arithmetic. We rely on
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1 Introduction

Polynomials appear in almost all areas of scientific computing.
Generally the problem involved is to find roots of univariate
polynomials. The wide range of use of polynomials needs
to have fast and reliable methods to solve them. Roughly
speaking, there are two general approaches: symbolic and
numeric. The symbolic approach is based either on the theory
of Gröbner basis or on the theory of resultants. For the
numeric approach, we use iterative methods like Newton
method or homotopy continuation methods. The symbolic
algorithms give an exact representation of the result but can
sometimes be slow. The numerical algorithms (performed in
finite precision) are in general faster but give an approximate
result. Our aim is to use numerical methods to get fast results
without sacrificing accuracy.

If formulas are well-known for polynomials of degree less
than 5, iterative methods are needed for greater degrees. In
particular, Newton method is very used for its quadratic con-
vergence. Other methods exist like Ehrlich-Aberth method,
Durand-Kerner method or Laguerre method [1], [2]. In this
article, we will only focus on Newton method.

When working with floating-point arithmetic, one ma-
jor problem is to deal with ill-posed problems. Computing
roots with multiplicities is an example of such a problem.
Indeed, a small perturbation in the coefficients of a polyno-
mial can change a double root into two single roots like for
Pε(x) = (x − 1)2 − ε. If ε = 0 then Pε has 1 as a double root
whereas for ε > 0, Pε has two single roots 1 ±

√
ε. A similar

phenomenon appears in the computation of the GCD of two
polynomials. If Pε(x) = (x− 1)2− ε and Q(x) = (x− 1), then
gcd(Pε(x), Q(x)) = x − 1 for ε = 0 but gcd(Pε(x), Q(x)) = 1
for ε 6= 0. This has led to the development of different notions
of approximate GCD or quasi-GCD [3]–[14]. There are various
definitions for approximate GCD but they closely follow the
same concept. Given two polynomials P (x) and Q(x) the
approximate GCD is somehow related to the computation of

the exact GCD of polynomials P̃ (x) and Q̃(x) close to P (x)
and Q(x) with the objective that this GCD has the greatest
possible degree.

Computing such approximate GCD is generally expensive
in terms of execution time. In order to avoid this, we propose
in this article to compute a stochastic GCD (denoted as st-
gcd) that makes it possible to smooth the computation of an
approximate GCD using the classic Euclidean algorithm. It
can be viewed as a kind of regularization technique that re-
places floating-point arithmetic by stochastic arithmetic [15].

This stochastic GCD will be used for deflation in Newton
method. Given a polynomial P (x) with possible multiple
roots, we will compute G(x) = st-gcd(P (x), P ′(x)). We will
then use G(x) to compute the roots of P (x)/G(x) which
normally has only single roots.

The contributions of the paper can be sum up as follows.
• We use stochastic arithmetic to define a stochastic

GCD that takes into account rounding errors when
computations are performed in finite precision.

• We use the new GCD to deflate polynomials in order
to obtain polynomials with single roots.

• We apply this to Newton’s iterations and we show that
we are able to accurately compute multiple roots of
polynomials in finite precision.

The rest of the paper is organized as follows. In Section 2,
we present how Discrete Stochastic Arithmetic (DSA) can be
used to estimate rounding errors. Section 3 is devoted to the
computation of multiple roots with DSA and the stochastic
GCD. Numerical experiments are described in Section 4.
Finally, concluding remarks are given in Section 5.

2 Estimation of rounding errors using Discrete
Stochastic Arithmetic
This section presents the CESTAC method and Discrete
Stochastic Arithmetic (DSA) as well as their implementa-
tions: CADNA and SAM. Those are well-known concepts and
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we heavily rely on [16]. Further information can be found
in [15] and [17].

2.1 Principles and validity of the CESTAC method
The CESTAC method [15] enables one to estimate the round-
ing error propagation which occurs with floating-point arith-
metic. This probabilistic method uses a random rounding
mode: at each elementary operation, the result is rounded
up (towards +∞) or down (towards −∞) with the proba-
bility of 50%. Hence, with this random rounding mode, the
same program run several times provides different results.
Therefore, the computer’s deterministic arithmetic is replaced
by a stochastic arithmetic, where each arithmetic operation
is performed N times before the next one is executed. The
CESTAC method supplies us with N samples R1, . . . , RN of
the computed result R. The value of the computed result R
is then chosen as the mean value of {Ri} and, if no overflow
occurs, its number of correct digits (i.e. its number of digits
not affected by rounding errors) can be estimated as

CR = log10

(√
N
∣∣R∣∣

στβ

)
(1)

where R = 1
N

N∑
i=1

Ri and σ2 = 1
N − 1

N∑
i=1

(
Ri −R

)2
.

τβ is the value of Student’s distribution for N − 1 degrees of
freedom and a confidence level 1− β. In practice, β = 5% and
N = 3. Therefore the number of correct digits is estimated
within a 1 − β = 95% confidence interval. It has been
shown [15] that N = 3 is in some reasonable sense the optimal
sample size. The estimation with N = 3 is more reliable than
with N = 2 and increasing N does not significantly improve
the quality of the estimation.

If both operands in a multiplication or the divisor in a
division have no correct digits, the validity of CR is compro-
mised [15]. Therefore, the CESTAC method requires, during
the execution of the user code, a dynamical control of multi-
plications and divisions, which is a so-called self-validation of
the method.

2.2 Principles of DSA
The self-validation of the CESTAC method requires its syn-
chronous implementation. Indeed, to enable the estimation
of the accuracy, the samples which represent a result must
be computed simultaneously. Discrete Stochastic Arithmetic
(DSA) [17] has been defined from the synchronous implemen-
tation of the CESTAC method. With DSA, a real number
becomes an N -dimensional set and any operation on these
N -dimensional sets is performed element per element using
the random rounding mode. The number of exact significant
digits of such an N -dimensional set can be estimated from
Eq. 1. The self-validation of the CESTAC method also leads
to the concept of computational zero [18] defined below.
Definition 2.1. During the run of a code using the CESTAC

method, a result R is a computational zero, denoted
by @.0, if ∀i, Ri = 0 or CR ≤ 0.
Any computed result R is a computational zero if either

R = 0, R being significant, or R is insignificant. A computa-
tional zero is a value that cannot be differentiated from the

mathematical zero because of its rounding error. From the
concept of computational zero, an equality concept and order
relations have been defined for DSA.

Definition 2.2. Let X and Y be N -samples provided by the
CESTAC method.

• Discrete stochastic equality denoted by ds= is defined
as Xds= Y if and only if X − Y = @.0.

• Discrete stochastic inequalities denoted by ds> and
ds≥ are defined as:
Xds> Y if and only if X > Y and Xds6= Y ,
Xds≥ Y if and only if X ≥ Y or Xds= Y .

Stochastic relational operators ensure that in a branching
statement the same sequence of instructions is performed for
all the samples which represent a variable. DSA enables to
estimate the impact of rounding errors on any result of a
scientific code and also to check that no anomaly occurred
during the run, especially in branching statements.

2.3 Accuracy estimation by CADNA and SAM

The CADNA1 software [19], [20] is a library which implements
DSA in any code written in C, C++ or Fortran and allows
one to use new numerical types: the stochastic types. In
essence, classical floating-point variables are replaced by the
corresponding stochastic variables, which are composed of
three perturbed floating-point values. The library contains
the definition of all arithmetic operations and order rela-
tions for the stochastic types. The control of the accuracy
is performed only on variables of stochastic type. When a
stochastic variable is printed, only its exact significant digits
appear. For a computational zero, the string “@.0” is printed.
In contrast to interval arithmetic, that computes guaranteed
results, the CADNA software provides, with the probability
95% the number of exact significant digits of any computed
result.

The SAM library2 [21] implements in arbitrary precision
the features of DSA: the stochastic types, the concept of
computational zero and the stochastic operators. The SAM
library is written in C++ and is based on MPFR [22]. The
particularity of SAM (compared to CADNA) is the arbitrary
precision of stochastic variables. The SAM library with 24-bit
(resp. 53-bit) mantissa length is similar to CADNA in single
(resp. double) precision, except the range of the exponent is
only limited by the machine memory. In SAM, the number of
exact significant digits of any stochastic variable is estimated
with the probability 95%, whatever its precision. Like in
CADNA, the arithmetic and relational operators in SAM take
into account rounding error propagation.

In CADNA and SAM all operators are overloaded, there-
fore their use in a program requires only a few modifications:
essentially changes in the declarations of variables and in
input/output statements. CADNA and SAM can detect nu-
merical instabilities which occur during the execution of the
code. Such instabilities are usually generated by numerical
noise, i.e. a result having no correct digits.

1. http://cadna.lip6.fr
2. http://www-pequan.lip6.fr/~jezequel/SAM

http://cadna.lip6.fr
http://www-pequan.lip6.fr/~jezequel/SAM
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3 Computation of multiple roots of polynomials
using DSA
3.1 Newton method in stochastic arithmetic
In section 3.2, an algorithm to compute multiple roots of
polynomials in stochastic arithmetic will be described. This
algorithm uses Newton method whose behaviour in stochastic
arithmetic has been studied in [16]. We recall here properties
of Newton method in stochastic arithmetic.

To compute the root α of a polynomial P , Newton method
consists, from an initial approximation x0, in computing the
following sequence for n ≥ 0:

xn+1 = xn −
P (xn)
P ′(xn) . (2)

In classical floating-point arithmetic, Newton’s iterations
are stopped thanks to a criterion such as |xn+1−xn| ≤ ε, but it
may be difficult to choose a suitable value for the parameter ε
taking into account rounding errors. In stochastic arithmetic,
the stopping criterion becomes xn+1 ds= xn in accordance
with Definition 2.2. It means iterations are stopped when the
difference between two successive iterates is a computational
zero. Thus useless iterations that would bring numerical noise
to the solution are avoided. Algorithm 1 presents a stochastic
version of Newton method that relies on this optimal stopping
criterion.

Algorithm 1: stochastic Newton method:
st-Newton

Data: a polynomial P and an initial approximation
x0 of one of its roots

Result: an approximation x of a root of P
1 x = x0;
2 do
3 y = x;
4 x = y − P (y)/P ′(y);
5 while x ds6= y;

The link between the exact root of a polynomial and the
approximation provided by Algorithm 1 is discussed below.
First, we need to make clear the notion of decimal significant
digits in common between two numbers.
Definition 3.1. The number of decimal significant digits in

common between two real numbers a and b is defined in R
by

• for a 6= b, Ca,b = log10

∣∣∣∣ a+ b

2(a− b)

∣∣∣∣;
• for all a ∈ R, Ca,a = +∞.

Then |a− b| =
∣∣a+b

2

∣∣ 10−Ca,b . For instance, if Ca,b = 3,
the relative difference between a and b is of the order of 10−3,
which means that a and b have three significant decimal digits
in common.

The following theorem, introduced in [16], gives a relation
between the common significant digits of two successive ap-
proximations of the root computed using Newton method and
the common significant digits of an approximation and the
root itself, when the root is single.
Theorem 3.1. Let xn and xn+1 be two successive approxi-

mations computed using Newton method of a polynomial
root α of multiplicity m = 1 (single root).

Then
Cxn,xn+1 ∼∞ Cxn,α.

According to Theorem 3.1, in the convergence zone, the
digits that are common to two successive approximations are
also in common with the exact root. In stochastic arithmetic,
Newton’s iterations are stopped when xn+1 ds= xn, i.e. when
xn+1 − xn is a computational zero (either numerical noise or
the mathematical zero). In that case, the digits in xn+1 and
xn that are not affected by rounding errors are the same and
these digits are in common with the exact root. Therefore,
according to Theorem 3.1, in the approximation provided by
Algorithm 1, the digits not affected by rounding errors that
are estimated thanks to DSA are those of the exact root.

3.2 Algorithm based on GCD and Newton method
When used for the computation of a single root of a poly-
nomial, the convergence of Newton method is quadratic. But
it becomes linear for the computation of a multiple root. In
that case, the convergence speed of modified Newton method
is satisfactory, but it requires the root multiplicity.

We propose Algorithm 2 that takes benefit of both the
convergence speed of Newton method and stochastic arith-
metic to control rounding errors. To compute the (possibly
multiple) roots of a polynomial P , first we compute G, the
stochastic GCD of the polynomial P and its derivative P ′:
G = st-gcd(P, P ′) using Algorithm 4. Then we compute
the polynomial Q = P/G using a stochastic version of the
Euclidean division (Algorithm 3). Algorithms 3 and 4 are
stochastic versions of respectively the polynomial GCD and
the polynomial Euclidean division. They use classic algo-
rithms combined with the features of DSA, in particular the
discrete stochastic relations recalled in Definition 2.2. The
impact of DSA on these algorithms is described in Section 3.3.

The polynomial Q has normally only single roots and its
degree d is its number of roots. Until a degree 4, its roots can
be computed using adequate formulas, based on simple and
well known expressions if d is 1 or 2, on Cardan’s method if
d is 3, and on Ferrari’s method if d is 4 [23]. So, if d ≤ 4,
initial approximations of the roots are actually not required.
From a degree 5, the stochastic version of Newton method
(Algorithm 1) is used. The polynomial Q having single roots,
Newton method exhibits a quadratic convergence.

An advantage of Algorithm 2 is the fact that the poly-
nomial Q is computed once whatever the number of roots.
Then all the roots are computed, either thanks to adequate
formulas, or using Newton method applied for each root to
the same low-degree polynomial.

3.3 Benefits of the DSA implementation
We exemplify the benefits of DSA with the computation of the
root of a low-degree polynomial: P (x) = (3x − 1)5. The first
step in Algorithm 2 is the computation of G = st-gcd(P, P ′)
using Algorithm 4. The polynomial R2 in Algorithm 4 should
be null, and the returned result should be R1 = P ′. Then, the
polynomials G and Q in Algorithm 2 should be respectively of
degree 4 and 1.

We compare two kinds of executions:

• with Algorithms 2, 3 and 4 using DSA and in particular
stochastic relations recalled in Definition 2.2;
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Algorithm 2: Computation of polynomial roots
based on st-gcd and st-Newton

Data: a polynomial P and an array X0 of initial
approximations of its roots

Result: an array X of approximations of the roots
1 G = st-gcd(P, P ′);
2 Q = quotient(st-Euclidean-div(P , G));
3 if degree(Q) ≤ 4 then
4 computation of X using adequate formulas;
5 end
6 else
7 for i=1 to degree(Q) do
8 X[i]=st-Newton(Q, X0[i]);
9 end

10 end

Algorithm 3: Stochastic polynomial Euclidean di-
vision: st-Euclidean-div

Data: polynomial A of degree n, polynomial B of
degree m, with 0 ≤ m ≤ n

Result: polynomials Q and R s.t. A = B ∗Q+R
1 R = A;
2 for i = n−m to 0 do
3 if lc(R) ds6= 0 then

// tests if degree(R) = m+ i

// lc(R): leading coefficient of R

4 qi = lc(R)/lc(B);
5 R = R− qixiB;
6 end
7 else
8 qi = 0;
9 end

10 end
11 return Q =

∑n−m
i=0 qix

i and R

Algorithm 4: stochastic polynomial GCD: st-gcd
Data: polynomials A and B
Result: stochastic GCD of A and B

1 R0 = A;
2 R1 = B;
3 i = 1;
4 while Ri ds6= 0 do
5 Ri+1 =remainder (st-Euclidean-div(Ri−1, Ri));

// Ri+1 = Ri−1 Mod Ri

6 i = i+ 1;
7 end
8 return Ri−1;

• with the same algorithms implemented using classic
floating-point arithmetic. Because we focus on partial
results obtained at the first steps of the computation,
naive comparisons to zero are performed in Algo-
rithms 3 and 4.

Table 1 presents results computed with/without DSA using
a working precision of 35, 36 or 37 bits. We report the
coefficients of the polynomial R2(x) =

∑3
i=0 R

i
2x
i, the degree

of the polynomials G and Q, and the computed root.
Without DSA, the computation is carried out using

MPFR. Because we are particularly interested in the first
iteration in Algorithm 4, the condition in line 4 is a naive
comparison to zero. With 35 or 37 bits, all the coefficients of
R2 are zeroes, therefore the degrees of polynomials G and Q
are correct. An approximation of the root is computed, but
we have no information on its numerical quality. With 36 bits,
three coefficients in R2 are non-zeroes because of rounding
errors. Undesirable iterations are performed in Algorithm 4
and consequently polynomials G and Q have incorrect de-
grees. It may be difficult to find a suitable stopping criterion
in GCD computation that discards coefficients affected by
rounding errors, but not small coefficients correctly computed.
Furthermore the coefficients in Ri may be numerical noise
with different orders of magnitude. For instance if the root of
(3x−1)10 is computed using Algorithm 2 with 36 bits, because
of rounding errors, R2 has non-zero coefficients with orders of
magnitude that vary from 10−6 to 10−10.

With the DSA implementation based on the SAM library,
the condition in Algorithm 4 (on line 4) is satisfied if all
the coefficients of the polynomial Ri are different from a
computational zero in accordance with Definitions 2.1 and 2.2.
This stopping criterion does not require any ε parameter and
enables one to discard numerical noise whatever the working
precision. Furthermore DSA estimates which digits in the
results are not affected by rounding errors and displays only
these correct digits. One can observe in Table 1 that the
coefficients of the polynomial R2 are identified as numerical
noise, the degrees of G and Q are correctly computed, and the
root is provided with 9 digits estimated as correct by DSA.

Algorithms 1 to 4 benefit from various features of DSA.

• In Algorithm 1, line 5, as already mentioned in Sec-
tion 3.1, the criterion enables one to stop when the
difference between two successive iterates is a compu-
tational zero, and consequently useless iterations are
avoided.

• In Algorithm 2, if the degree d of the polynomial
Q satisfies d ≤ 4, its roots are directly computed
using arithmetic expressions and the rounding errors
affecting them are estimated by DSA. If d > 5, because
Q has single roots, as already mentioned in Section 3.1,
in each computed root, the digits estimated by DSA as
not affected by rounding errors are those of the exact
root.

• In Algorithm 3, line 3, the test is achieved by checking
whether the leading coefficient of R is a computational
zero.

• In Algorithm 4, line 4, polynomial coefficients that are
computational zeroes are discarded.
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exact without DSA with DSA
results 35 bits 36 bits 37 bits 35-37 bits

R3
2 0 0 -1.86264514923e-9 0 @.0

R2
2 0 0 9.31322574615e-10 0 @.0

R1
2 0 0 -2.32830643654e-10 0 @.0

R0
2 0 0 0 0 @.0

degree(G) 4 4 0 4 4
degree(Q) 1 1 5 1 1

root 1/3 3.33333333328e-1 Fail 3.333333333321e-1 0.333333333
TABLE 1

Computation of the root of (3x− 1)5 using Algorithm 2 with/without DSA

4 Numerical experiments
Numerical experiments have been carried to cover two as-
pects: the accuracy of the computed results and the perfor-
mance. The platform for performance measurements is an
Intel Core i7-8650U processor clocked at 1.9 GHz with 8 MB
cache. The codes are compiled with gcc version 8.4.0 and opti-
mized with the -O3 flag. The instability detection level chosen
in the SAM library is the self-validation, already introduced
in 2.1: all multiplications and divisions are controlled during
the execution.

The roots of various polynomials have been computed
using Algorithm 2 with the SAM library. The results have
been compared with those also computed with SAM, but
using an algorithm described in [16] and summarized below.
In [16] a root of a polynomial P with multiplicity m > 1
is evaluated using modified Newton method that consists,
from an initial approximation x0, in computing the following
sequence for n ≥ 0:

xn+1 = xn −m
P (xn)
P ′(xn) . (3)

For multiple polynomial roots, modified Newton method ex-
hibits a better convergence than Newton method. However
it requires the evaluation of the multiplicity m. In [16] the
multiplicity is determined thanks to three successive iterations
of Newton method as proposed in [24]. Then the root is
approximated using modified Newton method.

In Algorithm 2 the working precision depends on the
requested accuracy and a rate both chosen by the user:

Precision = Requested_accuracy∗RatewithRate > 1. (4)

Indeed because of rounding errors, the working precision has
to be greater than the requested accuracy. In [16] the initial
precision is set according to Eq. 4. Then the working preci-
sion is doubled between successive calls to modified Newton
method applied iteratively.

Numerical experiments have been carried out with two
types of polynomials.

• Pn = (19x+ 5)n1(19x+ 21)n2(19x+ 46)n3(19x+ 67)n4

The roots of Pn are denoted as α1 = −5/19, α2 =
−21/19, α3 = −46/19, and α4 = −67/19.
The degrees of polynomials Pn have been chosen as
follows.
n =

∑4
i=1 ni = 54 with n1 = 7, n2 = 9, n3 = 13,

n4 = 25
n =

∑4
i=1 ni = 104 with n1 = 10, n2 = 18, n3 = 26,

n4 = 50.

• Qn = (3x−2)n1(7x−3)n2(13x−4)n3(19x−2)n4(23x−
1)n5

The roots of Qn are denoted as β1 = 2/3, β2 = 3/7,
β3 = 4/13, β4 = 2/19, and β5 = 1/23.
The degrees of polynomials Qn have been chosen as
follows.
n =

∑5
i=1 ni = 55 with n1 = 13, n2 = 12, n3 = 11,

n4 = 10, n5 = 9
n =

∑4
i=1 ni = 105 with n1 = 18, n2 = 19, n3 = 21,

n4 = 22, n5 = 25
n =

∑4
i=1 ni = 5000 with ni = 1000 (i = 1, · · · , 5).

Table 2 presents results obtained using Algorithm 2, Ta-
bles 3 and 4 results computed using modified Newton method.
As a recall, Algorithm 2 computes all the roots of a pol-
ynomial, whereas the algorithm based on modified Newton
method requires an execution per root. Table 2 presents for
polynomials P54, P104, Q55, Q105, and Q5000:

• the requested number of decimal digits in all the roots,
• the number of digits in common with the exact roots;

this number depending on the root, the minimum and
the maximum number of digits are mentioned,

• the minimum rate that enables the accuracy require-
ment to be fulfilled for all the roots; this rate is
determined starting from 1.1 and increasing by steps
of 0.1,

• the execution time in seconds,
• the performance ratio w.r.t. the algorithm from [16]

based on modified Newton method.

Poly. #Digits Rate Performance
requested exact Time (s) Ratio

P54

100 103-104 1.2 2.54e-03 7.9e+01
500 533-534 1.1 4.54e-03 3.6e+03
1000 1083-1084 1.1 9.88e-03 1.1e+04

P104

100 109-110 1.3 3.78e-03 2.9e+02
500 529-530 1.1 7.15e-03 1.7e+04
1000 1079-1080 1.1 1.56e-02 N.A.

Q55

100 109-111 1.3 3.63E-3 5.8e+01
500 530-532 1.1 8.51E-3 1.1e+03
1000 1079-1081 1.1 1.60E-2 3.5e+03

Q105

100 107-109 1.3 5.04e-03 1.8e+02
500 577-579 1.2 1.36e-02 5.6e+03
1000 1276-1278 1.3 2.26e-02 2.3e+04

Q5000

100 104-106 1.5 1.77e-01 N.A.
500 503-506 1.1 3.35e-01 N.A.
1000 1054-1056 1.1 6.40e-01 N.A.
5000 5454-5456 1.1 5.00e+00 N.A.

TABLE 2
Computation of polynomial roots using Algorithm 2 with DSA
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In Algorithm 2 after the execution of st-gcd and st-
Euclidean-div, the four roots of polynomials P54 and P104 are
computed using Ferrari’s method [23], whereas the five roots
of Q55, Q105, and Q5000 are computed using st-Newton. It
can be observed in Table 2 that the accuracy requirement is
fulfilled with a multiplicative rate between 1.1 and 1.5. For
each root, the number of digits in common with the exact
result is also the number of digits not affected by rounding
errors estimated by DSA. This equality is in accordance with
Theorem 3.1. Algorithm 2 outperforms the algorithm based
on modified Newton method by 1 to 4 orders of magnitude.
Concerning the roots of P104 with 1000 digits, the performance
ratio is not available because the algorithm based on Newton
method has failed to compute one of the roots. It must be
pointed out that the first 1000 digits of the roots of polynomial
Q5000 (of degree 5000) are computed in less than 1 second
and the execution time becomes 5 seconds if 5000 digits are
required.

Tables 3 and 4 present for each root of the polynomials
P54, P104, Q55, and Q105:

• the requested number of decimal digits in the root,
• the number of digits not affected by rounding errors

estimated by DSA,
• the number of digits in common with the exact root,
• the minimum rate that enables the accuracy require-

ment to be fulfilled; again this rate is determined
starting from 1.1 and increasing by steps of 0.1,

• the execution time in seconds.

Poly. Root #Digits Rate Time (s)requested DSA exact

P54

α1

100
334 100 1.6 3.87e-02

α2 223 100 1.6 2.95e-02
α3 142 105 2.0 3.36e-02
α4 136 100 3.4 9.89e-02
α1

500
2018 525 1.8 7.20e-01

α2 2307 519 2.2 1.18e+00
α3 2900 512 3.0 2.51e+00
α4 5164 501 5.6 1.19e+01
α1

1000
4081 1037 1.8 3.84e+00

α2 4761 1005 2.2 6.18e+00
α3 6340 1005 3.1 1.50e+01
α4 11791 1015 6.0 8.15e+01

P104

α1

100
326 102 2.0 8.13e-02

α2 170 122 3.1 1.48e-01
α3 236 101 3.9 2.01e-01
α4 224 100 6.8 6.76e-01
α1

500
2530 502 2.4 2.83e+00

α2 3628 510 4.0 1.02e+01
α3 3673 501 5.0 1.64e+01
α4 7112 500 9.7 9.00e+01
α1

1000
5383 1023 2.5 1.67e+01

α2 8509 1018 4.3 6.60e+01
α3 10550 1007 5.8 1.43e+02
α4 Fail

TABLE 3
Computation of polynomial roots using modified Newton method with

DSA (polynomials with 4 roots)

It can be observed in Tables 3 and 4 that, for each root,
the number of digits not affected by rounding errors estimated
by DSA is greater than the number of digits in common
with the exact result. The ratio between these numbers varies
from 1.3 to 12. As a remark, Theorem 3.1 applies to the
computation of roots of multiplicity 1 using Newton method,

Poly. Root #Digits Rate Time (s)requested DSA exact

Q55

β1

100

134 100 1.9 3.92e-02
β2 137 100 1.8 3.50e-02
β3 170 105 1.8 3.56e-02
β4 409 101 2.2 5.23e-02
β5 374 103 2.0 5.02e-02
β1

500

2957 503 3.0 2.52e+00
β2 2604 503 2.7 2.06e+00
β3 2612 512 2.6 1.88e+00
β4 2676 513 2.5 1.71e+00
β5 2364 506 2.2 1.22e+00
β1

1000

6359 1002 3.1 1.52e+01
β2 5990 1015 2.9 1.28e+01
β3 5662 1023 2.7 1.08e+01
β4 5871 1092 2.7 1.08e+01
β5 5026 1041 2.3 7.08e+00

Q105

β1

100

190 100 2.7 1.01e-01
β2 213 100 2.9 1.20e-01
β3 611 100 4.1 2.48e-01
β4 136 102 3.1 1.64e-01
β5 395 102 4.1 2.63e-01
β1

500

3260 506 3.8 8.33e+00
β2 3186 507 3.9 9.04e+00
β3 5089 508 5.1 1.75e+01
β4 4657 506 5.0 1.70e+01
β5 5570 501 5.8 2.48e+01
β1

1000

8081 1021 4.2 6.59e+01
β2 8131 1002 4.3 6.60e+01
β3 10642 1013 5.2 1.12e+02
β4 10493 1017 5.3 1.16e+02
β5 12251 1011 6.1 1.66e+02

TABLE 4
Computation of polynomial roots using modified Newton method with

DSA (polynomials with 5 roots)

not to the computation of multiples roots using modified
Newton method. The minimum multiplicative rate for the
accuracy requirement to be fulfilled varies from 1.6 to 9.7 de-
pending on the requested accuracy and the root multiplicity.
In particular, a rate of 9.7 is required to obtain the first 500
digits of the root α4 of P104 that has a multiplicity of 50.
Modified Newton method fails to compute the same root with
1000 digits. With a rate of 10.9, the method provides the first
984 digits of α4. But the working precision associated to a rate
of 11, that is initially 11,000 digits and then increases, results
in a failure due to the memory limit.

For all root approximations based on modified Newton
method, the root multiplicity is correctly determined. How-
ever, then modified Newton method is used with a possibly
high-degree polynomial (from degree 54 to 105 in our exper-
iments). With Algorithm 2, Newton method is used with a
low-degree polynomial (a polynomial of degree 4 or 5 for the
results presented in Table 2).

5 Conclusion and perspectives
In this paper, we have presented an algorithm that efficiently
and accurately computes polynomial roots, in particular mul-
tiple roots. This algorithm uses stochastic arithmetic that
enables one to estimate rounding errors, and so to discard
results that are actually numerical noise. With stochastic
arithmetic, iterative algorithms can be stopped in an opti-
mal way that does not rely on any parameter. Thanks to a
stochastic version of the polynomial GCD algorithm and the
polynomial Euclidean division, the proposed algorithm pro-
vides a low-degree polynomial with single roots. Depending
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on the number of roots, they can be computed using either
adequate formulas or Newton method. In the computed roots,
stochastic arithmetic estimates which digits are not affected
by rounding errors, and these digits are in common with
the exact roots. W.r.t. an algorithm presented in [16] and
based on modified Newton method, the proposed algorithm
requires less working precision and less execution time: in
our experiments the performance gain is up to 4 orders of
magnitude.

The proposed algorithm takes into account an accuracy re-
quirement and a multiplicative rate to determine the required
working precision. From our experiments, this rate remains
low and varies from 1.1 to 1.5. However it would be interesting
to determine it automatically from information such as the
required accuracy, the polynomial degree, and the multiplicity
of the roots. Another perspective would be, for polynomials
having at least 5 roots, the computation in parallel of their
roots. Indeed, in this case, the roots are computed thanks to
independent executions of Newton method.
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