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1 Introduction

We propose to examine some of the proof theory of arithmetic by using three proof systems. A lin-
earized version of arithmetic, named ¯̄µMALL, is MALL plus logical connectives to treat first-order term
structures: equality and inequality, first-order universal and existential quantification, and the least and
greatest fixed point operators.1 The proof system ¯̄µLKp is an extension of ¯̄µMALL in which contraction
and weakening are permitted and ¯̄µLKp+ is a further extension in which the cut rule is permitted. As
their names implies, ¯̄µLKp and ¯̄µLKp+ involves polarized classical formulas, as defined below.

It is known that ¯̄µMALL has a cut-elimination result and is therefore consistent [2, 3]. We will
show that ¯̄µLKp is consistent by embedding it into second-order linear logic. We also show that ¯̄µLKp+

contains Peano arithmetic and that in a couple of different situations, ¯̄µLKp is conservative over ¯̄µMALL.
Finally, we show that a proof that a relation represents a total function can be turned into a proof-search-
based algorithm to compute that function.

Since we are interested in using ¯̄µMALL to study arithmetic, we use first-order structures to encode
natural numbers and fixed points to encode relations among numbers. This focus is in contrast to uses of
the propositional subset of ¯̄µMALL as a typing systems (see, for example, [7]). We shall limit ourselves
to using invariants to reason about fixed points instead of employing other methods, such as infinitary
proof systems (e.g., [4]) and cyclic proof systems (e.g., [6, 17]).

1.1 Polarized and unpolarized formulas

Following Church’s Simple Theory of Types [5], we shall view the formulas and terms of arithmetic as
simply typed λ -terms using the primitive types o and i, respectively. Propositional connectives have the
usual typing: o→ o→ o for binary connectives and o for the units. There are six connectives that have
types involving i, namely, = and 6=, both of type i→ i→ o; ∀ and ∃, both of type (i→ o)→ o; and µ

and ν , both of type ((i→ o)→ (i→ o))→ (i→ o). These latter two connectives denote the least and
greatest fixed point operators for one argument: additional such operators can easily be added to handle
arities more than 1.

Formulas in our development of arithmetic are divided into two classes. Neither class will have
atomic formulas, i.e., there are no (undefined) predicates. Unpolarized formulas are built using ∧, tt , ∨,
ff , =, 6=, ∀, ∃, µ , and ν . Polarized formulas are built using ⊗, 1, `, ⊥, &, >, ⊕, 0, =, 6=, ∀, ∃, µ , and ν .
Note that the six connectives that have i in their typing are used in both of these classes: these are also
the connectives that have an unambiguous polarity (we discuss polarity below).

As defined, both polarized and unpolarized formulas are in negation normal form in the sense that
they contain no occurrences of negation. For convenience, we will occasionally allow implications in

1The ¯̄µMALL systems here is the system µMALL= in [3]: we have only changed the typesetting of its name.
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unpolarized formulas: in those cases, we treat P ⊃ Q as P∨Q where P is the result of replacing every
occurrence of the logical connectives in P with its De Morgan dual (following the usual conventions for
classical and linear logics and where = and 6= are duals, as are µ and ν).

1.2 Polarity of formulas

The connectives used in polarized formulas are given a polarity. The connectives `, ⊥, &, >, ∀, 6=,
and ν are negative while their De Morgan duals are positive. A polarized formula is positive or negative
depending only on the polarity of its top-most connective.

A polarized formula Q̂ is a polarized version of the unpolarized formula Q if every occurrence of
& and ⊗ in Q̂ is replaced by ∧ in Q, every occurrence of ` and ⊕ in Q̂ is replaced by ∨ in Q, every
occurrence of 1 and> in Q̂ is replaced by tt in Q, and every occurrence of 0 and⊥ in Q̂ is replaced by ff
in Q. Notice that if Q has n occurrences of propositional connectives, then there are 2n formulas Q̂ that
are polarized versions of Q.

Fixed point expression, such as ((µλPλx(B P x)) t), introduce variables of predicate type (here, P).
In the case of the µ fixed point, any expression built using that predicate variable will be considered to be
polarized positively. If the ν operator is used instead, any expressions built using the predicate variables
it introduces is considered to be polarized negatively.

A formula is purely positive (resp., purely negative) if every logical connective it contains is positive
(resp., negative). We generalize the familiar arithmetical hierarchy notation by using it to classify polar-
ized formulas as follows. The Σ1-formulas are exactly the purely positive formulas, and the Π1-formulas
are exactly the purely negative formulas. More generally, for n≥ 1, the Πn+1-formulas are those negative
formulas for which every positive subformula occurrence is a Σn-formula. Similarly, the Σn+1-formulas
are those positive formulas for which every negative subformula occurrence is a Πn-formula. A formula
in Σn or in Πn has at most n−1 alternations of polarity. Clearly, the dual of a Σn-formula is a Πn-formula,
and vice versa. We shall also extend these classifications of formulas to abstractions over terms: thus,
we say that the term λx.B of type i→ o is in Σn if B is a Σn-formula.

2 Linear and classical proof systems for polarized formulas

The ¯̄µMALL proof system [2, 3] for polarized formulas is the one-sided sequent calculus proof system
given in Figure 1. The variable y in the ∀-introduction rule is an eigenvariable: it is restricted to not be
free in any formula in the conclusion of that rule. The application of a substitution θ to a signature Σ

(written Σθ in the 6= rule in Figure 1) is the signature that results from removing from Σ the variables in
the domain of θ and adding back any variable that is free in the range of θ . In the 6=-introduction rule, if
the terms t and t ′ are not unifiable, the premise is empty and immediately proves the conclusion.

The choice of using Church’s λ -notation provides an elegant treatment of higher-order substitutions
(needed for handing induction invariants) and provides a simple treatment of fixed point expressions and
the binding mechanisms used there. In particular, we shall assume that formulas in sequents are always
treated modulo αβη-conversion. We usually display formulas in βη-long normal form when presenting
sequents. Note that formula expressions such as B S~t (see Figure 1) are parsed as (· · ·((B S)t1) · · · tn) if~t
is the list of terms t1, . . . , tn.

If we were working in a two-sided sequent calculus, the ν-rule in Figure 1 could be written in the
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` Γ,P ` ∆,Q
` Γ,∆,P⊗ Q

⊗ ` 1 1
` Γ,P,Q
` Γ,P ` Q ` ` Γ

` Γ,⊥ ⊥

` Γ,P ` Γ,Q
` Γ,P & Q & ` ∆,> >

` Γ,Pi

` Γ,P0 ⊕ P1
⊕

{ ` Γθ : θ = mgu(t, t ′) }
` Γ, t 6= t ′

6=
` t = t

=
` Γ,Pt
` Γ,∃x.Px ∃

` Γ,Py
` Γ,∀x.Px ∀

` Γ,S~t ` BS~x,(S~x)
` Γ,νB~t

ν
` Γ,B(µB)~t
` Γ,µB~t

µ
` µB~t,νB~t

µν

Figure 1: The inference rules for the ¯̄µMALL proof system

` Γ,B(νB)~t
` Γ,νB~t

unfold
` Γ,Q,Q
` Γ,Q C ` Γ

` Γ,Q W
` Γ,Q ` ∆,Q
` Γ,∆

cut

Figure 2: Some additional rules

following two ways.

Γ ` ∆,S~t S~x ` BS~x
Γ ` νB~t,∆

coinduction
Γ,S~t ` ∆ BS~x ` S~x

Γ,µB~t ` ∆
induction

That is, the one rule for ν yields both coinduction and induction. In general, we shall speak of the higher-
order substitution term S used in both of these rules as the invariant of that rule (i.e., we will not use the
term co-invariant even though that might be more appropriate in some settings).

We make the following observations about this proof system.
1. The µν rule is a limited form of the initial rule. The general form of the initial rule, namely, that

the sequent ` Q,Q is provable, is admissible.

2. The µ rule allows the µ fixed point to be unfolded. This rule captures, in part, the identification of
µB with B(µB); that is, µB is a fixed point of B. This inference rule allows one occurrence of B
in (µB) to be expanded to two occurrences of B in B(µB). In this way, unbounded behavior can
appear in ¯̄µMALL where it does not occur in MALL.

3. The unfold rule in Figure 2, which simply unfolds ν-expression, is admissible in ¯̄µMALL by using
the ν-rule with the invariant S = B(νB).

4. The weakening and contraction rules are admissible in ¯̄µMALL for purely negative formulas.

5. The proof rules for equality guarantee that function symbols are all treated injectively: thus, func-
tion symbols will act only as term constructors.

We define ¯̄µLKp to be the proof system ¯̄µMALL but with the inference rules for contraction C and
weakening W (see Figure 2) added to ¯̄µMALL. In addition, we define ¯̄µLKp+ to be ¯̄µLKp but with the
cut rule added (also in Figure 2).
Example 1. The formula ∀x∀y[x = y∨ x 6= y] can be polarized as either

∀x∀y[x = y ` x 6= y] or ∀x∀y[x = y⊕ x 6= y].

Only the first of these is provable in ¯̄µMALL, although both formulas are provable in ¯̄µLKp.
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3 ¯̄µLKp+ and Peano Arithmetic

While the cut rule (Figure 2) is admissible in ¯̄µMALL [2], it is currently open as to whether or not the
cut rule is admissible in ¯̄µLKp. We conjecture that ¯̄µLKp and ¯̄µLKp+ prove the same sequents. We can
prove, however, that ¯̄µLKp is consistent.

Theorem 1. ¯̄µLKp is consistent.

The proof of this theorem can be found in Appendix A. It is worth noting that adding contraction
to some logical systems with weak forms of fixed points can change that logic from being consistent to
inconsistent. For example, both Girard [11] and Schroeder-Heister [16] describe a variant of linear logic
with unfolding fixed points that is consistent, but when contraction is added, it becomes inconsistent. In
their case, negations are allowed in the body of fixed point definitions. The theorem above proves that
adding contraction to ¯̄µMALL does not lead to inconsistency.

In order to show that Peano arithmetic is contained in ¯̄µLKp+, we need to deal with the following
three aspects of logic.

Terms We introduce the primitive type i and the term-level signature {z : i,s : i→ i}, for zero and suc-
cessor. We shall write numerals in bold, that is, 0, 1, 2, etc are abbreviations for z, (s z), (s (s z)),
etc. We also introduce an abbreviation for the predicate that holds only for such numerals.

nat = µλNλn(n = 0⊕ ∃m(n = (s m)⊗ N m))

Formulas We define the mapping (·)◦ that translates formulas in Peano arithmetic into polarized formu-
las. The propositional connectives ∧, tt , ∨, ff are mapped to polarized versions, say, ⊕, 1, ⊕, 0,
respectively. The connectives = and 6= map to themselves. The first-order quantifiers are mapped
so that they become explicitly typed, as follows. Recall that in Church’s STT representation of
quantified formulas, the universally quantified formula ∀x.B is an abbreviation for ∀(λx.B): here,
∀ is a constant of type (i→ o)→ o. Similarly, the existential quantifier is coded by the constant ∃
of the same type. The function (·)◦ replaces every occurrence of ∀ with λB.∀x (nat x ` (Bx)) and
every occurrence of ∃ with λB.∃x (nat x⊗ (Bx)).

Proofs Peano Arithmetic is usually presented as a theory consisting of the following axioms and axiom
scheme.

∀x. (sx) 6= z ∀x. ∀y(x+ sx) = s(x+ y)
∀x∀y. (sx = sy)⊃ (x = y) ∀x. (x · z = z)
∀x. (x+ z = x) ∀x. (x · sy = (x · y+ x))
(Az∧∀x. (Ax⊃ A(s x)))⊃ ∀x.Ax

Since we wish to avoid introducing the extra constructors + and ·, we encode addition and multi-
plications as relations. We can then extend the translation (·)◦ to include

(x+ y = w)◦ := plus xyw and (x · y = w)◦ := mult xyw,

using the following fixed point definitions.

plus = µλPλnλmλ p((n = z⊗ m = p)⊕ ∃n′∃p′(n = (s n′)⊗ p = (s p′)⊗ P n′ m p′))

mult = µλMλnλmλ p
(
(n = z⊗ p = z)⊕ ∃n′∃p′(n = (s n′)⊗ plus m p′ p⊗M n′ m p′)

)
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Our reusing of the familiar notation for the arithmetic hierarchy for classifying polarized formula is
partially justified in the following sense: for all n ≥ 1, if B is an unpolarized Πn-formula then B◦ is Πn,
and if B is an unpolarized Σn-formula then B◦ is Σn.

Theorem 2 ( ¯̄µLKp+ contains Peano arithmetic). Let Q be any unpolarized formula and let Q̂ be a
polarized version of Q. If Q is provable in Peano arithmetic then (Q̂)◦ is provable in ¯̄µLKp+.

Proof. It is easy to prove that mult and plus describe precisely the multiplication and addition operations
on natural numbers. Furthermore, the translations of the Peano Axioms can all be proved in ¯̄µLKp. We
illustrate just one of these axioms here: a polarization of the translation of the induction scheme is(

Az⊗ ∀x. (nat x ` Ax ` A(s x))
)` ∀x. (nat x ` Ax)

An application of the ν rule to the second occurrence of nat x can provide an immediate proof of this
axiom. Finally, the cut rule in ¯̄µLKp+ allows us to encode the inference rule of modus ponens.

4 Conservativity results for linearized arithmetic

The following theorem is our first conservativity result.

Theorem 3. ¯̄µLKp is conservative over ¯̄µMALL for Σ1-formulas and Π1-formulas. In particular, let B
be a either a Σ1 or a Π1-formula. Then ` B has a ¯̄µLKp proof if and only if ` B has a ¯̄µMALL proof.

The case for Σ1-formulas is proved by a straightforward argument about the permutation of proof
rules for ¯̄µLKp. The case for Π1-formulas has a simpler proof since weakening and contraction are
admissible rules in ¯̄µMALL for Π1-formulas.

Note that it is clear that if there exists a ¯̄µMALL proof of a purely positive formula, then that proof
does not contain the ν rule, i.e., it does not contain the induction rule. Finally, given that first-order Horn
clauses can interpret Turing machines [18], and given that Horn clauses can easily be encoded using
purely positive formulas, it is undecidable whether or not a purely positive expression has a ¯̄µMALL
proof. Similarly, purely positive formulas can be used to specify any general recursive function.

Our next conservativity result requires restricting the complexity of invariants used in the induction
rule ν . We say that a sequent has a ¯̄µLKp(Σ1) proof if it has a ¯̄µLKp proof in which all invariants
of the proof are purely positive. This fragment is similar to the fragment IΣ1 of Peano Arithmetic. A
well-known result in the study of arithmetic is the following.

Peano arithmetic is Π2-conservative over Heyting arithmetic: if Peano arithmetic proves a
Π2-formula A, then A is already provable in Heyting arithmetic [8].

This result inspires the following theorem.

Theorem 4. ¯̄µLKp(Σ1) is conservative over ¯̄µMALL for Π2-formulas. That is, if B is a Π2-formula such
that ` B has a ¯̄µLKp(Σ1) proof, then ` B has a ¯̄µMALL proof.

A proof for this theorem can be found in Appendix B.

Example 2. Example 1 lists two polarized formulas. The formula ∀x∀y[x = y ` x 6= y] is Π2 and is
provable in both ¯̄µMALL and ¯̄µLKp, while the formula ∀x∀y[x = y ⊕ x 6= y] is Π3 and is provable in
¯̄µLKp but not in ¯̄µMALL.
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5 Using proof search to compute functions

One way to prove that a binary relation φ encodes a function is to prove the totality and determinancy
properties of φ : that is, prove

[∀x∃y.φ(x,y)]∧ [∀x∀y1∀y2.φ(x,y1)⊃ φ(x,y2)⊃ y1 = y2].

Clearly, these properties imply that for every natural number x, the predicate λy.φ(x,y) denotes a sin-
gleton set. If our logic contains a choice operator, such as Church’s definite description operator ι [5],
then this function can be represented via the expression λx.ιy.φ(x,y). A more computationally-oriented
approach to encoding such functions follows the Curry-Howard approach of relating proof theory to
computation [12]: one extracts from a natural deduction proof of ∀x∃y.φ(x,y) a λ -term, which can be
seen as an algorithm for computing the implied function. The algorithmic content of such a λ -term
arises from a non-deterministic rewriting process that iteratively selects β -redexes for reduction. In most
typed λ -calculus systems, all such sequences of rewritings will end in the same normal form, although
some sequences of rewrites might be very long, and others can be very short. This section will describe
an alternative mechanism for computing functions from their relational specification that relies on using
proof search mechanisms instead of the Curry-Howard correspondence.

Note that if P and Q are predicates of arity one and if P denotes a singleton, then ∃x[Px∧Qx] and
∀x[Px⊃Qx] are logically equivalent. We assume here that Px is a purely positive expression with x as its
only free variable. Notice that the proof search semantics of these equivalent formulas are surprisingly
different. In particular, if we attempt to prove ∃x[Px∧Qx], then we must guess a term t and then check that
t denotes the element of the singleton (by proving P(t)). In contrast, if we attempt to prove ∀x[Px⊃ Qx]
then we allocate an eigenvariable y (which we will eventually instantiate with t) and then attempt to
prove the sequent ` Py ⊃ Qy. Such an attempt at building a proof might actually compute the value t
(especially if we can restrict proofs of that implication to not involve the general form of induction).
Example 3. The following derivation verifying that 4 is a sum of 2 and 2.

` 2 = (s 1)
=
` 4 = (s 3)

=
` plus 1 2 3

` 2 = (s 1)⊗ 4 = (s 3)⊗ plus 1 2 3 ⊗×2

` ∃n′∃p′(2 = (s n′)⊗ 4 = (s p′)⊗ plus n′ 2 p′)
∃×2

` (2 = 0⊗ 2 = 4)⊕ ∃n′∃p′(2 = (s n′)⊗ 4 = (s p′)⊗ P n′ 2 p′)
⊕

` plus 2 2 4
µ

` ∃p.plus 2 2 p ∃

To complete this proof, we must construct a similar subproof verifying that 1+ 2 = 3. In particular,
the witness used to instantiate the final ∃p is, in fact, that sum. Unfortunately, proof construction in
this system does not help us construct this sum’s value. Instead, the first step in building such a proof
bottom-up starts with guessing a value and checking that it is the correct sum.
Example 4. Given the definition of addition on natural numbers above, the following totality and deter-
minancy formulas

[∀x1∀x2. nat x1 ⊃ nat x2 ⊃ ∃y.(plus(x1,x2,y)∧nat y)]

[∀x1∀x2. nat x1 ⊃ nat x2 ⊃ ∀y1∀y2. plus(x1,x2,y1)⊃ plus(x1,x2,y2)⊃ y1 = y2]

can be proved in ¯̄µMALL where these formulas are polarized using the multiplicative connectives. These
proofs require both induction and the µν rule. Using the cut rule with (the obvious) proofs of nat 2 and
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nat 3, we know that λy.(plus 2 3 y) denotes a singleton. In order to compute the sole member of the
singleton λy.(plus 2 3 y), we could perform cut-elimination with the inductively proved totality theorem
in this example. Instead of such a proof-reduction approach to computation, the proof search approach
starts by replacing the goal ∃y.(plus 2 3 y∧nat y) with ∀y.(plus 2 3 y⊃ nat y). Attempting to prove this
second formula leads to an incremental construction of the answer substitution for y, namely, 5.

Assume that P is a purely positive predicate expression of type i→ o and that we have a ¯̄µMALL
proof that P is a singleton. As we stated above, this means that we have a ¯̄µMALL proof of ∀x[Px⊃ nat x].
This proof can be understood as a means to compute the unique element of P except that there might be
instances of the induction rule in the proof of ∀x[Px⊃ nat x]. Suppose we can force, however, the proof
of this latter formula to be restricted so that the only form of induction is unfolding. In that case, such a
restricted proof can provide an explicit computation. As the following example shows, it is not the case
that if there is a ¯̄µMALL proof of ∀x[Px ⊃ nat x] then it has a proof with the induction rule replaced by
unfolding.

Example 5. Let P be µ(λRλx.x = 0⊕ (R (s x))). Clearly, P denotes the singleton set containing zero.
There is also a ¯̄µMALL proof that ∀x[Px⊃ nat x], but there is no (cut-free) proof of this theorem that uses
unfolding instead of the more general induction rule: just using unfoldings leads to an unbounded proof
search attempt which roughly follows the following outline.

` nat 0

...
` P (s (s y)),nat y

` P (s y),nat y
unfold,&, 6=

` P y,nat y
unfold,&, 6=

Although proof search can contain potentially unbounded branches, we can still use the proof search
concepts of unification and non-deterministic search to compute the value within a singleton. We define
a non-deterministic algorithm as follows. The state of this algorithm is a triple of the form

〈x1, . . . ,xn ; B1, . . . ,Bm ; t〉,

where t is a term, B1, . . . ,Bm is a multiset of purely positive formulas, and all variables free in t and in
the formulas B1, . . . ,Bm are in the set of variables x1, . . . ,xn. A success state is one of the form 〈· ; · ; t〉
(that is, when n = m = 0): such a state is said to have value t.

Given the state S = 〈Σ ; B1, . . . ,Bm ; t〉 with m≥ 1, we can non-deterministically select one of the Bi

formulas: for the sake of simplicity, assume that we have selected B1. We define the transition S⇒ S′ of
state S to state S′ by a case analysis of the top-level structure of B1.

• If B1 is u = v and the terms u and v are unifiable with most general unifier θ , then we transition to
〈Σθ ; B2θ , . . . ,Bmθ ; tθ〉.

• If B1 is B⊗ B′ then we transition to 〈Σ ; B,B′,B2, . . . ,Bm ; t〉.
• If B1 is B⊕ B′ then we transition to either 〈Σ ; B,B2, . . . ,Bm ; t〉 or 〈Σ ; B′,B2, . . . ,Bm ; t〉.
• If B1 is µB~t then we transition to 〈Σ ; B(µB)~t,B2, . . . ,Bm ; t〉.
• If B1 is ∃y. B y then we transition to 〈Σ,y ; B y,B2, . . . ,Bm ; t〉 assuming that y is not in Σ.

This non-deterministic algorithm is essentially applying left-introduction rules in a bottom-up fash-
ion and, if there are two premises, selecting (non-deterministically) just one premise to follow.
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Lemma 1. Assume that P is a purely positive expression of type i→ o and that ∃y.Py has a ¯̄µLKp proof.
There is a sequence of transitions from the initial state 〈y ; P y ; y〉 to a success state with value t such
that P t has a ¯̄µMALL proof.

Proof. An augmented state is a structure of the form 〈Σ | θ ; B1 | Ξ1, . . . ,Bm | Ξm ; t〉, where
• θ is a substitution with domain equal to Σ and which has no free variables in its range, and

• for all i ∈ {1, . . . ,m}, Ξi is a ¯̄µMALL proof of θ(Bi).
Clearly, if we strike out the augmented items (in red), we are left with a regular state. Given that we have
a ¯̄µLKp proof of ∃y.Py, conservativity (Theorem 3) ensures us that we have a ¯̄µMALL proof of ∃y.Py.
Thus, we there exists a ¯̄µMALL proof Ξ0 of P t for some term t. Note that there is no occurrence of
induction in Ξ0. We now set the initial augmented state to 〈y | [y 7→ t] ; Py | Ξ0 ; y〉. As we detail now,
the proof structures Ξi provide oracles that steer this non-deterministic algorithm to a success state with
value t. Given the augmented state 〈Σ | θ ; B1 | Ξ1, . . . ,Bm | Ξm ; s〉, we consider selecting the first pair
B1 | Ξ1 and consider the structure of B1.

• If B1 is B′ ⊗ B′′ then the last inference rule of Ξ1 is ⊗ with premises Ξ′ and Ξ′′, and we make a
transition to 〈Σ | θ ; B′ | Ξ′,B′′ | Ξ′′, . . . ,Bm | Ξm ; s〉.

• If B1 is B′ ⊕ B′′ then the last inference rule of Ξ1 is ⊕ and that rule selects either the first or the
second disjunct. In either case, let Ξ′ be the proof of its premise. Depending on which of these
disjuncts is selected, we make a transition to either 〈Σ | θ ; B′ | Ξ′,B2 | Ξ2, . . . ,Bm | Ξm ; s〉 or
〈Σ | θ ; B′′ | Ξ′,B2 | Ξ2, . . . ,Bm | Ξm ; s〉, respectively.

• If B1 is µB~t then the last inference rule of Ξ1 is µ . Let Ξ′ be the proof of the premise of that
inference rule. We make a transition to 〈Σ | θ ; B(µB)~t | Ξ′,B2 | Ξ2, . . . ,Bm | Ξm ; s〉.

• If B1 is ∃y. B y then the last inference rule of Ξ1 is ∃. Let r be the substitution term used to
introduce this ∃ quantifier and let Ξ′ be the proof of the premise of that inference rule. Then we
make a transition to 〈Σ,w | θ ◦ϕ ; B w | Ξ′,B2 | Ξ2, . . . ,Bm | Ξm ; s〉, where w is a variable not in Σ

and ϕ is the substitution [w 7→ r]. Here, we assume that the composition of substitutions satisfies
the equation (θ ◦ϕ)(x) = ϕ(θ(x)).

• If B1 is u = v and the terms u and v are unifiable with most general unifier ϕ , then we make
a transition to 〈Σϕ | ρ ; ϕ(B2) | Ξ2, . . . ,ϕ(Bm) | Ξm ; (ϕt)〉 where ρ is the substitution such that
θ = ϕ ◦ρ .

In each of these cases, we must show that the transition is made to an augmented state. This is easy
to show in all but the last two rules above. In the case of the transition due to ∃, we know that Ξ′ is a
proof of θ(B r), but that formula is simply ϕ(θ(B w)) since w is new and r contains no variables free in
Σ. In the case of the transition due to equality, we know that Ξ1 is a proof of the formula θ(u = v) which
means that θu and θv are the same terms and, hence, that u and v are unifiable and that θ is a unifier.
Let ϕ be the most general unifier of u and v. Thus, there is a substitution ρ such that θ = ϕ ◦ρ and, for
i ∈ {2, . . . ,m}, Ξi is a proof of (ϕ ◦ ρ)(Bi). Finally, termination of this algorithm is ensured since the
number of occurrences of inference rules in the included proofs decreases at every step of the transition.
Since we have shown that there is an augmented path that terminates, we have that there exists a path of
states to a success state with value t.

This lemma ensures that our search algorithm can compute a member from a non-empty set, give a
¯̄µLKp proof that that set is non-empty.

We can now prove the following theorem about singleton sets. We abbreviate (∃x.P x)∧(∀x1∀x2.P x1⊃
P x2 ⊃ x1 = x2) by ∃!x.P x in the following theorem.
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Theorem 5. Assume that P is a purely positive expression of type i→ o and that ∃!y.Py has a ¯̄µLKp
proof. There is a sequence of transitions from the initial state 〈y ; P y ; y〉 to a success state of value t if
and only if P t has a ¯̄µLKp proof.

Proof. Given a (cut-free) ¯̄µLKp proof of ∃!y.Py, that proof contains a ¯̄µLKp proof of ∃y.Py. Since this
formula is purely positive, there is a ¯̄µMALL proof for ∃y.Py. The forward direction is immediate: given
a sequence of transitions from the initial state 〈y ; P y ; y〉 to the success state 〈· ; · ; t〉, it is easy to build
a ¯̄µMALL proof of P t. Conversely, assume that there is a ¯̄µLKp proof of P t for some term t. By
conservativity, there is a ¯̄µMALL proof of P t and, hence, of ∃y.P y. By Lemma 1, there is a sequence
of transitions from initial state 〈y ; P y ; y〉 to the success state 〈· ; · ; s〉, where P s has a ¯̄µMALL proof.
Given that Pt and Ps and ∀x1∀x2.P x1 ⊃ P x2 ⊃ x1 = x2 all have ¯̄µLKp+ proofs, using the cut rule, we
can conclude that t = s.

Thus, a (naive) proof-search algorithm involving both unification and non-deterministic search is
sufficient for computing the functions encoded in relations.

While it is easy to encode the proof of totality for the Ackermann function in ¯̄µLKp, it seems unlikely
that a totality proof for that function can be done within ¯̄µMALL. This separation between ¯̄µLKp and
¯̄µMALL was conjectured by Baelde [1, Section 3.5]. There are also several other linear logic style
systems for which the totality of Ackermann’s function is known to be not provable. In particular, if we
developed a Curry-Howard interpretation of ¯̄µMALL, it would yield a system close to the linear λ -terms
H( /0) of [14], which is known to capture exactly primitive recursive functions (see also similar results
in [13]).

Acknowledgment: We thank the anonymous reviewers of an earlier draft of this paper for they valuable
comments.
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A Consistency of ¯̄µLKp

By second-order linear logic, LL2, we mean the logic of MALL with the addition of the following
logical connectives: two exponentials ! and ?, negation (·)⊥, equality and non-equality, and first-order
and second-order quantification (no occurrences of fixed points are permitted). Cut-elimination of this
version of LL2 follows from Girard’s original cut-elimination proof [9] (see also [15]) and the cut-
elimination proofs known for equality and non-equality [11, 16].

We translate ¯̄µLKp formulas into LL2 formulas by translating fixed point expressions into second-
order quantified formulas. The least fixed point expression µB~x should be translated to a formula roughly
of the form ∀S

(
!(∀~y . BS~y ( S~y)( S~x

)
. This translation must also insert ? into formulas in order to

account for the fact that in ¯̄µLKp, any formula can be contracted and weakened at any point in a proof.
The translation is given as follows.

• dt = se= ?(t = s) and dt 6= se= ?(t 6= s)

• d∀x.Pxe= ?∀x.dPxe and d∃x.Pxe= ?∃x.dPxe.
• dB⊗Ce= ?(dBe ⊗ dCe), dB `Ce= ?(dBe` dCe), dB & Ce= ?(dBe& dCe),
dB⊕Ce= ?(dBe ⊕ dCe)

• d1e= ?1, d⊥e= ?⊥, d0e= ?0, d>e= ?>
• dµB~xe= ?∀S[(?∃~y . dBeS~y⊗ (S~y)⊥)` S~x ]

• dνB~xe= ?∃S[(!∀~y . dBeS~y ` (S~y)⊥)⊗ S~x ]

• dAe= A where A is an atomic formula.
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• The d·e operator commutes with λ -abstraction: dλx.Be = λx.dBe. This feature of d·e permit
translating invariants and the body of fixed point expressions.

• The d·e operator can be applied to a multiset of formulas: dΓe= {dPe | P ∈ Γ}.
Note that when B is the λ -abstraction λ pλ~x.C, where C is a ¯̄µMALL formula, p is a first-order pred-

icate variable, and ~x is a list of first-order variables, then dBedSe~t is equal to dBS~te up to λ -conversion.
We shall also need the following inference rule in LL2, which is a kind of generalization of the cut rule.

` Γ,BQ~t ` ¬(Q~x),P~x
` Γ,BP~t

deep.

Here, of course, the first-order variables ~x are new. Also, the expression B has the type that takes a
first-order predicate to a first-order predicate and also monotonic, meaning that there are no occurrences
of negated predicate variables in B. It is proved in [3, Proposition 2] that this rule is admissible in LL2.
This rule essentially allows us to move from the fact that Q⊆ P and to the fact that BQ⊆ BP.

Lemma 2. If ` Γ is derivable in ¯̄µLKp then ` dΓe is derivable in LL2.

Proof. We proceed by induction on the structure of cut-free ¯̄µLKp proofs. In particular, assume that ` Γ

has a cut-free ¯̄µLKp proof Ξ.

Case: The last inference rule of Ξ comes from Figure 1, i.e., it is an introduction rules for a propositional
connective, a unit, or a quantifier. For example, assume that this last inference rule is the following ⊗
introduction rule.

` Γ,P ` ∆,Q
` Γ,∆,P⊗ Q

⊗

By the inductive assumption, ` dΓe,dPe and ` d∆e,dQe have LL2 proofs. Hence, ` dΓe,d∆e,dPe ⊗ dQe
has an LL2 proof. By using the dereliction rule for ? and the definition of d·e, we know that ` dΓ,∆e,dP⊗
Qe has an LL2 proof.

Case: The last inference rule is either weakening W or contraction C. Since the image of d·e always has
a ? exponential as its top-level connective, the corresponding LL2 inference rule is built with the same
structural rule.

Case: The last inference rule of Ξ is one of the fixed point rules from Figure 1. Assume, for example,
that the last rule is

` µB~t,νB~t
µν

The desired translation of this inference rule into LL2 is

` dBeS~y,dBe(λ~w(S~w)⊥)~y ` (S~y)⊥,¬((S~x)⊥)
init

` dBeS~y⊗ (S~y)⊥,dBe(λ~w(S~w)⊥)~y ` ¬((S~y)⊥) `,⊗

` ?∃~y.dBeS~y⊗ (S~y)⊥, !(∀~y.dBe(λ~w(S~w)⊥)~y ` ¬((S~y)⊥))!R,?D,∀,∃
` S~x,(S~x)⊥

init

` ?(∃~y.dBeS~y⊗ (S~y)⊥)` S~x , !(∀~y.dBe(λ~w(S~w)⊥)~y ` ¬((S~y)⊥))⊗ (S~x)⊥
`,⊗

` ?(∃~y . dBeS~y⊗ (S~y)⊥)` S~x ,∃S[!(∀~y . dBeS~y ` (S~y)⊥)⊗ S~x ]
∃λ~w(S~w)⊥

` ?∀S[?(∃~y . dBeS~y⊗ (S~y)⊥)` S~x ],?∃S[!(∀~y . dBeS~y ` (S~y)⊥)⊗ S~x ]
?D,∀

An induction on the structure of the formula B provides a proof that there is an LL2 proof of remaining
open premise.
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Assume instead that the last rule of Ξ is the introduction for ν , namely,

` Γ,S~t ` BS~x,(S~x)
` Γ,νB~t

ν .

The higher-order quantifier that appears in the LL2 encoding is instantiated with dSe. Thus, the desired
LL2 proof is

` dBS~xe,dS~xe ` ¬(dS~xe),¬(dSe~x)
` dBedSe~x,¬(dSe~x) cut ` dΓe,dS~te
` dΓe, !(∀~y . dBedSe~y ` ¬(dSe~y))⊗ dSe~t ⊗,∀,`
` dΓe,?∃S[!(∀~y . dBeS~y ` ¬(S~y))⊗ S~t ]

?D,∃ S 7→ dSe

By the inductive hypothesis, the leftmost and rightmost premises have LL2 proof. Induction on first-order
abstractions such as S shows that the middle premise also has an LL2 proof.

Assume instead that the last rule of Ξ is the introduction for µ , namely,

` Γ,B(µB)~t
` Γ,µB~t

µ.

We first show that ` dBedµBe~t ( dµB~te has an LL2 proof for all B and~t.

` dBedµBe~t,dBedµBe~t
init Ξ

` ?(∃~y . dBeS~y⊗ (S~y)⊥),dµBe~x,S~x
` dBedµBe~t,?(∃~y . dBeS~y⊗ (S~y)⊥),dBeS~t

deep
` (S~t)⊥,S~t

init

` dBedµBe~t,?(∃~y . dBeS~y⊗ (S~y)⊥),dBeS~t ⊗ (S~t)⊥,S~t
⊗

` dBedµBe~t,?(∃~y . dBeS~y⊗ (S~y)⊥),S~t
C,D,∃

` dBedµBe~t,dµB~te
?,∀,`

Here, Ξ is a straightforward LL2 proof. Finally, using this proof of ` dBedµBe~t,dµB~te and the cut rule
for LL2, we have shown the soundness of the µ rule in Figure 1.

Proof of Theorem 1. Assume that ` B and ` B have ¯̄µLKp proofs. By Lemma 2, we know that ` dBe and
` dBe have LL2 proofs. While it is not the case that dBe = (dBe)⊥, a simple induction on the structure
of B shows that dBe ` (dBe)⊥ is provable in LL2. Since LL2 has a cut rule, we know that there is an LL2
proof of ` · (the empty sequent). By the cut-elimination theorem of LL2, this sequent also has a cut-free
LL2 proof, which is impossible.

B ¯̄µLKp(Σ1) is conservative over ¯̄µMALL for Π2-formulas

In this section we prove that any Π2 formula provable in ¯̄µLKp(Σ1) is provable in ¯̄µMALL. This con-
servativity result can be applied to the formulas stating the totality and determinancy properties (see
Section 5) of relations defined by Σ1-formulas, since they are all Π2 formulas. The proof of this result
would be aided greatly if we had a focusing theorem for ¯̄µLKp. If we take the focused proof system for
¯̄µMALL given in [2,3] and add contraction and weakening in the usual fashion, we have a natural candi-
date for a focused proof system for ¯̄µLKp. However, the completeness of that proof system is currently
open. As Girard points out in [10], the completeness of such a focused (cut-free) proof system would
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allow the extraction of the constructive content of classical Π0
2 theorems, and we should not expect such a

result to follow from the usual ways that we prove cut-elimination and the completeness of focusing. As
a result of not possessing such a focused proof system for ¯̄µLKp, we must reproduce aspects of focusing
in order to prove our conservation result.

Definition 1. A reduced sequent is a sequent that contains only purely negative, purely positive, and Π2
formulas. If Γ1 and Γ2 are reduced sequents, we say that Γ1 contains Γ2 if Γ2 is a sub-multiset of Γ1.
Finally, we say that a reduced sequent is a pointed sequent if it contains exactly one formula that is either
purely positive or Π2.

Definition 2. A positive region is a cut-free ¯̄µLKp(Σ1) proof that contains only the inference rules µν ,
contractions, weakening, and introduction rules for the positive connectives.

Definition 3. The Cνν rule is the following derived rule of inference.

` Γ,S~t,U~t ` BU~x,U~x ` BS~x,S~x
` Γ,νB~t

Cνν

The Cνν rule is justified as the following combination of ν and contraction rules.

` Γ,S~t,U~t ` BU~x,U~x
` Γ,νB~t,S~t

ν
` BS~x,S~x

` Γ,νB~t,νB~t
ν

` Γ,νB~t
C

Since we are working within ¯̄µLKp(Σ1), the invariants S and U are purely positive.

Definition 4. A negative region is a cut-free ¯̄µLKp(Σ1) partial proof in which the open premises are all
reduced sequent and where the only inference rules are introductions for negative connectives plus the
Cνν rule.

Lemma 3. If a reduced sequent Γ has a positive region proof then Γ contains a pointed sequent that has
a ¯̄µMALL proof.

Proof. This proof is a simple generalization of the proof of Theorem 3.

Lemma 4. If every premise of a negative region contains a pointed sequent with a ¯̄µMALL proof, then
the conclusion of the negative region contains a pointed sequent with a ¯̄µMALL proof.

Proof. This proof is by induction on the height of the negative region. The most interesting case to
examine is the one where the last inference rule of the negative region is the Cνν rule. Referring to
the inference rule displayed above, the inductive hypothesis ensures that the reduced sequent ` Γ,S~t,U~t
contains a pointed sequent ∆,C where ∆ is a multiset of purely negative formula in Γ and where the
formula C (that is either purely positive or is Π2) is either a member of Γ or is equal to either S~t or U~t.
In the first case, ∆,C is also contained in the endsequent Γ,νB~t. In the second case, we have one of the
following proofs:

` ∆,S~t ` BS~x,S~x
` Γ,νB~t

ν
` ∆,U~t ` BU~x,U~x

` Γ,νB~t
ν

depending on whether or not C is S~t or U~t.
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Lemma 5. If the reduced sequent Γ has a cut-free ¯̄µLKp(Σ1) proof then Γ has a proof that can be divided
into a negative region that proves Γ in which all its premises have positive region proofs.

Proof. This lemma is proved by appealing to the permutation of inference rules. As shown in [2],
the introduction rules for negative connectives permute down over all inference rules in ¯̄µMALL. Not
considered in that paper is how such negative introduction rules permute down over contractions. It is
easy to check that such permutations do, in fact, happen except in the case of the ν rule. In general,
contractions below a ν rule will not permute upwards, and, as a result, the negative region is designed to
include the Cνν rule (where contraction is stuck with the ν rule). As a result, negative rules (including
Cνν) permute down while contraction and introductions of positive connectives permute upward. This
gives rise to the two-region proof structure.

By combining the results of this section we have a proof of Theorem 4.
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