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Abstract. The paper investigates the problem of deep learning model
selection. We propose a method of a neural architecture search with re-
spect to the desired model complexity called DARTS-CC. An amount
of parameters in the model is considered as a model complexity. The
proposed method is based on a differential architecture search algorithm
(DARTS). Instead of optimizing structural parameters of the architec-
ture, we consider them as a function depending on the complexity param-
eter. It enables us to obtain multiple architectures at one optimization
procedure and select the architecture based on our computation budget.
To evaluate the performance of the proposed algorithm, we conduct ex-
periments on the Fashion-MNIST and CIFAR-10 datasets and compare
the resulting architecture with architectures obtained by other neural
architecture search methods.

Keywords: differential architecture search · deep learning · hypernet-
work · neural networks · model complexity control.

1 Introduction

In this paper, we consider the problem of searching the architecture of a deep
learning model with the control of its complexity. A model is considered as a di-
rected graph with edges corresponding to non-linear functions on the dataset and
the vertices corresponding to intermediate representations of the dataset under
the operations. In this paper, we base on the differential algorithm DARTS [16].
It solves the problem of searching the model architecture by translating the
search space of structural parameters from a discrete to a continuous represen-
tation. In contrast to previous algorithms that were based on discrete optimi-
sation problem, DARTS does not suffer from combinatorial explosion. Due to
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relaxation, the algorithm does not use an exhaustive search to solve the op-
timization task. Furthermore, this relaxation enables us to use gradient-based
optimization for the model architecture selection.

Although a significant success in neural architecture search-based model se-
lection [25], the problem of model selection is still can be a challenge, especially
when dealing with constraints on computational budget or model size [21, 11].
The paper [21] presents an approach to use regularization term to control the
model complexity. It mainly focuses on the target hardware for further model
exploitation. A similar approach can be found in the paper [11], where a neural
architecture search is employed with a limited resource (RC-DARTS). Restric-
tions are added to the basic DARTS algorithm, such as the number of model
parameters. In order to solve the problem of conditional optimization, an iter-
ative projection algorithm is introduced, which consists of the fact that after a
certain number of iterations of gradient descent, the projection occurs on the set
specified by the constraints. However, both algorithms require the launch of an
individual architecture search process for every set of complexity values, so they
still can be too time-consuming.

This paper investigates the problem of the model complexity control during
architecture search. Opposite to the listed works above, our method, which is
called DARTS-CC, is based on the hypernetwork concept [8].A hypernetwork is
a model that generates the parameters of the target deep learning model. In this
paper, we employ hypernetworks to generate structural parameters that control
the final architecture of the model. It enables us to obtain multiple neural archi-
tectures during the architecture search procedure for further model fine-tuning
with an architecture that suits our computation budget in the best way. The
main idea of our paper and the difference between our method and DARTS is
shown in Fig. 1. Instead of using constant structural parameters α(i,j) that con-
trol the model architecture, we propose to consider them as functions on the
model complexity parameter λ. We also use Gumbel-softmax distribution for
sampling non-linear operations instead of using softmax function on the struc-
tural parameters α(i,j): this gives us the relaxed architecture very close to the
target discrete one. To the best of our knowledge, this is the first paper that
considers searching the family of models at once and then choosing the suitable
complexity value and corresponding model at the inference step. So we do not
need to restart the architecture search for models with different complexities.
The computational experiment is performed on the Fashion-MNIST [22] and
CIFAR-10 [12] dataset.

2 Problem statement

Below we briefly describe the DARTS method and our approach based on it.
Given a classification problem with a dataset D = (X,y). For each object
x ∈ X there is a label y ∈ y.

The approach presented in DARTS considers a neural architecture as a se-
quence of repeated submodels, called cells. Each cell has an identical structure
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(a) (b)

Fig. 1: An overview of DARTS (a) and proposed method DARTS-CC (b).

but has different parameter values [25]. It is represented as a directed graph.
The graph consists of vertices and edges between them. Formally, there is a set
of vertices V = {1, . . . , N} and a set of edges E = {(i, j) ∈ V × V | i < j},
where N is the number of vertices. For each edge (i, j) between vertices i and
j there is a non-linear function, called an operation g(i,j) from the vector ~g(i,j)

of all the available non-linear functions for the target edge (i, j). The values in
each of the intermediate nodes x(j) are defined through the values in the nodes
with the lower number i:

x(j) =
∑

(i,j)∈E

g(i,j)(x(i)), (1)

where x = x(0).
The task of architecture search is to choose the non-linear operations g(i,j)

for each edge in the cell. In order to reduce the discrete optimization problem to
the continuous optimization problem introduce a mixed operation for each edge
(i, j):

ĝ(i,j)(x(i)) = 〈softmax(α(i,j)), ~g(i,j)(x(i))〉, (2)

where α(i,j) is a structural parameter that assigns impact of each non-linear
operation g(i,j). Thus, each edge (i, j) is assigned a vector α(i,j) of dimension
equal to dim~g(i,j). Let α ∈ Rs be a concatenation of all the structural parameter
vectors α(i,j).

Split the dataset D into train and validation parts: D = Dtrain t Dval.
Formulate a two-level optimization problem:

min
α∈Rs

Lval(w
∗,α), (3)
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s.t. w∗ = arg min
w∈Rn

Ltrain(w,α). (4)

Here Lval and Ltrain are the cross-entropy loss functions of the model on
the validation Dval and on the train dataset Dtrain, respectively, w ∈ Rn is the
vector of model parameters.

2.1 Architecture complexity control

Our modification of the DARTS method consists of two parts. First, similar
to [3] instead of using softmax operation in mixing operations ĝ(i,j) we employ
Gumbel-softmax distribution. We sample edge values at each training step from
it:

ĝ(i,j)(x(i)) = 〈γ(i,j), ~g(i,j)(x(i))〉, γ(i,j) ∼ GS(exp(α(i,j)), t), (5)

where GS is a Gumbel-softmax distribution [10], t controls the temperature of
the distribution. With t→ 0 the distribution tends to be similar to the discrete,
which allow us to obtain a relaxed version of the architecture close to the discrete
one.

Define an architecture complexity as an amount of parameters that the cor-
responding model has. In order to control it modify the loss function Lval:

L′val = Eγ

Lval + λ
∑

(i,j)∈E

〈γ(i,j),n(~g(i,j))〉

 , (6)

where γ is a concatenation of all the γ(i,j) vectors, (i, j) ∈ E, n is a vector of
numbers of parameters for each operation g(i,j) ∈ ~g(i,j), λ is a regularization
coefficient.

The following theorem shows that we get an optimization close to the discrete
one when the temperature tends to zero.

Theorem 1 Let for each x ∈ X, for each w ∈ Rn the function Lval(w,γ) is
continuous by γ. Then the following expression is true:

lim
t→+0

Eγ

(
Lval (w,γ) + λ

∑
(i,j)∈E

〈γ(i,j),n(~g(i,j))〉
)

=

Eγ̃

(
Lval(w, γ̃) + λ

∑
(i,j)∈E

〈γ̃(i,j),n(~g(i,j))〉
)

=

∑
1≤k(i,j)≤dim~g(i,j), (i,j)∈E

Lval(w, [e
(i,j)(k(i,j))])

∏
(l,m)∈E

softmax(α(l,m))k(i,j)+

λ
∑

(i,j)∈E

〈softmax(α(i,j)),n(~g(i,j))〉, (7)

where e(i,j) is a one-hot vector:

e(i,j)(k) ∈ Rdim~g(i,j)

, 1 ≤ k ≤ dim~g(i,j), e
(i,j)
k (k) = 1, e(i,j)m (k) = 0, m 6= k,
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vector [e(i,j)(k(i,j))] is a concatenation of vectors e(i,j)(k(i,j)) over all edges
(i, j) ∈ E, vector γ̃ is a concatenation of the following multinomially distributed

variables γ̃(i,j):

p
(
γ̃(i,j) = e(i,j)(k)

)
=

exp(α
(i,j)
k )∑dim~g(i,j)

m=1 exp(α
(i,j)
m )

= softmax(α(i,j))k. (8)

In our notation softmax(α(i,j))k is the k-th component of the vector softmax(α(i,j)).

Proof. From zero temperature property of Gumbel-Softmax distribution [18] it
follows that:

γ(i,j) a.s.−−−−→
t→+0

γ̃(i,j),

Then, by the Mann-Wald theorem:

Lval (w,γ)
a.s.−−−−→
t→+0

Lval (w, γ̃) ,

〈γ(i,j),n(~g(i,j))〉 a.s.−−−−→
t→+0

〈γ̃(i,j),n(~g(i,j))〉.

Since the vector γ(i,j) is an element of a simplex, then γ is an element of a
compact set. According to the extreme value theorem, |Lval(w,γ)| is bounded
on it. Similarly, |〈γ(i,j),n(~g(i,j))〉| as a function of γ(i,j) is also bounded on it.
Using dominated convergence theorem, we can swap mathematical expectation
and limit:

lim
t→+0

EγLval(w,γ) = Eγ̃Lval(w, γ̃), (9)

lim
t→+0

Eγ(i,j)〈γ(i,j),n(~g(i,j))〉 = Eγ̃(i,j)〈γ̃(i,j),n(~g(i,j))〉. (10)

Write down the mathematical expectation (9) in explicit form, using (8):

Eγ̃Lval(w, γ̃) =∑
1≤k(i,j)≤dim~g(i,j), (i,j)∈E

Lval(w, [e
(i,j)(k(i,j))])p(γ̃ = [e(i,j)(k(i,j))]) =

∑
1≤k(i,j)≤dim~g(i,j), (i,j)∈E

Lval(w, [e
(i,j)(k(i,j))])

∏
(l,m)∈E

softmax(α(l,m))k(i,j) .

(11)

Do the same with the mathematical expectation (10):

Eγ̃(i,j)〈γ̃(i,j),n(~g(i,j))〉 = 〈Eγ̃(i,j) γ̃(i,j),n(~g(i,j))〉 =

〈softmax(α(i,j)),n(~g(i,j))〉. (12)

From (9), (10), (11), and (12) follows (7).



6 K. D. Yakovlev et al.

To reduce stochasticity in our experiments we use a loss function with sim-
plified regularization term:

L′val = Lval + λ
∑

(i,j)∈E

〈softmax(γ(i,j)),n(~g(i,j))〉, (13)

Note that both the original loss function (6) and its modified version (13) become
equivalent to the discrete optimization with t→ +0.

In order to control the model complexity after the structure optimization,
we employ the concept of hypernetwork. Let Λ be a set of the regularization
parameter λ values. A hypernetwork is a parametric mapping from the set Λ to
the set of model’s structural parameters Rs [7]:

α : Λ× Ru → Rs,

where Ru hypernetwork parameter space.
Instead of using a fixed structural parameters vector α(i,j), we redefine it as

a hypernetwork:

α(i,j) = α(i,j)(λ,a(i,j)), λ ∈ Λ,

where a(i,j) is a vector of the parameters of the α(i,j) function.
In this paper each function α(i,j), (i, j) ∈ E is a piecewise linear function:

α(i,j)(λ,a(i,j)) =

N−1∑
k=0

(
λ− rk

rk+1 − rk
a
(i,j)
k +(

1− λ− rk
rk+1 − rk

)
a
(i,j)
k+1

)
I [λ ∈ [rk, rk+1]] , (14)

where a
(i,j)
k are the parameters of the function, rk ∈ R are the limits of each

linear part of the function, I is an indicator function. For better model fitting,
we also use a hypernetwork piecewise linear layer for the last model layer.

The final optimization function is the following:

min
a∈Ru

Eλ∈p(λ)

(
Eγ(i,j)∼GS(α(i,j),λ)Lval (w∗,γ) +

λ
∑

(i,j)∈E

〈softmax(α(i,j)(λ,a)),n(~g(i,j))〉

)
, (15)

s.t. w∗ = arg min
w∈Rn

Eλ∈p(λ)

(
Eγ(i,j)∼GS(α(i,j),λ)Ltrain

(
w,γ

))
, (16)

where p(λ) is a predefined distribution over Λ, a ∈ Ru is a concatenation of all
the parameters of the functions α(i,j), γ is a concatenation of all vectors γ(i,j).

The optimization algorithm is shown in Fig. 2.
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Algorithm 1 DARTS-CC

1: Initialize a ∈ Ru,w ∈ Rn

2: while not converged do
3: Sample λ ∼ p(λ)
4: Sample γ(i,j) ∼ GS(α(i,j), λ) for

each (i, j) ∈ E
5: Update w using optimization (16)
6: Update a using optimization (15)
7: end while
8: return the final architecture from

learned a.

Algorithm 2 DARTS

1: Initialize α ∈ Ru,w ∈ Rn

2: while not converged do
3: Update w using optimization (4)
4: Update α using optimization (3)
5: end while
6: return the final architecture from

learned α.

Fig. 2: An algorithm for the proposed method DARTS-CC and DARTS.

3 Computational experiment

The purpose of the computational experiment is to analyze the proposed method
efficiency for the neural architecture search task 3. The experiments were con-
ducted on Fashion-MNIST [22] and CIFAR-10 [12] datasets. First, we ran an
experiment to search for an architecture consisting of three cells on both datasets.
We compared the proposed method with DARTS and random architecture search.
After that, we ran an experiment with a large-scale architecture on CIFAR-10
and compared the results with other existing neural architecture search methods.

For the architecture search experiments, the architectures were trained for
50 epochs. The parameters of the optimization procedure were similar to those
used in [6]: we used SGD for the parameter optimization with a learning rate
decreasing from 0.025 to 0.001 and momentum set to 0.9. We used weight de-
cay 3 · 10−4 for the model parameters and 10−3 for the structural parameters.
Similar to DARTS, after the architecture search step, we retrained the model
from scratch with obtained architecture. During retraining, we also randomly
dropped operations with the probability increasing from 0.0 to 0.2.

3.1 Search of the small architectures

During the experiments with architecture containing three cells, we did not use
a cutout procedure: a heuristic of pruning uninformative operations from the
retrained model. For all the architecture search steps, we used a batch size equal
to 64. The final models were trained for 100 epochs with batch size equal to 96
and learning rate decreasing from 0.025 to 0.0.

3 The source code for the computational experiment can be found at
https://github.com/Intelligent-Systems-Phystech/DARTS-CC.
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As a set Λ we used a set of values [10−10, 10−6], log10 λ ∼ U(−10,−6). for
Fashion-MNIST and [10−8, 10−4], log10 λ ∼ U(−4,−8). We calibrated the inter-
vals for the λ values in order to obtain architectures with approximately similar
amount of parameters to architectures obtained by DARTS. During model train-
ing we used Gumbel-Softmax distribution with temperature t decreasing from 1
to 0.2.

25000 75000 125000 175000
Amount of parameters in model

0.86

0.88

0.90

0.92

0.94

Ac
cu

ra
cy Random models

log10 = 10
log10 = 9
log10 = 8
log10 = 7
log10 = 6
DARTS

Fig. 3: The comparison of the proposed method with DARTS for the Fashion-
MNIST dataset: both methods show similar performance. The proposed method
allows to vary λ parameter to control the model architecture: the higher λ we
use the simpler model we obtain. The lines connect models obtained from the
same experiment run.

The Figure 3 shows a dependency of the obtained models’ performance on
the parameter amount. Both the proposed method and DARTS gave model
architectures with suboptimal performance on the Fashion-MNIST dataset. For
both the proposed method and DARTS, we ran the experiment 5 times. For the
proposed method we evaluated the architectures obtained from different λ values:
λ ∈ {10−10, 10−9, 10−8, 10−7, 10−6}. As we can see, the proposed method gives a
comparable performance to the DARTS approach. However, it allows calibrating
the model complexity to find a trade-off between desired performance and model
complexity.

The similar results for the CIFAR-10 dataset can be found in Figure 4. As
we can see, the proposed method and DARTS show similar performance on both
datasets. The ability to control the model complexity enables us to obtain models
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with different structures at once and tune the final models based on the desired
model complexity.

The cells obtained for different λ are shown in Figure 5 for the Fashion-
MNIST dataset. As we can see, the resulting cells tend to have a less complex
structure with increasing λ parameter.

25000 75000 125000 175000
Amount of parameters in model
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0.75
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0.85

0.90
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cu

ra
cy Random models

log10 = 8
log10 = 7
log10 = 6
log10 = 5
log10 = 4
DARTS

Fig. 4: The comparison of the proposed method with DARTS for the CIFAR-10
dataset.

3.2 Large-scale architecture search

In order to compare the proposed method with different neural architecture
search methods, we conducted an additional experiment on the CIFAR-10 dataset.
For this experiment, we used settings similar to those described in [6]. We used
a model with eight cells during architecture search and with 20 cells during the
retraining model from scratch. The final models were trained for 600 epochs with
batch size equal to 72 and learning rate decreasing from 0.025 to 0.0.

To evaluate the proposed method, we ran the experiment 3 times. As a set Λ
we used a set of values λ ∈ [10−10, 10−6], log10 λ ∼ U(−10,−6). For the proposed
method, we evaluated the architectures obtained from the highest and the lower
values of λ : λ ∈ {10−10, 10−6}. The results of the experiments are shown in
table 1. As we can see, the resulting models achieve a performance comparable
to other neural architecture search methods.

Based on the obtained results, we can conclude that the proposed method
allows us to obtain models with different model complexity per one architec-
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Fig. 5: An example of cells obtained on the Fashion-MNIST dataset for λ =
10−10 (a) and λ = 10−6 (b). The colors of each node in the cell vary from blue
to red. The closer to the red color, the greater the total number of parameters
of the incoming edges. Here c {k-1} and c {k-2} are the outputs of cells k − 1
and k − 2, respectively, c {k} is the output node of cell k.

ture search optimization procedure. The resulting architectures give us a rather
good performance comparable to architectures of other neural architecture search
methods. At the same time, our model enables us to control the model complex-
ity and obtain different models based on the desired computational budget.

4 Conclusion

In this paper, we considered the problem of deep learning model selection with
model complexity control. To control the model complexity, we proposed a
modification of the differential architecture search algorithm called DARTS-
CC. We considered the structural parameters of the architecture as a function
of the model complexity parameter. To evaluate the performance of the pro-
posed method, we conducted experiments on the Fashion-MNIST and CIFAR-
10 datasets and compared the obtained architecture with architectures gathered
from the DARTS method. The results showed the comparable performance of
the method. The proposed method allows us to control the trade-off between
model characteristics: the model performance and the model complexity. Future
research plans include researching the robustness of the obtained architecture
and properties of the proposed optimization problem.
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Table 1: Top-1 Accuracy on CIFAR-10 dataset. The baseline results are taken
from [20].

Architecture Accuracy(%) Params(M)

DenseNet-BC[9] 96.54 25.6
NASNetA + cutout[25] 97.35 3.3

AmoebaNet-B + cutout[19] 97.87 34.9
PNAS[15] 96.59 ± 0.09 3.2

NAONet[17] 96.82 10.6
SMASHv2[2] 95.97 16

SETN + cutout[5] 97.31 4.6
GDAS + cutout[6] 96.25 2.5

DARTS(2nd order) + cutout[16] 97.24 ± 0.09 3.3
SNAS (mild) + cutout[23] 97.02 2.9

PR-DARTS DL1 + cutout[13] 97.26 ± 0.12 3.2
PC-DARTS + cutout[24] 97.43 3.6

PDARTS + cutout[4] 97.50 3.4
Amended-DARTS S1 + cutout[1] 97.19 ± 0.21 3.5

DARTS+ with cutout[14] 97.68 3.7

DARTS-CC + cutout, λ = 10−10 97.13 ± 0.08 4.4 ± 0.5
DARTS-CC + cutout, λ = 10−6 96.58 ± 0.38 2.2 ± 0.2
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