
EasyChair Preprint
№ 14151

The Problem of Optimal Delivery of Frozen and
Chilled Goods with Given Priority from Multiple
Warehouses

Jaromír Zahrádka

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 25, 2024

The Problem of Optimal Delivery of Frozen and Chilled
Goods with Given Priority from Multiple Warehouses

Jaromír Zahrádka1

Abstract. This article comes up with a specific example of the vehicle routing prob-
lem. The selling company has to deliver the ordered frozen or chilled goods from m
warehouses to n customers as efficiently as possible. Each customer has ordered goods
stored in a certain number of containers which need to be transported. All customer
points of delivery and warehouse points are given by GPS coordinates. The objective
of the solution is to select the number of vehicles and their routes between suitable
warehouse and customers in such a way that the total travel distance or travel time is
as short as possible. The order of customers on each route respects the priority of
delivery of frozen goods over chilled ones. This means that chilled goods are unloaded
from the truck only after all frozen goods have been unloaded at previous customer
delivery points. Each of these delivery points is visited only once by one of the vehi-
cles. In each warehouse, the same number of trucks ends the journey as they left. All
trucks have the same pre-limited capacity of containers. In this article, the algorithm
of the vehicle routing problem with multiple warehouses and priority of delivery of
frozen goods was created and implemented in Matlab code.

Keywords: Chilled goods, frozen goods, Matlab, mixed integer linear programming,
optimization, point of delivery, priority, vehicle routing problem

JEL Classification: C64
AMS Classification: 68W04, 90C11, 05C20

1 The Vehicle Routing Problem with Multiple Warehouses.
The vehicle routing problem with multiple warehouses (VRPMW) is inspired by a practical situation that a trading
company supplying, for example, food products has several warehouses in its territory from which it distributes
goods to customers. The entire range of delivered goods is available in all warehouses and there is always a suffi-
cient number of vehicles available. The solution to the VRPMW consists in planning the routes of trucks delivering
goods so that the total distance travelled by all vehicles is as small as possible.
Our presented multi-storage VRPMW solution with customer priority according to the temperature regime of the
delivered goods is a continuation of the single-storage VRP solution [1], and the Matlab one published in [6]. Our
solution uses the principles of integer programming, which are contained in [4, 5]. They respect the principles of
operating intelligent transport systems [2].

1.1 Mathematical Formulation of VRPMW

We calculate that 𝑛 customers are served from 𝑠 warehouses. The customers sites (nodes) are marked by numbers
1, … , 𝑛, and warehouses (depots) are marked by numbers 𝑛 + 1, … , 𝑛 + 𝑠. The vehicle routing problem with mul-
tiple warehouses (VRPMW) can be presented as the subsequent graph problem. Let 𝐺 = (𝑉, 𝐸) be a complete
directed graph where 𝑉 = {1, . . . , 𝑛, 𝑛 + 1, … , 𝑛 + 𝑠} is the nodes set and 𝐸 is the set of all oriented arcs. Nodes
𝑖 = 1,2, . . . , 𝑛 correspond to the customers, each with a number 𝑞௜ of demand containers, which form the row
vector 𝒒 = (𝑞ଵ,  𝑞ଶ,   . . .   , 𝑞௡). Each oriented 𝑎𝑟𝑐(𝑖, 𝑗) is associated with non-negative values 𝑑௜௝ of travel distance
(in meters), and 𝑐௜௝ of travel time (in sec) from node 𝑖 to node 𝑗. For easier reference we assume, 𝐼 = {1,  . . .   ,  𝑛},

and 𝐼஽ = 𝐼 ∪ {𝑛 + 1, … , 𝑛 + 𝑠}. The distance matrix 𝑫 = ൫𝑑௜௝൯
௜,௝∈ூವ

 and time distance matrix 𝑪 = ൫𝑐௜௝൯
௜,௝∈ூವ

 are

non-negative and generally asymmetric.

The VRPMW consists of finding a collection of simple cycles and simple paths between warehouses, each corre-
sponding to a vehicle route with minimal sum of the distances of the cycles and path arcs, such that:
a) each cycle starts and ends in one of the warehouses;
b) each path starts in one of the warehouses and ends in another one;
c) each vertex j I is visited by exactly one cycle or path;

1 University of Pardubice, Department Mathematics and Physics, Studentská 95, 53210 Pardubice, jaromir.zahradka@upce.cz.

d) the same number of cycles and paths start and end in each warehouse;
e) the sum of delivered containers during a cycle or path not exceed the vehicle capacity 𝑄.
At the beginning and end of each cycle or path is one of 𝑠 stores. All customers who have ordered frozen goods
must be visited. After the delivery of all frozen goods, the customers to whom the chilled goods are delivered are
visited.
We assume, that 𝑚௜ is the service time associated with the unloading of goods and dealing with the customer for
each customer 𝑖 ∈ 𝐼. All service times are arranged in a row vector 𝒎 = (𝑚ଵ, 𝑚ଶ, . . . , 𝑚௡).

1.2 Mathematical Solution of VRPMW

The used optimization model is generally described by

 min

.




    
  

intcon

eq eq

b b

are integers

subject to
V

V

A V b
f V

A V b

l V u

 (1)

The vector 𝑽 is the column vector of all flow variables; 𝒇 ⋅ 𝑽 is the objective function, the coefficients of this
objective function are components of the row vector 𝒇 ; 𝑽௜௡௧௖௢௡is the list of variable indices of the vector 𝐕 that
takes only the integer values; 𝑨 ⋅ 𝑽 ≤ 𝒃 determines the system of inequality constrains; 𝑨௘௤ ⋅ 𝑽 = 𝒃௘௤ determines
the system of linear equations; and inequalities 𝒍௕ ≤ 𝑽 ≤ 𝒖௕ indicate the lower and upper bounds of flow vari-
ables.

The core of the solution of VRPMW is finding suitable configurations of paths and cycles in the graph that start
and end in one of the warehouses. Each customer is on exactly one path or cycle. Another condition is that the
same number of vehicles arrive at each warehouse, as left the warehouse. The optimal solution is the configuration
of paths and cycles that gives the shortest total sum of the lengths of all paths and cycles. To realize the solution
by the optimization method, integer flow variables 𝑥௜௝ are introduced on the set of all oriented arcs of the complete
oriented graph, which can only take on binary values 0 or 1. The value 𝑥௜௝ = 1 means that the arc from 𝑖 node to
𝑗 is included in one path or cycle, and the value 𝑥௜௝ = 0 means that the corresponding arc is not included. For
systemic reasons, variables 𝑥௜ ௜ are used but are fixed 𝑥௜ ௜ = 0, for each 𝑖 ∈ 𝐼஽ . Variables 𝑥௜௝ are elements of a
matrix 𝑿 = ൫𝑥௜௝൯

௜௝∈ூವ
, and the number of 𝑥௜௝ variables is (𝑛 + 𝑠)ଶ.

In our work we use other specific integer flow variables, 𝑦௜, for each 𝑖 ∈ 𝐼, which indicate the number of containers
that were unloaded to customers during the journey from the depot up to and including the node 𝑖. The variables
𝑦௜ are 𝑛 elements of the vector 𝒚 = (𝑦ଵ,  𝑦ଶ,   . . .   , 𝑦௡). The sum of all flow variables is (𝑛 + 𝑚)ଶ + 𝑛.
Elements of matrix 𝑿 = ൫𝑥௜ ௝൯

௜ ௝∈ூವ
 and vector 𝒚 = (𝑦ଵ,  𝑦ଶ,   . . .   , 𝑦௡) are arranged in the column vector 𝑉 so that,

𝑽் = (𝑥ଵ,ଵ, 𝑥ଵ,ଶ,   . . .   , 𝑥ଵ,௡ା௠,  𝑥ଶ,ଵ,  𝑥ଶ,ଶ,   . . .  𝑥ଵ,௡ା௠,   . . .   , 𝑥௡ା௠,ଵ,  𝑥௡ା௠,ଶ,   . . .   , 𝑥௡ା௠,௡ା௠,  𝑦ଵ,  𝑦ଶ , . . .   , 𝑦௡).

The solution of VRPMW is the optimal solution of a mixed-integer linear programming problem:

 𝑚𝑖𝑛
(𝑿,𝒚)

൛∑ 𝑑௜௝ ⋅ 𝑥௜௝
௡ା௦
௜,௝ୀ଴ + ∑ 𝑦௜

௡
௜ୀଵ ൟ subject to (2)

 𝑥௜௝ ,   𝑖, 𝑗 ∈ 𝐼஽ are binary, i.e.𝑥௜௝ ∈ {0,1} (3)

 𝑦௜ ,   𝑖 ∈ 𝐼 are integer (4)

 𝑄 𝑥௜௝ + 𝑦௜ − 𝑦௝ ≤ 𝑄 − 𝑞௝ ,    𝑖, 𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗 (5)

 𝑄 𝑥௞௝ − 𝑦௝ ≤ 𝑄 − 𝑞௝ ,    𝑘 ∈ I஽ − 𝐼, 𝑗 ∈ 𝐼 (6)

 ∑ 𝑥௜௝ = 1௝∈ூವ ,      𝑖 ∈ 𝐼 (7)

 ∑ 𝑥௜௝ = 1௜∈ூವ ,      𝑗 ∈ 𝐼 (8)

 ∑ 𝑥௞௝௝∈ூ − ∑ 𝑥௜௞௜∈ூ = 0, 𝑘 ∈ I஽ − 𝐼 (9)

 𝑥௜௜ = 0,  𝑖 ∈ 𝐼஽ (10)

 𝑥௜௝ = 0,  𝑖, 𝑗 ∈ 𝐼஽ − 𝐼, (11)

 0 ≤ 𝑥௜௝ ≤ 1,    𝑖, 𝑗 ∈ 𝐼஽ (12)

 𝑞௝ ≤ 𝑦௝ ≤ 𝑄,    𝑗 ∈ 𝐼 (13)

It means, that the linear optimization function is minimized such that

 𝒇 = ∑ 𝑑௜௝𝑥௜௝
௡ା௦
௜,௝ୀଵ + ∑ 𝑦௜

௡
௜ୀ଴ . (14)

The sum of distances (in meters) ∑ 𝑑௜௝𝑥௜௝
௡ା௦
௜,௝ୀଵ guarantees finding a collection of cycles and paths such that the sum

of their lengths is minimal. The part ∑ 𝑦௜
௡
௜ୀଵ of the optimization function (13) is about four orders of magnitude

smaller and does not affect the optimization according to the smallest length. This part guarantees that the solutions
of flow values 𝑦௜ are also as small as possible. Constraint (5) defines 𝑛(𝑛 − 1) conditions between flow variables
𝑦௜ , 𝑦௝ and 𝑥௜௝ . In the case 𝑥௜௝ = 1, the inequality (5) expresses the relationship 𝑦௝ ≥ 𝑦௜ + 𝑞௝. Thanks to the inclu-
sion of the variables 𝑦ଵ,  𝑦ଶ,   . . .   , 𝑦௡ in the optimized function (13), it is ensured that the values of 𝑦௝ will always
be minimal, i.e. the equation 𝑦௝ = 𝑦௜ + 𝑞௝will be applied instead of an inequality. In the case 𝑥௜௝ = 0, for 𝑖 ≠ 𝑗,
the inequality (5) expresses the relationship 𝑦௝ ≥ 𝑦௜ + 𝑞௝ − 𝑄.

Statements (7) and (8) declare 2𝑛 equations, which express that only one arc leads from each node i I and only
one arc leads to each node 𝑗 ∈ 𝐼. Statement (9) declares that for each store nodes 𝑛 + 1, … , 𝑛 + 𝑠 , the number of
arcs leaving is equal to the number of arcs entering. Statement (10) declares that there are no loops in the graph.
Statement (11) declares that there are no arcs between store nodes.

The inequalities in (12) state that the lower and upper bounds of flow variables 𝑥௜௝ are 0 and 1. The inequalities in
(13) declare that each flow variable 𝑦௝ is greater than or equal to 𝑞௝, and each 𝑦௝ can’t be greater than the capacity
𝑄 of vehicle.

1.3 Mathematical Solution of VRPMW with Given Priority of Delivery

For the delivery of goods in two different temperature regimes (e.g. frozen goods -18°C and chilled goods +6°C),
they can be transported with a separating partition: The partition enables the respective temperature regimes to be
maintained in individual parts of the transport space. In such a case, the sequence of customers should be prepared
so that frozen goods are unloaded first, followed by customers with chilled goods. It means that customers (nodes)
with frozen goods have a higher priority delivery.

A row vector 𝑝 = (𝑝ଵ,  𝑝ଶ,   . . .   , 𝑝௡). with component values of 1 or 2 is introduced to indicate the priority of
customer nodes. The node priority condition does not allow a cycle or path with any arc leading from a node with
priority 2 to a node with priority 1. This is achieved by adding a new constraint

 𝑥௜௝ = 0,    𝑖, 𝑗 ∈ 𝐼, 𝑝௜ > 𝑝௝ (15)

in the optimization model (2).

1.4 Implementation of the Solution in Matlab Code

The solution to the VRPMW problem is implemented in the Matlab programming language and is contained in
the M-function SOLVER_VRPMW_Z.m, which is presented as an Appendix at the end of this article. In the Matlab
solution, the same variables are used as in the mathematical description. However, variable identifiers are adapted
to the syntax of the Matlab language.

The M-function SOLVER_VRPMW_Za.m is started using the special setup M-script, which is not published in this
article. Using the setup M-script, all input data are introduced, all output data are taken, and the all figures shown
in this article are plotted.

The output flow variables are the components of column vector V , which is obtained as the result of the command
V=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub,[],options) (App. row No. 23). A more detailed expla-
nation of command intlinprog can be found in the User’s Guide [3].

The matrix A of system linear inequalities and the column vector b of their right sides are created in Matlab code
by statements on lines No. 4 to 10 in the Appendix. The matrix Aeq of system linear equalities and the column
vector beq of their right sides are created by statements on lines No. 11 to 15 of the Appendix.

The lower and upper bounds of the flow variables with respect to the relations (10), (11), (12), (13) are created as
components of vectors lb and ub on lines No. 16, 17, 18, 19 in the Appendix. The fulfilment of condition (15) is
ensured by the command in line No. 20.

The coefficients of the objective function are created by commands on line No. 22 of the Appendix. By last com-
mand on the line No. 22 all flow variables are taken as integers.

The for-cycle commands on lines No. 26 and 27 allow calculation of the total length of cycles and paths TotLgth
and the total driving time TotDur of all used trucks. The total driving time TotDur includes service times of all
customers. The M-function VRPMW_SOLVER_Z.m is executed by using a special startup M-script which enables
the introduction of input data, processing of output data, and drawing output cycles and paths. The startup M-script
is not presented in this article.

2 Demonstration Applied Task
Three warehouses in the region of Czech Republic and 27 customers were selected for the demonstration of the
applied task. The GPS coordinates of customer locations and warehouses are listed in Table 1. In the table
𝑞௜ means the number of ordered containers by customer 𝑖 and the value 𝑝௜ specifies frozen or chilled goods. The
value 𝑝௜ = 1 is for frozen goods and 𝑝௜ = 2 means chilled ones. The customer and warehouse locations according
to their GPS coordinates you can see in Figure 1. The considered cargo capacity of all vehicles is 18 containers.
The service time 𝑚௜ for each customer 𝑖 is given by 20 minutes plus one minute for each unloaded container 𝑞௜,
i.e. 𝑚௜ = (20 + 𝑞௜) 60 in seconds.

𝑖

Customers
1 2 3 4 5 6 7 8 9 10

𝐸௜ (°) 16.24160 16.08722 14.69055 15.27025 16.66231 16.98885 14.90985 17.11870 15.58698 14.85888
𝑁௜ (°) 50.57513 50.27706 49.41570 49.95616 49.72949 49.95986 50.42491 49.46988 49.61639 49.99393

𝑞௜ 7 1 5 4 4 3 3 6 3 3
𝑝௜ 1 2 1 2 1 2 1 2 1 2

i

Customers
11 12 13 14 15 16 17 18 19 20

𝐸௜ (°) 14.74052 15.63217 15.36320 15.598478 15.30779 15.04006 15.22476 16.65998 15.99651 15.90839
𝑁௜ (°) 50.15575 50.35722 50.43471 49.42432 50.73916 50.76432 49.42156 49.49256 49.84431 50.02656

𝑞௜ 7 1 1 7 1 5 1 6 3 5
𝑝௜ 1 2 1 2 1 2 2 2 1 1

i

Customers Stores
21 22 23 24 25 26 27 28 29 30

𝐸௜ (°) 14.4257 16.5257 16.4257 16.1565 16.3101 17.3520 17.3535 14.6359 16.2264 16.7487
𝑁௜ (°) 49.7105 50.0569 50.8749 50.7268 49.6891 50.8844 50.4806 51.0259 49.3061 50.6544

𝑞௜ 3 5 1 1 3 5 3 - - -
𝑝௜ 1 2 1 2 1 2 1 - - -

Table 1 The customers and stores GPS coordinates 𝐸௜ , 𝑁௜ , numbers of delivered containers 𝑞௜, priorities 𝑝௜

By running the VRPMW_SOLVER_Z.m function with above-given input parameters, an optimal solution which con-
sists of 4 cycles and 3 paths is found and the sum of travel distances of all vehicles is minimal. All cycles and paths
are shown in Figure 1. This means that the delivery of 97 containers to customers can be ensured by seven trucks,
and the total distance traveled by vehicles distance is 1 839,585 km the sum of driving times (hh:mm:ss) of all
seven trucks, including the service times for unloading goods, is 41:32:44. The list of customers on the cycle/path,
numbers of delivered containers, priorities, total lengths, and durations can be found in Table 2.

If the priority in the delivery of goods is canceled, it is possible to reach it by canceling condition 15, which is
achieved in the m-function by canceling all command line No. 20. Then, the optimal solution consists of 3 cycles
and 3 paths. The total distance traveled by vehicles is reduced to 1 689,264 km, and the sum of driving times of
vehicles is reduced to 39:06:09.

If frozen and chilled goods will be delivered separately, in the command on line No. 18, the condition p(i)~=p(j)
will be replaced by the condition p(i)>p(j). Then the optimal solution consists of 3 cycles and 3 paths such that
the total distance traveled by vehicles is increased to 2 010,762 km, and the sum of driving times of vehicles is
increased to 44:04:14.

.

Figure 1 The optimal solution VRP for minimal traveling distance

No.

 Start
Store

Customers
Stop
Store

Lengths
(km)

Duration
(hh:mm:ss)

1
Path

i 28 17 18 12 4 8 29
373.342 8:21:10 𝒒𝒊 - 1 6 1 4 6 -

𝒑𝒊 - 2 2 2 2 2 -
2

Cycle
i 29 15 21 11 5 10 29

374.607 8:16:03 𝒒𝒊 - 1 3 7 1 3 -
𝒑𝒊 - 1 1 1 1 2 -

3
Path

i 29 25 1 20 2 - 30
216.588 5:17:01 𝒒𝒊 - 3 7 5 1 - -

𝒑𝒊 - 1 1 1 1 - -
4

Cycle
i 29 7 9 19 22 6 29

309,669 7:00:25 𝒒𝒊 - 3 3 3 5 3 -
𝒑𝒊 - 1 1 1 2 2 -

5
Cycle

i 30 27 26 - - - 30
172.132 3:40:08 𝒒𝒊 - 5 5 - - - -

𝒑𝒊 - 1 2 - - - -
6

Cycle
i 30 23 24 - - - 30

124.304 2:46:17 𝒒𝒊 - 1 1 - - - -
𝒑𝒊 - 1 2 - - - -

7
Path

i 30 3 13 14 16 - 28
268.943 6:11:38 𝒒𝒊 - 5 1 7 5 - -

𝒑𝒊 - 1 1 2 2 - -
 Total 1 839.585 41:32:44

Table 2 The customers cycles and paths with respect priorities.

3 Conclusion
The set goal of developing an optimization model for solving the vehicle routing problem for multiple warehouses
and prioritizing customers according to the temperature regime of the delivered goods was met. Optimization is
realized by minimizing the sum of the distances traveled by all vehicles used to deliver goods. The completion of
the created model is a software application, i.e. the creation of the M-function VRPMW_SOLVER_Z.m, which real-
izes the solution of the VRPMW problem for an arbitrary number of 𝑛 customers and 𝑠 warehouses. The created
software was applied to an illustrative task with 3 warehouses and 27 customers. Its solution took about 15 minutes
on a common laptop. The software is practically usable for up to 40 customers, but the processing time is increasing

rapidly. The application of the created software in logistics practice enables the saving of vehicle distances traveled
and thus the fuel consumed.

Acknowledgements
The paper was supported by the grant No. CZ.01.1.02/0.0/0.0/21_374/0027244 "Technology development for in-
telligent traffic flow management - 2nd part - optimization and extension" of Czech Ministry of Industry and
Trade.

References
[1] Eksioglu, B., Vural, A.V. & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Com-

puters & Industrial Engineering, 57, 1472-1483.
[2] Jonak, R., Smutný, Z., Simunek, M. & Dolezel, M. (2020). Rout and Travel Time Optimization for Deliv-

ery and Utility Services. Acta Informatica Pragensia, (2) 9, 200-209.
[3] Math Works. Inc. (2024). Optimalization ToolboxTM. User´s Guide. Natick.
[4] Winston, W. L. (1994). Operations Research. Applications and Algorithms. Duxbury: Duxbury Press.
[5] Toth, P. & Vigo, D. (1998). Exact algorithms for vehicle routing. Boston: Kluwer Academic Publisher
[6] Zahrádka, J. (2023) The Exact Solution of Vehicle Routing Problem by Mixed Integer Linear Programming

in Matlab. In J. Zahrádka, Proceedings of 41st International Conference on Mathematical Methods in Eco-
nomics (pp, 433-438). Prague: Czech Society for Operations Research.

Appendix

 1: function [X, y, TotLgth, TotDur] = VRPMW_SOLVER_Z(n, s, D, C, Q, q, p, m)
 2: options = optimoptions('intlinprog', 'MaxTime', 3600, 'MaxNodes', 3000000);
 4: A=zeros(n*n-n, (n+s)*(n+s)+n); Aeq=zeros(2*n+s,(n+s)*(n+s)+n); TotLgth=0;
 5: k=0; for i=1:n for j=1:n
 6: if i~=j k=k+1;A(k, (n+s)*(n+s)+i)=1;A(k, (n+s)*(n+s)+j)=-1; end; end; end
 7: k=0; for i=1:n for j=1:n if i~=j k=k+1; A(k, (n+s)*(i-1)+j)=Q; end; end; end
 8: for i=1:n*n-n for j=1:n if A(i,(n+s)*(n+s)+j)==-1 b(i,1)=Q-q(j); end; end; end
 9: k=n*(n-1); for i=1:s for j=1:n
10: k=k+1;A(k,n*(n+s)+(i-1)*(n+s)+j)=Q;A(k,(n+s)*(n+s)+j)=-1;b(k,1)=Q-q(j);end;end
11: for i=1:n for j=1:n+s Aeq(i, (i-1)*(n+s)+j)=1; end; beq(i,1)=1; end
12: for i=1:n for j=i:n+s:(n+s)*(n+s) Aeq(n+i,j)=1; end; beq(n+i,1)=1; end
13: for i=1:s for j=1:n
14: Aeq(2*n+i, (n+s)*n+(i-1)*(n+s)+j)=1; Aeq(2*n+i,(n+s)*(j-1)+n+i)=-1;
15: end; beq(2*n+i,1)=0; end
16: lb=zeros((n+s)*(n+s),1); ub=ones((n+s)*(n+s),1);
17: for i=1:n ub(i+(n+s)*(i-1), 1)=0; end
18: for i=1:s for j=1:s ub((n-1)*(n+s)+n+i*(n+s)+j, 1)=0; end; end
19: for i=1:n lb((n+s)*(n+s)+i, 1)=q(i); ub((n+s)*(n+s)+i,1)=Q; end
20: for i=1:n for j=1:n if p(i)>p(j); ub((n+s)*(i-1)+j)=0; end; end; end
21: ub=ub'; lb=lb'; DT=D';
22: f=DT(:);f((n+s)*(n+s)+1:(n+s)*(n+s)+n)=1; intcon=1:(n+s)^2+n;
23: intlinprog(f, intcon, A, b, Aeq, beq, lb, ub, [], options);
24: V=round(V); X=V(1:(n+s)*(n+s));
25: X=reshape(X, [n+s, n+s]); X=X'; y=V((n+s)*(n+s)+1: end) ; TotDur=sum(m);
26: for i=1:(n+s) for j=1:(n+s) if X(i, j)==1
27: TotLgth=TotLgth+D(i, j); TotDur=TotDur+C(i, j); end; end; end
28: end

