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Abstract—This paper introduces a Bayesian approach to es-
timating distribution shifts over the modelled variables and
continuous model adaptations to mitigate the impact of such
shifts. The method exploits probabilistic inference over sets of
correlated variables in causal models describing data generating
processes. By extending the models with latent auxiliary vari-
ables, probabilistic inference over sets of correlated variables
enables estimation of the distribution shifts impacting different
parts of the models. Moreover, the introduction of latent auxil-
iary variables makes inference more robust against distribution
shifts and supports automated, self-supervised adaptation of the
modelling parameters during the operation, often significantly
reducing the adverse impact of the distribution shifts. The
effectiveness of the method has been validated in systematic
experiments using synthetic data.

Index Terms—distribution shift, inference, Bayesian Networks,
machine learning, trust

I. INTRODUCTION

Advances in machine learning have enabled applications
that rely on automated classification and prediction using com-
plex data patterns. The estimation of the expected accuracy
of such solutions under operational conditions is a key in
building trust. In machine learning it is typically assumed
that the data used for the training of the models and the
data used at runtime are sampled from the same probability
distribution P (V), where V = {v1, v2, . . . , vN} denotes the
set of relevant random variables. However, this is often not
a realistic assumption. Typically, the training data is sampled
from P (V) while the data used at runtime is sampled from a
different distribution P (V)∗, i.e. Kullback-Leibler divergence
DKL(P (V )∗||P (V )) ̸= 0. In such a case, the actual accuracy
of the classifiers and predictors can be significantly lower
than the expected accuracy obtained during the testing of
the models using the data sampled from P (V). This paper
introduces a probabilistic approach that supports identification
of distribution shifts at runtime and can use this information to
automatically correct the model reducing the adverse effects
of such shifts. The method is based on a causal modelling
pattern that enables probabilistic inference about distribution
shifts with respect to different components of a probabilistic
model. The approach described in this paper partially builds

on the ideas presented in [1], where the authors utilised latent
variables to model changes in the quality and relevance of
sensor data. That approach, however, focused on the analysis
of data sources and could handle models consisting of binary
variables only.

The approach presented in this paper, on the other hand,
exploits correlations between different observations to pin-
point any modelling components that have been rendered sub
optimal due to the changes in the corresponding probability
distributions characterizing the true data generating process.
The presented approach introduces multiple benefits. Firstly, it
enables identification of inadequate components in factorized
probabilistic models of data generating processes. If the distri-
bution shifts in the true data generating processes are limited to
small subsets of variables and occur over extended periods of
time, the identified modelling components could be repaired
with data sets that are small compared to the sets required
for relearning of the entire model. Secondly, the introduced
modelling pattern improves inherent robustness against the
distribution shifts as it reduces their impact on the overall
inference process, i.e. it acts as a ”shock absorber” in the rea-
soning process. Thirdly, the pattern supports implementation
of auto correcting mechanisms that exploit estimation of biases
and use this information to partly compensate the impact of
distribution shifts.

A. Related work

The concept of data shift, or dataset shift, has seen increased
interest since approximately 2008 [2]–[4]. Some of the early
references to the dataset shift problem can be found in [5]. A
standard definition of dataset shift [6] is:

Definition I.1 (Dataset shift). Dataset shift appears when
training and test set probability distribution functions are
different. That is when Ptr(x, y) ̸= Ptst(x, y), where x
denotes the set of covariates or features and y denotes the
target variable.

Before a standard definition of dataset shift was presented,
other terminology was used to describe the same phenomenon.
Alternate terms include concept shift, changes of classification,



changing environments, contrast mining, fracture points and
data fractures [6]. Dataset shift can also take different forms,
namely

1) covariate shift, where Ptr(y|x) = Ptst(y|x) and
Ptr(x) ̸= Ptst(x) (appearing in problems where the
class label is causally determined by the covariate values
– so called X → Y problems),

2) prior shift, where Ptr(x|y) = Ptst(x|y) and Ptr(y) ̸=
Ptst(y) (appearing in problems where the covariate
values are causally determined by the class label – so
called Y → X problems),

3) concept shift, which can be summarized as changes to
the definition of the classes, i.e. Ptr(y|x) ̸= Ptst(y|x),
Ptr(x) = Ptst(x) in X → Y problems, and Ptr(x|y) ̸=
Ptst(x|y), Ptr(y) = Ptst(y) in Y → X problems,

4) other types not occurring regularly in most practical
problems, where Ptr(y|x) ̸= Ptst(y|x), Ptr(x) ̸=
Ptst(x) in X → Y problems, and Ptr(x|y) ̸= Ptst(x|y),
Ptr(y) ̸= Ptst(y) in Y → X problems.

Of particular interest is non-stationary environments, where
the joint class-data distributions change with space or time.
The obvious application where this takes place is adversarial
classification (for example fraud detection, spam filtering and
intrusion detection [6]). Other examples include condition-
based monitoring in mechanical systems, where parts “wear
out” over time [7], [8] and in the case of sensor measurements,
changes in the environmental conditions [4].

The first investigation into dataset or distribution shifts
within the context of data fusion can be found in [9] within
an application of identifying failed sensors. Shifts in the
distribution of the data have important implications when con-
sidering the representation and reasoning in a fusion system.
Over several years, the Evaluation Techniques for Uncertainty
Reasoning Working Group (ETURWG) has been developing
the Uncertainty Representation and Reasoning Framework
(URREF) ontology that can be used as a framework to evaluate
uncertainty representation and reasoning in a fusion system
[10]–[14]. Dataset shift influences both the uncertainties in
representation (model) of the fusion system as well as the
reasoning (inference algorithm) aspects of the fusion system.
Representation uncertainties are compounded when the system
is designed and trained for an environment which is different
from the environment in which the system is deployed. This
contributes to challenges of certifiability of the deployed sys-
tem, in that certain performance parameters cannot be guaran-
teed where some environmental, sensor or system parameters
fall outside those for which the system was trained or tested
[15]–[18]. Reasoning uncertainties are compounded by dataset
shift through, for example in a Bayesian context, a mismatch
of support between the prior distribution and the likelihood
function, leading to more diffuse posterior distributions (see
section II-A).

The consequences of dataset drift can be as a result of
the conceptualisation, design, implementation, testing and op-
erational phases of fusion system development [19]. Dataset

distribution shifts can already manifest during the conceptu-
alisation phase owing to misguided characterisation of fusion
inputs/outputs, and/or selection of a mismatched representation
and reasoning schemes. Training typically takes place during
the design phase of the fusion system. Dataset shift can be
introduced during training already, by not training on represen-
tative data, or training on synthetic data, in cases where mea-
sured data is scarce. During fusion runtime, dataset distribution
shifts are encountered, owing to the system encountering
data which has changed, or situations with outcomes that are
slightly different to those for which the system was designed.

The relevant URREF criteria that relate to uncertainties
owing to dataset shift related to representation (modelling)
are subclasses under the RepresentationCriterion, where the
subclasses of Expressiveness, Simplicity, Adaptability and
Compatibility are relevant uncertainty evaluation cirteria. More
notably, given the unknown (epistemic) aspects of dataset shift
owing to a variety of conceptual variations in real world appli-
cations, evaluation of HigherOrderUncertainty, i.e. uncertainty
about uncertainty is a particularly relevant evaluation criterion.

The URREF criteria that relate to uncertainties owing to
dataset shift related to reasoning (inference algorithms) are
subclasses under the ReasoningCriterion. Here, Consistency,
Correctness, Scalability and Performance are relevant criteria.
It is clear that all of the mentioned criteria will be affected
by dataset shift. Apart from the representation and reasoning
criteria, there are obviously subclasses of the DataCriterion
which are criteria relevant to dataset shift [14]. These in-
clude DataQuality criteria which include Accuracy and Preci-
sion, as RelevanceToProblem and WeightOfInformation (a.k.a.
WeightOfEvidence in some versions of the ontology).

The paper is organized as follows: Section II introduces
the modelling pattern and its use; section III discusses how
to detect dataset shift and estimate its magnitude; section IV
describes the self-correcting inference processes; and section
V presents the experiments and discusses the results. Finally,
section VI describes applications of the method, and section
VII provides concluding remarks.

II. MODELLING

We assume a causal probabilistic model that encodes the
joint probability distribution P (V) over a set of random
variables V = {v1, v2, . . . , vN}. The model represents a data
generation process producing observations ϵ produced by dif-
ferent sources (e.g. sensors) that are correlated with the states
of the variables of interest. Moreover, we are assuming that the
model captures the joint probability/density over all relevant
variables V that can be represented through a factorization:

P (V) =
∏
vi∈V

P (vi|π(vi)), (1)

where π(vi) denotes the set of all parents of vi, i.e. the
variables that directly influence the states of vi. For root
variables π(vi) = ∅ and P (vi|∅) = P (vi). Such factoriza-
tion corresponds to a graph representing direct dependencies
between variables in V . An example of such a graph is



shown in Fig. 1. The graph corresponds to the factorization
of the joint probability distribution over the set of variables
V = {Class,O,R,E,A,B,C}:

P (V) =P (Class)P (O|Class)P (R|Class)

P (E|Class)P (A|E)P (B|E)P (C|E). (2)

In this paper it is assumed that the parameters in (2)
are obtained through machine learning, such as Expectation
Maximization (EM), as some variables are latent, i.e. their
states are not observed during the sampling of the training
data. E in (2) is an example of a latent variable. This is
an example of an Y → X problem, where the “features”
are conditioned on the class variable. Dataset shift can occur
in two ways. The first is through changes to the prior class
distribution through Ptrn(Class) ̸= Ptst(Class), i.e. prior
shift. Alternatively, there may be changes to the conditional
distributions of the child variables given the class, for example
Ptrn(E|Class) ̸= Ptst(E|Class), i.e. concept shift.

Figure 1: A basic model describing correlations between the
variables in a data generation process.

A. Impact of Distribution Shifts

The factorization in (1) is key to efficient inference over
the states of any unobserved variable vi ∈ V given a set of
observations ϵ, where the symbol ϵ represents evidence, i.e.,
assignment of definite values to a subset of the variables in
V . Probabilistic inference is the computation of P (vi|ϵ), the
posterior distribution over the states of an unobserved variable
vi using Bayes rule1

P (vi|ϵ) =

η

∫
π(vi)

P (π(vi)|ϵpa)P (vi|π(vi))P (ϵch|vi)dπ(vi), (3)

where η is a normalizing constant, ϵpa denotes the set of ob-
servations that can be reached from vi by traversing the graph
via its π(vi) and ϵch denotes the set of observations that can
be reached by traversing the graph via vi’s children ch(vi); i.e.
the total set of observations2 ϵ = ϵpa∪ ϵch. Equation (3) fuses
evidence about causes of vi (variables upstream in the graph)
with evidence about effects of vi (variables downstream in the
graph) via the conditional probability or density P (vi|π(vi)).
If P (vi|π(vi)) correctly represents the true distribution, then

1For the sake of brevity all equations in this paper assume continuous
variables and probability densities. The same equations are valid for discrete
variables, in which case the integrals are replaced with sums.

2Equation (3) assumes that vi d-separates ϵpa from ϵch, which is always
the case if the graph is singly connected.

P (vi|ϵpa) =
∫
π(vi)

P (vi|π(vi))P (π(vi)|ϵpa)dπ(vi) will sup-
port the same states of vi as its likelihood P (ϵch|vi) based on
the observations ϵch. In other words, argmaxvi P (vi|ϵpa) is
close to argmaxvi P (ϵch|vi). Such a situation is illustrated in
Fig. 2.a).

If the true conditional distribution of vi given its par-
ents π(vi) changes, i.e. P (vi|π(vi)) ̸= P (vi|π(vi))∗, then
argmaxvi P (vi|ϵpa) may be significantly different from
argmaxvi P (ϵch|vi), resulting in low P (vi|ϵ). Such a situation
is illustrated in Fig. 2.b). Namely, given P (π(vi)|ϵpa), the
distribution P (vi|π(vi)) suggests a different sample ϵch

3.

Figure 2: a.) P (vi|ϵpa) and P (ϵch|vi) support similar states of
vi. b.) P (vi|ϵpa) and P (ϵch|vi) support different states of vi.

B. Extended Models

To represent a shifted P (V)∗, a new model is obtained by
extending the original model. This is achieved by (i) adding
a set of auxiliary variables D = {∆v1,∆v2, . . . ,∆vM},
resulting in a new set of model variables V ′ = D ∪ V
and (ii) replacing the conditional distribution P (vi|π(vi)) of
each variable vi by P (vi|π(vi),∆π(vi)), where ∆π(vi) ⊆ D
denotes the set of auxiliary variables that are additional parents
of variable vi. This leads to a new factorization:

P (V ′) =
∏

∆vi∈D
P (∆vi)

∏
vi∈V

P (vi|π(vi),∆π(vi)). (4)

This factorization corresponds to a modified graph. Fig. 3
shows an example model that was obtained in this way from
the initial model in Fig. 1. Variables with prefix ∆ denote
auxiliary variables and form the auxiliary set D. A distribution
shift between P (vi|π(vi)) and P (vi|π(vi))∗, can be seen as
a function of the states of vi’s auxiliary variables ∆π(vi). By
controlling the states of ∆π(vi), P (vi|π(vi))∗ is obtained, i.e.
P (vi|π(vi),∆π(vi)) = P (vi|π(vi)∗.
P (vi|π(vi),∆π(vi)) could take on different forms. Para-

metric distributions are especially useful, as they simplify
modelling of the distribution shifts. For example, let’s as-
sume P (vi|π(vi)) is a Gaussian distribution P (vi|π(vi)) ∼
N (µπ(vi), σ

2
π(vi)

), where µπ(vi) and σπ(vi) are parameters

3The observations ϵch can be viewed as a sample from P (ϵch|vi). If
P (vi|π(vi)) ̸= P (vi|π(vi))∗, then ϵch is conditioned on different states of
vi than assumed according to P (vi|ϵpa) based on the original P (vi|π(vi)).



that depend on the states of vi’s parents π(vi) and were
learned from the data sampled on the original distribution
P (V). By adding auxiliary variables ∆pa(vi) we can obtain
P (vi|π(vi),∆π(vi)) as follows

P (vi|π(vi),∆π(vi)) ∼ N (µπ(vi) +∆µ∆π(vi), σ
2
π(vi)

),

where ∆µ∆π(vi) represents a distribution shift as a function of
the states of the vi’s auxiliary variables. This equation can be
easily extended also by making σπ(vi) a function of ∆π(vi).
Other types of more advanced parametric distributions can be
used to represent more elaborate distributions for conditional
probabilities, such as Gaussian and other types of mixtures.

In the example model shown in Fig. 3 it is assumed
that E is a latent continuous random variable whose
P (E|Class,∆π(E)) is defined through three Gaussian com-
ponents, each associated with one of the states of the
discrete Class variable. Continuous variables ∆π(E) =
{∆Ea,∆Eb,∆Ec} denote the shifts of the means for these
components, such that: P (E|Class = a,∆π(E)) ∼ N (µa +
∆Ea, σ2

a), P (E|Class = b,∆π(E)) ∼ N (µb+∆Eb, σ2
b ) and

P (E|Class = c,∆π(E)) ∼ N (µc + ∆Ec, σ2
c ). Continuous

variables A, B and C, on the other hand, represent sensor
measurements whose models are defined over E’s values as
follows:
P (A|E,∆π(A)) ∼ N (µE + ∆A,∆As2E), P (B|E,∆π(B))
∼ N (µE + ∆B,∆Bs2E) and P (C|E,∆π(C)) ∼ N (µE +
∆C,∆Cs2E). Note that each of these variables has two
auxiliary variables defining the shift and the standard devi-
ation respectively, i.e. ∆π(A) = {∆A,∆As}, ∆π(B) =
{∆B,∆Bs} and ∆π(C) = {∆C,∆Cs}. Moreover, the
discrete Class variable has three states and is also in-
fluenced by continuous auxiliary variables ∆π(E) =
{∆Classa,∆Classb,∆Classc} representing parameters of a
discrete categorical distribution. Discrete variables O and R,
on the other hand, represent outputs of two different types
of detectors that can classify the states of Class. These
two variables are assumed to be influenced also by auxiliary
variables ∆π(O) = {∆O1,∆O2,∆O3}, and ∆π(R) =
{∆R1,∆R2,∆R3}, respectively. ∆π(O) and ∆π(R) denote
shifts of the categorical distribution over three types of classi-
fications used in the conditional probability tables of the two
discrete variables.

III. ESTIMATING DISTRIBUTION SHIFTS

The aforementioned model extensions enable estimation
of the distribution shifts for each variable vi, i.e. deviations
between the originally learned parameters P (vi|π(vi)) and the
current distribution P (vi|π(vi))∗ influencing the data generat-
ing processes.
P (vi|π(vi),∆π(vi)) defines a set of different distributions

corresponding to possible situations determined through the
states of π(vi) and ∆π(vi). For the extended model, the dis-
tribution P (vi|ϵ), is computed using Bayes rule and integrating
over the auxiliary variables as follows:

P (vi|ϵ) =

Figure 3: An extended model supporting inference about the
distribution shifts. Yellow nodes represent auxiliary variables.

ηv

∫
π(vi)

∫
∆π(vi)

[P (∆π(vi))P (π(vi)|ϵpa)×

P (vi|π(vi),∆π(vi))P (ϵch|vi)]dπ(vi)d∆π(vi). (5)

The magnitude of the distribution shift can be estimated using
inference. For any auxiliary variable ∆vj ∈ ∆π(vi) Bayes
rule can be used to compute the distributions over its states,
given all observations ϵ:

P (∆vj |ϵ) =

η∆

∫
vi

∫
π(vi)

∫
∆π(vi)\∆vj

[P (∆π(vi))P (π(vi)|ϵpa)×

P (vi|π(vi),∆π(vi))P (ϵch|vi)]dvidπ(vi)d∆π(vi). (6)

This operation estimates the distribution over the states
of ∆vj based on the discrepancy between P (π(vi)|ϵpa)
and P (ϵch|vi) for different combinations of states of
π(vi) and ∆π(vi) \ ∆vj . P (∆vj |ϵ) increases for non-zero
shifts if argmaxvi P (ϵch|vi) is significantly different from
argmaxvi

P (vi|ϵpa).
Equation (6) enables estimation of the shift of different

components of the model. P (∆vi|ϵ) can be used as an
indicator for the occurrence of distribution shifts, alerting the
user about potentially degraded system performance.

IV. ROBUSTNESS AND SELF-SUPERVISED MODEL
ADAPTATION

The extended models presented in Section II-B enable
robust inference in the presence of distribution shifts. By
incorporating the possibility of distribution shifts within a
Bayesian framework, the estimate P (vi|ϵ) given in Equa-
tion (5) is inherently robust to distribution shifts. Reasoning
based on P (vi|π(vi),∆π(vi)) allows an alternative explana-
tion for significant differences between argmaxvi

P (ϵch|vi)
and argmaxvi P (vi|ϵpa). In case of such differences, the
reasoning increases the probability of the states of ∆vi that
would explain the discrepancy. Thus, the reasoning with
auxiliary ∆vi variables reduces the impact of inadequate



modelling parameters; these variables have a role of
“shock absorbers” in the inference process.

Auxiliary variables enable automatic correction of the mod-
els at runtime. This is achieved by creating composite data
generation models representing N events in the same domain
in which sets of observations ϵ1:N = ϵ1, . . . , ϵN were obtained.
The extended model whose graph is shown in Fig. 3 is an
example of the description of the data generation process in a
single event. For N estimation events, all variables from such
an extended model are replicated N times, except the auxiliary
variables in set D, as it is assumed that distribution shifts had
not changed during the period in which N estimation events
took place. Consequently, a single set D is used throughout
all events. The topology of an example composite model is
shown in Fig. 4.

Figure 4: A model supporting inference about the distribution
shifts over two estimation events. Auxiliary shift variables are
represented by yellow nodes.

Such composite models can support effective mitigation
of the impact unknown distribution shifts have on inference
processes. For example, in a class estimation process at the
N th estimation event using observations ϵN , the computation
of class posteriors can be improved by using observations
ϵ1:N−1 from the preceding N − 1 events to estimate the
states of auxiliary variables in D. Conditional probabilities
P (ClassN |ϵ1:N ) and P (∆vj |ϵ1:N ) for the N th can be com-
puted by using well known algorithms supporting Bayesian in-
ference in multi-loop Bayesian networks, such as the Junction
Tree [20]. Without discussing the details of this sophisticated
algorithm, the benefits from using the multi-event models
can be shown by transforming the original network through
grouping of variables, such that all auxiliary variables in D
are considered a single variable D. P (ClassN |ϵ1:N ) can then
be expressed as

P (ClassN |ϵ1:N ) =

ηN

∫
D

P (ClassN |D)P (ϵN |ClassN , D)P (D|ϵ1:N−1)dD

(7)

where P (D|ϵ1:N−1) denotes the estimated joint dis-
tribution over all auxiliary variables in set D con-
ditioned on the observations from N − 1 preceding
events. As the model was obtained through replication,
P (ClassN ) = P (ClassN−1 = . . . = P (Class1)) and
P (ϵ1|Class1, D), . . . , P (ϵN |ClassN , D) are based on iden-
tical conditional probability tables. By inspecting the graph in
Fig. 4, we see that auxiliary variables in D form a d-separation
set [20] between the replicated extended models. Therefore
P (D|ϵ1, . . . , ϵN−1) can be expressed as a factorization

P (D|ϵ1:N−1) = ηDP (D)[∑
Class1

P (Class1|D)P (ϵ1|Class2, D)×∑
Class2

P (Class2|D)P (ϵ2|Class2, D)×

. . .∑
ClassN−1

P (ClassN−1|D)P (ϵN−1|ClassN−1, D)], (8)

where P (ϵi|Classk, D) denotes a mapping that is obtained
from the k-th replicated part of the model. As D d-separates
the modelling fragments corresponding to different estimation
events, this computation can be carried out in a recursive man-
ner. The auxiliary variables can be seen as memory elements,
capturing estimates of the shifts from preceding estimation
events. The observations from different events are correlated
via the auxiliary variables in D. Therefore, the classification
process in the N th step is supported not only by the current
observations ϵN but also by the preceding sets of observations
ϵ1:N−1. This is due to the inference processes estimating
P (D|ϵ1:N−1). As more events are considered, the estimate
P (D|ϵ1:N−1) is likely to approach the true distribution shifts,
improving the estimation P (CN |ϵ1:N ) in the process.

Moreover, P (∆vj |ϵ1:N ) can be obtained through marginal-
ization of P (D|ϵ1:N )

P (∆vj |ϵ1:N ) = ηD

∫
D\∆vj

P (D|ϵ1:N )dD (9)

V. EXPERIMENTS

Multiple experiments were carried out to validate the ap-
proach using extended models with different numbers of esti-
mation events. Fig. 4 shows an example with two estimation
events. The synthetic data for experiments was prepared by (i)
using an extended model representing 30 estimation events,
(ii) splitting auxiliary variables between sets Ds and D0, such
that Ds ∪ D0 = D and (iii) fixing the values of variables in
D0 at zero shift. For each combination of Ds and D0, the
model was used to produce 3000 samples, each consisting of
sampled values for the auxiliary variables in Ds based on their
priors, 30 sets of observations ϵ1, . . . , ϵ30 corresponding to 30
estimation events and the true state of the Class variable,
needed for testing.

Discrete variables O and R were associated with
conditional probability tables P (O|Class,∆π(O)) and



P (R|class,∆pa(R)) that encoded noisy observations, such
that the classification error rates based on O and R only,
exceeded 25%, without introducing any shifts. In other words,
in the experiments observations of A, B and C contributed
significant information for the overall classification. In all
experiments, variables A, B, C, O and R were observed, while
variable E was latent.

Also, in the experiments the distributions over O and R
were not subject to distribution shifts, i.e. the states of ∆π(O)
and ∆π(R) were instantiated to zero shifts during the data
sampling process. The same was true for Class. However, in
all experiments the full extended model was used for the shift
estimation , in which also ∆π(O), ∆π(R) and ∆π(Class)
had to be estimated, reflecting the fact that no prior knowledge
about any shift was made, except the form of distributions.

In the first series of experiments the states of auxiliary
variables ∆π(A), ∆π(B) and ∆π(C) were randomly sampled
along with the observations of A, B, C, R, O and the true
class label of the last event. In this way distribution shifts in
the modelling components representing sensors A, B and C
were introduced. The sensor variance was kept low, as this
introduced greater discrepancies between P (V) and P (V)∗.
Moreover, the shifts ∆π(E), ∆π(O), ∆π(R) and ∆π(Class)
were set to zero. The first row in Table I shows the 27.5 %
classification error rate of the original model trained on the
data sampled from the initial distribution P (V) but used for
the classification of observations ϵ sampled from P (V)∗. The
structure of this model is shown in Fig. 1. Subsequent rows in
Table I show the classification error rates achieved by using
different numbers of estimation events. The second row shows
14.6 % classification error rate achieved on the same data set
using the extended model corresponding to the graph in Fig. 3,
i.e. using the observations from a single event. As the number
of used estimation events grows, the error rates drop to 4.6%
for 30 events.

In the second series of experiments states of ∆π(E) were
randomly sampled along with the observations of A, B, C, R,
O and the true class label of the last event. Moreover, the shifts
∆π(A), ∆π(B), ∆π(C), ∆π(O), ∆π(R) and ∆π(Class)
were set to zero during data sampling. The first row in Table II
shows the classification error rate 34.8% of the original model
trained on the data sampled from the initial distribution P (V).
Subsequent rows in Table II show the classification error rates
achieved by using different numbers of estimation events. The
second row shows 16.33 % classification error rate achieved
on the same data set using the extended model corresponding
to the graph in Fig. 3 , i.e. using observations from a single
event. As the number of estimation events reaches 30, the error
rate drops to 9.6%.

In the third series of experiments ∆π(A), ∆π(B), ∆π(C)
and ∆π(E) were randomly sampled along with the observa-
tions of A, B, C, R, O and the true class label of the last
event. The first row in Table III shows the classification error
rate 40.2% of the original model trained on the data sampled
from the initial distribution P (V). Subsequent rows in Table II
show the classification error rates achieved by using different

Experiment Classification Error

Don’t adapt & test on P (V)∗ 27.5%
Auto adapt 1 & test on P (V)∗ 14.6%
Auto adapt 2 & test on P (V)∗ 10.8%
Auto adapt 3 & test on P (V)∗ 8%
Auto adapt 4 & test on P (V)∗ 6.2%

Auto adapt 30 & test on P (V)∗ 4.6%

Table I: Experiments with random distribution shift of the
conditional probabilities of A, B and C.

Experiment Classification Error

Don’t adapt & test on P (V)∗ 34.8%
Auto adapt 1 & test on P (V)∗ 16.33%
Auto adapt 2 & test on P (V)∗ 14 %
Auto adapt 3 & test on P (V)∗ 12.6%
Auto adapt 4 & test on P (V)∗ 11.9%

Auto adapt 30 & test on P (V)∗ 9.6%

Table II: Experiments with random distribution shifts of the
conditional probabilities of E .

numbers of estimation events. The second row shows 17.5 %
classification error rate achieved on the same data set using
the extended model corresponding to the graph in Fig. 3, an
error reduction by more than 56 %. As the number of used
estimation events reaches 30, the error rate drops to 11.1% .

Finally, the extended models along with the self adaptation
approach were also tested on the data sampled from P (V)
prior to the distribution shifts. In this case it is expected that the
self adaptive approach cannot achieve the same classification
accuracy as the original model assuming zero distribution
shifts (i.e. a model corresponding to the graph in Fig. 1. Table
IV shows classification error rates for multiple cases: row 1
shows the best possible classification accuracy achieved by the
ground truth model representing P (V); in row 2 to 5 show the
classification error rates for different numbers of estimation
events considered for the estimation of distribution shifts. The
error rates dropped from 8.5 % to 1 % as the number of events
is increased from 1 to 30.

A. Discussion of the Results

The experimental results confirmed the expected impact of
distribution shifts and the potentially useful properties of the
presented method.

Firstly, using original models on data sampled from dis-
tributions that have undergone significant shifts can result in

Experiment Classification Error

Don’t adapt & test on P (V)∗ 40.2%
Auto adapt 1 & test on P (V)∗ 17.5 %
Auto adapt 2 & test on P (V)∗ 15.2%
Auto adapt 3 & test on P (V)∗ 14.2 %
Auto adapt 4 & test on P (V)∗ 13.7%

Auto adapt 30 & test on P (V)∗ 11.1%

Table III: Experiments with random distribution shifts of the
conditional probabilities of A, B, C and E.



Experiment Classification Error

Known P (V) & test on P (V) 0.7%
Auto adapt 1 & test on P (V) 8.47 %
Auto adapt 2 & test on P (V) 7.33%
Auto adapt 3 & test on P (V) 6.1 %
Auto adapt 4 & test on P (V) 4.7%

Auto adapt 30 & test on P (V) 1%

Table IV: Experiments with no distribution shifts.

large increase of error rates. This is clearly visible in the first
row of Tables I, II and III, where the error rates increased by
more than an order of magnitude compared to the expected
performance of the optimal model trained and tested on the
original distribution P (V).

Secondly, the extended model in combination with inference
did introduce inherent robustness. Already the extended model
for one estimation event significantly reduced the impact of the
distribution shifts, as seen on the second row of Tables I, II
and III.

Thirdly, the models representing multiple estimation events
significantly reduced the error rates by correlating observations
from subsequent events. In fact, the estimation of distribution
shifts appears to be effective already with a few estimation
events. While this seems to be a consequence of relatively
simple parametric distributions used in the experiments, it
is still surprising. This is likely to be a consequence of the
inference exploiting heterogeneous observations from each
estimation event. Clearly, the more complex parametric dis-
tributions are used, shifts for more parameters have to be
estimated, requiring reasoning over more estimation events.

Also,the experiments confirm that the method supports
estimation o distribution shifts related to different parts of the
models, including the parameters of latent variables. Clearly,
the effectiveness of the method depends also on the redun-
dancy of the data source as well as the dependencies in the
actual probability distributions from which the training and
operational data were sampled.

Finally, Table IV shows the impact of the automatic shift
estimation on the model performance in the case no shifts
were introduced, i.e. the model was trained and tested on the
data sampled from the same distribution P (V). The extended
models do introduce additional uncertainty to inference re-
sulting in error rates that are for larger numbers of estimation
events slightly higher than the error rates using the optimal
model trained and tested on the initial P (V) data distribution.
For example, for 30 events the presented approach achieved
1.% error rate vs. 0.7 % error rate achieved by the ground
truth model. For smaller numbers of events, the presented
approach produces higher error rates, such as 8.5.% for one
event, 6.1.% for three events, etc. However, the performance
of the initial model that was not adaptive dropped significantly
after the introduction of the distribution shifts resulting in
P (V)∗, whereas the adaptive models continued performing
with low error rates prior and after the distribution shifts.
For example, as indicated by Tables I and IV, the adaptive

model of four estimation events had error rates of 4.7% on data
sampled from the original distribution P (V) while it had the
error rate of 6.2 % on the data from P (V)∗ that was obtained
by shifting distributions of the observation models associated
with nodes A, B and C. The optimal model without auxiliary
shift variables, on the other hand, achieved 0.7 % error rates
on P (V), but was significantly worse on the data sampled
from P (V)∗, where the error rates exceeded 27%. Similar
tendencies can be observed by inspecting Tables II and III.

In other words, we sacrifice some classification accuracy
when there is no shift for the overall robustness of the model
to distribution shifts.

VI. APPLICATIONS

The observed properties can be exploited in multiple ways,
especially if Probabilistic Graphical Models are used.

Firstly, the auxiliary variables can be directly integrated
into the model supporting the enhanced inference processes.
This can result in significantly improved robustness against
distribution shifts and even in automatic adaptation of the
modelling components, such that the distribution shifts are
mitigated.

Moreover, such extended models could be used also next
to the classifiers, supporting auxiliary monitoring of the
distribution over relevant variables. The inference on such
models using the same data as the main classifiers could
be used to indicate potential modelling discrepancies, pro-
viding a warning about potential degradation of the main
classifier. If the main classifiers used the same models of the
correlations between the observable variables and the class
variable, then the inference on each auxiliary shift variable
would directly pinpoint the main modelling components that
should be adapted. For example, if inference on the extended
model shown in Fig. 3 yielded a posterior P (∆A|ϵ) indicating
a significant distribution shift, the CPT P (A|E) in the original
model should be updated. Alternatively, the CPT P (A|E) pin-
pointed by the inference process could simply be deactivated
or removed from the model, which is eliminates the impact of
the shift.

VII. CONCLUSIONS

Modern AI based solutions increasingly rely on statistical
domain models that capture correlations between variables
of interest. Such models in combination with inference algo-
rithms support reasoning about data patterns obtained during
operation. Statistical models are typically obtained through
machine learning using training data sampled under certain
conditions in the domain. Unfortunately, the data during
operation is often sampled from a different distribution than
the data that was used for the training of the models. Such
distribution shifts can have a significant impact of the quality
of the inference processes which, in turn, can have adverse
effects on the application functions. Unfortunately, distribution
shifts can often not be avoided.

The proposed approach uses probabilistic modelling and in-
ference to (i) identify distribution shifts, (ii) introduce inherent



robustness against distribution shifts and (iii) automatically
adapt the models to identified distribution shifts.

The approach assumes probabilistic reasoning over sets
of dependent variables representing heterogeneous sources of
data. The modelling and inference methods introduced by
probabilistic graphical models enable systematic extension of
probabilistic domain models with auxiliary variables support-
ing explicit probabilistic inference about possible distribution
shifts. In this way, the distribution shifts associated with
different components of the model can be identified. Modelling
over multiple events enables increasingly accurate estimation
of the distribution shifts. The estimation results can contribute
to improved trust in a system in multiple ways. Firstly, they
can be seen as a “data shift gauge” measuring the shift and
informing the users about situations in which the solution’s
performance might have degraded. If the distribution shifts
in the true data generating processes are limited to small
subsets of variables and occur over extended periods of time,
the identified modelling components could be repaired with
data sets that are small compared to the sets required for
relearning of the entire model. Secondly, the model exten-
sions are likely to improve the inference robustness against
distribution shifts. This is possible as the model extensions
allow explanations of combinations of the observed data that
were not available during training. Finally, by exploiting the
inference about auxiliary variables over multiple estimation
events, the impact of the distribution shifts can be to a great
extent reduced/eliminated.

These properties were confirmed in controlled experiments
with synthetic data. By manipulating ground truth models,
distribution shifts corresponding to different components of
the models were introduced in a systematic way. While the
experimental results reported in the paper correspond to a spe-
cific ground truth model, the same tendencies were observed in
experiments with different models. Clearly, the effectiveness
of the approach depends on the actual domain, the sets of
observed variables and dependencies between them. The more
variables representing heterogeneous sources and the sparser
dependencies between them, the greater is effectiveness of the
presented solution. The paper used a simple basic model with
a tree topology for the sake of clarity. However, the presented
method can be applied to complex models consisting of mul-
tiple loops. Also, a single estimation event could correspond
to a dynamic process represented with a Dynamic Bayesian
Network, instead of a static model in Figure 1. Also, in this
paper it was assumed that the distribution shifts take place over
longer periods of time, such that they can seen as constant
during a multi-event estimation process.

Future work will focus on applying the presented method
to real world cases and efficient recursive estimation of distri-
bution shifts over time.
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