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Abstract—While the number of test runs (test cases) is
often used to define the time scale to measure quantitative
software reliability, the common calendar-time modeling with
non-homogeneous Poisson processes (NHPPs) is approximately
applied to describe the time scale and the software fault-count
phenomena as well. In this paper we give a conjecture that
such an approximate treatment is not theoretically justified, and
propose a simple test-run reliability modeling framework based
on non-homogeneous binomial processes (NHBPs). We show that
the Poisson-binomial distribution plays a central role in the
software test-run reliability modeling, and apply it to the software
release decision. In numerical experiments with seven software
fault count data we compare the NHBP based software reliability
models (SRMs) with their corresponding NHPP based SRMs
and refer to an applicability of NHBP based software test-run
reliability modeling.
Keywords: software reliability, test-run reliability, non-
homogeneous binomial process, non-homogeneous Poisson
process, Poisson-binomial distribution, goodness-of-fit, predic-
tion, software release decision.

I. INTRODUCTION

Software reliability is an attribute of software qualities to en-
sure that software system can continuously provide its service
without any failure. In particular, since quantitative software
reliability evaluation is useful to control the software testing,
there have been a variety of approaches on quantification. One
of the most attractive approaches is a model-based approach
that describes software reliability growth phenomena in the
system testing phase. Software reliability model (SRM) is de-
fined as a stochastic model to represent the software reliability
growth phenomena through the software fault counts. From
the view point of mathematical tractability, non-homogeneous
Poisson processes (NHPPs) are commonly used to describe
software fault detection processes. In fact, during the last four
decades, a great number of NHPP based SRMs have been
proposed by many authors [25],[27],[39].

Quantitative software reliability is defined as the probability
that software system does not fail during a specified time
period under specified conditions, and can be regarded as a
function of time. The commonly used time scale for software
reliability assessment is the calendar time such as testing day,

week and month. Since the fault count data are easily observed
on the testing period measured with the calendar time and our
concern is to predict the software reliability for the operational
period measured with the calendar time, it may be appropriate
to define the time scale for software reliability assessment as
the calendar time. On one hand, it can be pointed out that the
software testing is not always made uniformly on the calendar
time in actual software development projects. For this issue,
Musa et al. [27] recommend to use the test execution time
measured with the CPU time as an alternative time scale.
In fact, this is more informative than the calendar time data,
because the execution time data and the calendar time data are
considered as the software fault-detection time data (complete
data) and the software fault count (grouped) data at discrete
points (incomplete data), respectively. Though several software
fault-detection time data sets have been open in the literature
[25],[27], unfortunately, it is known that such data are seldom
available in real industry.

Since the main reason why the software test execution time
is introduced is to represent the net time scale to measure
the testing progress, another idea would be to use the number
of test runs (test cases) in the system testing. Yamada et al.
[42],[44] and Yamada and Osaki [43] propose the so-called
discrete NHPP (D-NHPP) based SRMs by replacing the real-
valued mean value functions depending on time in an NHPP
by the integer-valued ones depending on the number of test
runs. Since then, several authors [18],[20],[21] concentrate to
develop the similar but somewhat different discrete analogs to
the continuous NHPP based SRMs. Okamura et al. [29],[30]
develop a unified approach for D-NHPP based SRMs and
their effective parameter estimation algorithms based on the
EM (Expectation-Maximization) principle. Ishii et al. [19]
consider the D-NHPP based SRMs with two discrete time
scales which consist of the discretized calendar time and the
number of test runs. Shibata et al. [38] provide a software
metrics-based modeling framework on the discrete-time scale
in the D-NHPP based SRM. Apart from the D-NHPP based
SRM, Dewanji et al. [10] also apply a logistic regression
model to utilize several software metrics data in a flight
control software system. Worwa [41] proposes an interesting



discrete SRM under more complex program testing process,
and derives the mean value function of the number of software
faults experienced. However, he does not refer to the detailed
statistical estimation of the underlying SRM and never validate
his model with real software fault data.

At the first look, the D-NHPP based SRMs in
[18],[20],[21],[42],[43][44] are different from the common
continuous NHPP based SRMs. However, it can be easily
seen by checking the likelihood functions that these two SRMs
with different time scales are mathematically equivalent when
the underlying continuous cumulative distribution functions
are discretized appropriately by their associated discrete cu-
mulative distribution functions, such like the relation between
an exponential distribution and a geometric distribution (see
[29],[30]), if the software fault count (grouped) data are
observed. Hence, we recognize that the difference between
the calendar time modeling and the execution time modeling
is important because the corresponding likelihood functions
are different from each other, but want to emphasize that no
remarkable difference between the continuous NHPP based
SRM modeling and the D-NHPP based SRMs exists. When
the number of test runs is used for the time scale, we suppose
for simplicity that each software test run can detect at most one
software fault and that the number of software fault detected
at each test run is regarded as a binary random variable taking
0 or 1. These assumptions may not always hold in the actual
testing because one test run may be able to detect multiple
faults, but can be validated to describe globally the debugging
phenomena in the discrete-time scale such as the number of
test runs. Because detecting multiple software faults by only
one test run is quite rare. Cai [4] considers such a software test-
run reliability modeling. In the subsequent paper Cai et al. [5]
apply an NHPP based SRM to the test-run data sets for two
real software systems (space program and SESD program).
They generate multiple test data sets by changing the order
of test cases, and try to estimate the sample mean and sample
variance of the cumulative number of software faults. Looking
at the underlying fault count data in [5], it is easily found
that our binary assumption holds in except very a few test
cases. Their claim is that the use of NHPP for such data is
questionable because the sample mean cannot be regarded to
equal the sample variance.

However, the above claim is not convinced from the fol-
lowing reasons: (i) The sample paths generated by changing
the order of test cases are not the paths sampled from the
underlying NHPP, because they are considered as conditioned
paths with a given number of residual faults, which is called
the Poisson bridge (see e.g. [33]). (ii) The model parameters
are estimated by means of the maximum likelihood estimation
with the grouped data regardless of the discrete complete
data. More specifically when the discrete time scale is the
number of test runs, it must be greater than or equal to the
actual cumulative number of software faults with probability
one. However, since the Poisson random variable denoting the
cumulative number of software faults is not bounded, i.e.,
there exists a positive probability that the actual cumulative

number of faults is greater than the total number of test runs
for D-NHPP based SRMs under the assumption on the binary
random variables, the Poissonian assumption contradicts the
possible upper bound of the cumulative number of software
faults. This fact implies that the D-NHPP based SRMs are not
justified theoretically to describe the software fault detection
phenomena with respect to the number of test runs, and the
conjecture that the underlying binary sequence based on the
test runs does not follow an NHPP based SRM can be derived.

In this paper we propose a simple test-run reliability model-
ing framework based on non-homogeneous binomial processes
(NHBPs). Finkelstein [15] considers a similar failure model to
our software test-run reliability model, and develop continuous
analog estimators (CAEs) with the well-known power-law type
NHPP by Duane [12]. Bhattacharyya et al. [1] and Bhat-
tacharyya and Ghosh [2] prove the large-sample properties
of the resulting CAEs including consistency and asymptotic
normality. It is worth noting that the CAEs in [1],[2],[15] are
essentially equivalent to the maximum likelihood estimators of
NHPP based SRMs with software-fault detection time data, by
removing zero-fault count data. So, regarding the binary data
based on the software test-runs as a discrete time data, it is
possible to estimate the model parameters with NHPP based
SRMs in the sense of approximation, because the information
on zero-fault count is dropped for the analysis. At the same
time, the binary software test-run data can be also viewed as
a grouped data. In general, the existence of two likelihood
functions for an NHPP based SRM on the discrete time
scale such as the binary data seems to be in contradiction
to the likelihood principle, because a probability model must
have a one-to-one correspondence to the likelihood function.
For this controversial argument, we show that the maximum
likelihood estimates of NHPP based SRMs are exactly same
even though the underlying data are regarded as either software
fault-detection time data or software fault count (grouped)
data. This fact has not been known in the software reliability
engineering literature [25],[27],[39]. Hence, from the similar
standpoint to Finkelstein [15], Bhattacharyya et al. [1] and
Bhattacharyya and Ghosh [2], we take the position that the
underlying test-run data are described by NHBPs with given
fault-detection probability, and that the common NHPP based
SRMs are regarded as approximations of NHBPs under the
binary assumption.

To our best knowledge, this paper is the first challenge to
treat the software reliability assessment exactly in the test-run
reliability modeling. As Bhattacharyya and Ghosh [2] point
out, it is easy to conduct the maximum likelihood estimation
of NHBP based SRMs with the discrete binary data, but calcu-
lating their associated reliability metrics, such as quantitative
software reliability, fault-free probability, etc. is not so trivial.
Noting that the cumulative distribution function of NHBP
is given by a Poisson-binomial distribution, we apply an
efficient computation scheme [8] to obtain the exact reliability
estimates for several kinds of NHBP based SRMs. Also, we
can apply the well-known Le Cam’s Poisson approximation
[24],[40] to the NHBP based SRMs and show that the common



NHPP based SRMs can be derived approximately from their
associated NHBP based SRMs. Further we apply our NHBP
modeling framework to the software release decision, which is
a practically important decision making in the software project
management. In numerical experiments with software fault
count data for seven real software programs, we investigate the
goodness-of-fit and the predictive performances of our NHBP
based SRMs, and compare them with the NHPP analogs. Also,
we predict the best timing to release software products to the
users or market in order to achieve a satisfactory software
reliability level.

II. NHPP BASED SOFTWARE RELIABILITY MODELING

Let {Ni; i = 0, 1, 2, · · · } be the cumulative number
of software faults detected by the first i-th test run (i =
0, 1, 2, 3, · · · ). Suppose that

(A-1) N0 = 0,
(A-2) {Ni; i = 0, 1, 2, · · · } has independent increments,

i.e. for any collection of the numbers of test runs
i1, i2, · · · , ik (0 < i1 < i2 < · · · < ik), where k
random variables, Ni1 , Ni2 −Ni1 , · · · , Nik −Nik−1

,
are statistically independent from each other.

(A-3) For any of the numbers of test runs is and ik (0 ≤
is < ik; s < k),

Pr{Nik −Nis = n} =
{Λik − Λis}n

n!
e−{Λik

−Λis}, (1)

where Λi = Λi(θ) = E[Ni] is called the mean
value function with model parameter θ and is non-
decreasing in i (= 0, 1, 2, · · · ).

Under the assumptions (A-1)–(A-3), the counting process in
discrete time, {Ni; i = 0, 1, 2, · · · }, is called the discrete non-
homogeneous Poisson process (D-NHPP) having the probabil-
ity mass function (pmf):

Pr {Ni = n | N0 = 0} =
Λn
i

n!
e−Λi , n = 0, 1, 2, · · · . (2)

Suppose that each software test run can detect at most one
software fault. If the discrete time scale i is the number of
test runs, it holds that Ni ≤ i with probability one. However,
since the Poisson random variable Ni is not bounded for an
arbitrary i, i.e., there exists a positive probability of Ni >
i for D-NHPP based SRMs, and the Poissonian assumption
contradicts the possible upper bound of the cumulative number
of software faults. This fact implies that the D-NHPP based
SRMs are questionable to describe the software fault detection
phenomena with respect to the number of test runs.

Let Xi (i = 1, 2, . . . ,m) denote the test result which is
an independent binary random variable taking the value of 0
(failure) or 1 (success), where m is the total number of test
cases. The success means the detection of one software fault.
Let R =

∑m
i=1 Xi and f(j) be the number of successes by m

test runs and the number of test runs by the first j-th success
(j = 0, 1, . . . , R), respectively. Finkelstein [15] focuses on
only the power-law type model Duane [12], Λm = pmβ , with

the model parameter θ ∈ (p, β), and derives the continuous
analog estimators (CAEs):

p̂ = Rm−β̂ , β̂ = R
{ R∑
j=1

log(m/f(j))
}−1

. (3)

However, it can be easily seen that the CAEs above are
the standard maximum likelihood estimators of θ when the
underlying data are regarded as the discrete fault-detection
time data. More precisely, let 0 < X(1) < X(2) < ... < X(R)

be the R success times of test run. Then the log likelihood
function is given by

logLR (θ) =

R∑
j=1

log
{
Λf(j) − Λf(j−1)

}
− Λm. (4)

Hence the CAEs are the solutions of argmax logLR (θ)
satisfying the necessary condition (likelihood equations)
∂logLR (θ) /∂θ = 0.

On the other hand, if the underlying binary data can be
regarded as a grouped data, then the log likelihood function
is given by

logLR (θ) =

R∑
j=1

(yj − yj−1)log
{
Λf(j) − Λf(j−1)

}
−Λm −

R∑
j=1

log[(yj − yj−1)!]. (5)

Note that there is no difference between Eq .(4) and Eq. (5)
because the values of yj−yj−1 are always 1s for all succsesses
j = 1, 2, . . . , R, so that Eq. (5) is reduced to Eq. (4). It can
be seen that the likelihood function with the binary data in
NHPP based SRMs is uniquely given.

In the following section, we introduce the non-homogeneous
binomial processes (NHBPs) and clarify a relationship be-
tween NHBP based SRMs and NHPP based SRMs.

III. NHBP BASED SOFTWARE RELIABILITY MODELING

Next, we consider a simple SRM based on NHBPs to
describe the software fault count phenomena with respect to
the number of test runs tried in the system testing. If one
software fault is detected at the i-th test case, then Xi = 1
with fault-detection (success) probability pi (0 < pi < 1),
otherwise Xi = 0 with probability 1− pi. Then the stochastic
process Ni =

∑i
k=1 Xk is said an NHBP [2] and represents

the cumulative number of software faults detected by the first
i-th test run. Figure 1 illustrates the configuration of software
test-run reliability modeling, where the cumulative number of
software faults increases as the number of success test runs
increases. Suppose that m test-cases are tried in the system
testing. Then, the expected cumulative number of software
faults detected by m test runs is easily obtained by

E [Nm] = Λm =

m∑
i=1

pi. (6)

It is immediate to see that m ≥ Λm which is an essential
requirement in our test-run reliability modeling. Consider a
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Fig. 1: Configuration of software test-run reliability modeling

special case where the stochastic process is homogeneous, i.e.,
the fault-detection probability is constant, pi = p, for all i.
Then it is straightforward to see

Pr{Nm = n} =

(
m

n

)
pn(1− p)m−n, (7)

which is the elementary binomial pmf with

E [Nm] = mp, Var [Nm] = mp(1− p). (8)

As the most plausible example in NHBPs, Finkelstein [15]
considers a linear relation of E [Nm] on a log-log scale as
a reasonable growth model for single-mission systems, and
proposes the power-law type model from the analogy to Duane
model in continuous time [12]; pi = p

[
iβ − (i− 1)

β
]
(i =

1, 2, . . . ,m) and Λm = pmβ , where p (0 < p < 1) denotes
the probability that no fault is detected at time i = 1 and
β (0 < β < 1) is viewed as a reliability growth parameter.
Note that this model is somewhat different from the well-
known discrete Weibull pmf pi = p(i−1)β − pi

β

[28]. Let
θ = (p, β) be the model parameter of pi, say, pi = pi(θ).
Suppose that the binary random sequence X1, X2, · · · , Xm

is observed. Then, the log likelihood function logLm(θ) with
m test runs is given by

logLm (θ) =

m∑
i=1

{
Xilogpi(θ) + (1−Xi)log(1− pi(θ))

}
.

(9)

By maximizing logLm (θ) with respect to θ, we get the
maximum likelihood estimators of θ.

Once the model parameter θ is estimated, we need to
evaluate the pmf, Pr{Nm = n}. From an intuitive probabilistic
argument, it holds that

Pr{Nm = n} =
∑
A∈Fn

∏
i∈A

pi
∏
j∈Ac

(1− pj), (10)

where Fn is the set of all subsets of n positive integers that
can be selected from 1 to m, Ac is the complement of A. The
explicit form of pmf for the NHBP is not known but can be
calculated recursively [8] by

Pr{Nm = 0} =

m∏
i=1

(1− pi), (11)

Pr{Nm = n} = (1/n)

n∑
j=1

(−1)j−1Pr(Nm = n− j)

×
m∑
i=1

{
pi/(1− pi)

}j
. (12)

The probability of having n successful trials out of m in Eqs.
(11) and (12) is called the Poisson-binomial distribution. The
calculation of the recursive equation in Eq. (12) has not been
trivial for a long time. For instance, Fernandez and Williams
[14] apply the discrete Fourier transform and develop a specific
computation algorithm of the Poisson-binomial pmf. However,
for the middle size of m, the recursive equation in Eq.(12) can
be solved numerically within real time on the recently high
power CPU.

Next we approximate NHBP based SRMs by NHPP based
SRMs and clarify the inter-relationship. From the Le Cam’s
Poisson approximation [24],[40], it holds that

∞∑
n=0

∣∣Pr{Nm = n} − Λn
me−Λm

n!

∣∣ < 2

m∑
i=1

p2i , (13)

where Λm =
∑m

i=1 pi. If pi = p = Λm/m, then the
right-hand side of Eq.(12) is 2Λ2

m/m, which shows that the
binomial distribution asymptotically approaches to the Poisson
distribution as m is sufficiently large. Hence we have

Pr{Nm = n} ≈ Λn
me−Λm

n!
. (14)

From Eq.(14), an arbitrary NHBP based SRM can be approx-
imated by an NHPP based SRM with the mean value function
Λm =

∑m
i=1 pi which is different from the existing D-NHPP

based SRMs [29],[30].

IV. DISCRETE FAULT-DETECTION MODELS

Next we develop the discrete probability models, pi (i =
1, 2, . . . ,m), to describe the software reliability growth phe-
nomena. The power-law type model by Finkelstein [15] is
a discrete version of Duane model [12] and the mean value
function Λm = pmβ is monotonically increasing in m. Also,
since the pmfs of many discrete probability distributions
with positive support are unimodal functions, the mean value
function Λm =

∑m
i=1 pi does not saturate to a certain level like

an exponential function. One idea to represent the reliability
growth phenomena is to introduce the discrete hazard rate
function [37] for the fault-detection probability pi. Dissim-
ilar to continuous probability distributions, the hazard rate
functions of discrete pmfs are defined as probability. Hence,
it is assumed that the fault-detection probability is given by
a discrete hazard rate function with monotone properties.
Especially, if the discrete hazard rate function is decreasing
[13],[23], it can be expected that the mean value function
Λm =

∑m
i=1 pi is a concave and increasing function of m. In

this paper we propose the following fourteen fault-detection
models:

Model 0 [15]:
pi = p[iβ − (i− 1)

β
] (0 < p < 1, 0 < β < 1)

Model 1 (constant hazard rate):
pi = p (0 < p < 1)
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Fig. 2: Configuration of inference-based software release decision.

Model 2 (negative binomial hazard rate):
pi =

(p+i−2
p−1 )βp(1−β)i−1

1−
∑i−1

k=1 (
p+k−2
p−1 )βp(1−β)i−1

(p = 1, 2, 3, · · · , 0 < β < 1)

Model 3 (discrete IFR) [34]:
pi = 1− p/(βi+ 1) (0 < p ≤ 1, β ≥ 0)

Model 4 (discrete DFR) [34]:
pi = p/(βi+ 1) (0 < p ≤ 1, β ≥ 0)

Model 5 (discrete parametric) [34]:
pi = 1− e−p(i+1)β (µ > 0, −∞ < β < ∞)

Model 6 (discrete log-logistic hazard rate) [7]:
pi =

1−p
plog i−β+1+1

(0 < p < 1, −∞ < β < ∞)

Model 7 (discrete truncated logistic hazard rate) [7]:
pi =

(1−p)pβ

p−β+i+1+1
(0 < p < 1, −∞ < β < ∞)

Model 8 (discrete Burr hazard rate) [22]:

pi = 1− p
log

[
(i+1)β+1

iβ+1

]
(0 < p < 1, β > 0)

Model 9 (discrete pareto hazard rate) [22]:
pi = 1− plog(

i+2
i+1 ) (0 < p < 1)

Model 10 (discrete Weibull hazard rate) [28]:
pi = 1− pi

β−(i−1)β (0 < p < 1, 0 < β < 1)

Model 11 (discrete Lindley hazard rate) [17]:
pi =

(p−1)(log pi+1−1)+p log p

1−(i+1) log p (0 < p < 1)

Model 12 (discrete gamma hazard rate) [6]:
pi = 1− Γ(p, i+1

β )
Γ(p, i

β )
(p > 0, β > 0)

Model 13 (discrete skew logistic hazard rate) [3]:
pi =

1−p
pi+1+1 (0 < p < 1).

V. SOFTWARE RELEASE DECISION

We apply the NHBP based SRMs to the software release
decision. Okumoto and Goel [32] formulate two software
release problems to determine the optimal software release
timing. Dalal and McIntosh [9], Dohi et al. [11], Fujii et al.
[16], Momotaz and Dohi [26], Okamura et al. [31], Pham and
Zhang [35], Saito et al. [36] consider different software release
problems under several optimization criteria. Among them,
it is realistic to consider the reliability criterion to make the
software release decision. The quantitative software reliability
is defined as the probability that a software system does not

fail during a pre-specified operational period of time. Suppose
that m test-runs were tried in the system testing and that n
software faults were detected and fixed. In this situation, one
wishes to keep 100(1 − α)% software reliability during the
operational phase. Since the time scale employed here is the
number of test-cases, it is assumed that the execution length
of software in the operational phase is described by ξ test
runs. This assumption does seem to be validated when the test
cases are designed in accordance with the model-based testing.
However, it is noted that 100(1−α)% software reliability with
small α cannot be attained just after n software faults were
detected, because the longer the zero-fault period, the higher
software reliability.

Hence our concern is not to derive the stopping time to
test the software. Similar to Fujii et al. [16], we consider an
inference-based software release decision. That is, if the zero-
fault period measured by the number of test runs is l, i.e.,
we infer that no fault is detected in the period (m,m + l],
then the software is released after consuming m + l test
cases, otherwise, the fault-free period, l, is measured again
just after a fault is detected and fixed. Figure 2 depicts the
configuration of our inference-based software release decision.
Then the software reliability function for an arbitrary number
of software executions in the operational phase ξ is given by

R = Pr{Nm+l+ξ = n|Nm+l = n}

=

m+l+ξ∏
i=m+l+1

(1− pi) ⩾ 1− α. (15)

Note that the model parameters θ = (p, β) in NHBP based
SRMs at m+ l test cases are estimated under the hypothesis
that no software fault is detected in the period (m,m +
l]. Substituting (X1, X2, · · · , Xm, Xm+1, · · · , Xm+l) =
(x1, x2, · · · , xm, 0, · · · , 0) into the log likelihood function
logLm+l(θ) in Eq.(9) and maximizing it lead to the inference-
based maximum likelihood estimates of θ. It is intuitive to
understand that the software reliability function increases as
the zero-fault length l increases. Hence the inference-based
software release time at the current number of test cases m
is interpreted as m + l∗ with the minimum zero-fault period
l∗ = min{l = 1, 2, . . . ;R ⩾ 1 − α} so as to satisfy the
reliability requirement level R.

VI. NUMERICAL EXAMPLES

A. Data Sets

We analyze seven actual software fault datasets, which con-
sist of a pair of the cumulative number of software faults and
the cumulative number of test cases. DS1 used in [5] is mea-
sured from the space program which is subjected to random
testing with a software tool kit, SRATE (Software Reliability
Analysis, Testing, and Evaluation). It consists of 9,564 lines
of C language code (6,218 executable), and involves several
functions as an interpreter for an array definition language
(ADL). The program reads a file that contains several ADL
statements, and checks the contents of the file for adherence
to the ADL grammar and to specific consistency rules. If the



TABLE I: Data sets.
No. software faults No. test cases

DS1 33 1200
DS2 25 469
DS3 7 520
DS4 8 518
DS5 22 537
DS6 19 390
DS7 14 3864

ADL file is correct, the program outputs an array data file
containing a list of array elements, positions, and excitations;
otherwise, outputs error message. In our experiment, we inject
38 software faults in advance. Upon a failure on the test run,
only one failure-causing fault is removed. The total number of
test cases prepared is 1200. However, since no fault is detected
after 200th test run, we use only 300 test cases including
additional 100 zero-fault counts in the experiment.

DS2 is also used in [5] and measured from SESD (Software
Environment for Software Data Collection) program, which
is a grammar analyzer used in a software environment for
software data collection. It comprises 3559 lines of C++
code with 3,179 lines being executable. The SESD program
generates five outputs; the number of lines of code, the number
of total usages of operators, the number of total usages of
operands, the number of distinct usages of operators, and the
number of distinct usages of operands, for one input. Although
28 software faults are reported in the original test, three of
them cannot be detected by only the test runs prepared. Hence,
we remove these three faults and inject the remaining 25 faults.

DS3, DS4, DS5, DS6 and DS7 are the representative fault
data sets known as Siemens reference programs which are
reported by Siemens Corporate Research for a study of the
fault detection capabilities of control-flow and data-flow cov-
erage criteria. These programs perform a variety of tasks, such
as “schedule”, “schedule2”, “tcas”, “totinfo”, and “replace”.
For instance, D3 is “schedule” which is a priority scheduler
with 412 lines of C language code. It outputs the binary
data till the last fault is detected by comparing the results
between test-runs with and without fault. In this program, it is
possible to generate an arbitrary number of test cases, so we
execute 520 test runs in our experiment. Table I presents the
detailed information on the fault data sets in the 7 development
projects.

B. Goodness-of-fit and Predictive Performances

The model parameters are estimated by means of the
maximum likelihood method, where the likelihood functions
for NHBP and NHPP based SRMs are given in Eqs. (9)
and (4), respectively. We observe 10%, 30%, 50%, 70% and
90% of the whole data sets in DS1 ∼ DS7 as the training
data, and estimate the model parameters at each observation
point. Once the model parameter θ is obtained by maximizing
the log likelihood functions, we calculate Akaike Information
Criterion (AIC) and the mean squares error (MSE) with the
maximum likelihood estimates θ̂ [25],[27]. In each model
category of NHBP or NHPP, the goodness-of-fit performance

for the past observation is measured by the above criteria,
where the smaller AIC (MSE) denotes the better goodness-of-
fit model in terms of the smaller distance between our SRM
and the real probability model (realization or data). In Tables II
and III, we select the best SRM with the minimum AIC at each
observation point and calculate MSE as well. For instance,
Model 5 [34] is the best discrete fault-detection model in
almost all cases with DS1 except at 10% observation point
for NHPP based SRM. In the comparison of AIC in NHBP
and NHPP based SRMs, it can be seen that our NHBP based
SRMs provide the smaller AIC in all cases. On the other hand,
NHPP based SRMs show the smaller MSE only in 10 cases
out of 35 cases. Especially, NHPP based SRMs give the better
goodness-of-fit results for DS2.

Next we predict the future behavior of the cumulative
number of software faults at each observation point, where
the prediction length is the remaining number of test cases.
In Tables II and III, we calculate the predictive log likelihood
(PLL) and the predictive mean squares error (PMSE) [25],[27]
as prediction metrics, where the larger PLL and smaller PMSE
show the better predictive performances. In a fashion similar
to the goodness-of-fit performance, it can be observed that our
NHBP based SRMs give the larger PLL than the corresponding
NHPP based SRMs in all cases. Since the number of free
parameters is exactly same for two SRMs, we can recognize
that our NHBP based SRM tends to give the better predictive
performance. Looking at the PMSE, it is seen that NHPP based
SRMs outperform their associated NHBP based SRMs in 9
cases out of 35 cases. Even in the predictive performance,
we can show the superority of our NHBP based SRMs in the
discrete time scale.

In Figs. 3 and 4, we plot the prediction of the cumulative
number of software faults with the best NHBP and NHPP
based SRMs with the minimum AIC, respectively, where
DS1 is assumed. In both figures, the red line denotes the
mean value function for prediction and the green line shows
the realization. The predictive Poisson-binomial pmf on the
cumulative number of software faults is calculated by using
Eqs. (11) and (12) for NHBP based SRMs. In the earlier testing
phase, the prediction distribution of the cumulative number of
software faults has the long-tail. But as the progress goes on,
the shape of pmf is skewed gradually and the variance tends
to be much smaller. We zoom up the predictive distributions
at 10% observation point with DS1 in Figs. 5 and 6, where the
prediction length from the observation point changes from 30
to 120 test runs in the future. From these figures we find that
our NHBP based SRMs provide different variances as well as
the mean value functions from the corresponding NHPP based
SRMs. Since the mean value functions are exactly same as
their variance in NHPP based SRMs, our NHBP based SRMs
with the Poisson-binomial distribution possess rather different
features statistically.

C. Software Release Decision

After trying all the test cases in DS1 ∼ DS7, consider the
case where l additional test runs are tried, where l denote



(i)Prediction at 10% observation point with M5. (ii)Prediction at 30% observation point with M5.

(iii)Prediction at 50% observation point with M5. (iv)Prediction at 70% observation point with M5.

Fig. 3: Prediction of the cumulative number of software faults by the best NHBP based SRM with the minimum AIC (DS1).

(i)Prediction at 10% observation point with M9.

(iv)Prediction at 70% observation point with M5.(iii)Prediction at 50% observation point with M5.

(ii)Prediction at 30% observation point with M5.

Fig. 4: Prediction of the cumulative number of software faults by the best NHPP based SRM with the minimum AIC (DS1).

the virtual testing length. We suppose that the software test
terminates after m+ l test runs and that the software system
is released at that time, if no software fault is observed with the
additional l test runs. Define the software test-run reliability
as the probability that no software fault is detected during
the discrete time interval (m + l,m + l + ξ], where ξ is the
number of executions in the operational phase in Eq. (15). In
the experiments we set as ξ = 1, 000 and α = 0.1, so that the
software reliability requirement is assumed to be 90%.

In Table IV, Table V, Table VI and Table VII we calculate
the predictive software reliability with varying virtual testing
lengh l, where 100% denote the same virtual length as the
whole test runs m. In these tables, the underlined value denotes

the software reliability which is greater than 90% in each
data set. We also indicate the virtual testing length to achieve
90% software reliability in the last column. For instance, in
DS4, 2,500% length is needed to guarantee 90% reliability
requirement level with NHBP based SRM. From these results
we find that rather long virtual testing length is required
to achieve over 90% reliability requirement. In DS1, since
m = 1, 200, if no software fault is detected with additional
test runs l = 7, 200, the software reliability is 91.8% with
ξ operational executions after releasing the software. This
implies that it is actually difficult to keep the high level
software reliability requirement such as 90%.



(i)30 prediction length. (ii)60 prediction length.

(iii)90 prediction length. (iv)120 prediction length.

Fig. 5: Predictive pmf of the cumulative number of software faults by the best NHBP based SRM with the minimum AIC (M5) at 10%
observation point (DS1).

(i)30 prediction length. (ii)60 prediction length.

(iii)90 prediction length. (iv)120 prediction length.

Fig. 6: Predictive pmf of the cumulative number of software faults by the best NHPP based SRM with the minimum AIC (M5) at 10%
observation point (DS1).

VII. CONCLUSION

In this paper we have proposed a simple test-run reliability
modeling framework based on non-homogeneous binomial
processes (NHBPs) and compared them with the correspond-
ing NHPP based SRMs in numerical experiments. In the
software test run reliability modeling, since the NHPP based
SRM could not be justified from the physical constraint, we
have investigated an applicability of NHBP based SRM and its
approximate solution. From the viewpoints of Akaike informa-
tion criterion and predictive log likelihood, our NHBP based
SRMs outperformed their associated NHPP based SRMs. The
NHBP based SRMs were applied to the software release
decision to achieve the minimum software reliability require-

ment. It was shown that relatively longer zero-fault counts
in additional testing are needed to guarantee 90% software
reliability. In future, we will consider the Bayesian estimation
in the software test-run reliability modeling. Also it will be a
challenging issue to develop NHBP based SRMs with software
metrics such as the size metrics, complexity, etc.
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