
EasyChair Preprint
№ 12510

Generalization of Temporal Logic Tasks via
Future Dependent Options

Duo Xu and Faramarz Fekri

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 28, 2024

Generalization of Temporal Logic Tasks via Future
Dependent Options

Duo Xu1* and Faramarz Fekri1

1 Department of Electrical and Computer Engineering,
Georgia Institute of Technology,

5th North Ave, Atlanta, 30332, GA, USA.

*Corresponding author(s). E-mail(s): dxu301@gatech.edu;

Abstract
Temporal logic (TL) tasks consist of complex and temporally extended subgoals and they
are common for many real-world applications, such as service and navigation robots. How-
ever, it is often inefficient or even infeasible to train reinforcement learning (RL) agents
to solve multiple TL tasks, since rewards are sparse and non-Markovian in these tasks. A
promising solution to this problem is to learn task-conditioned policies which can zero-
shot generalize to new TL tasks without further training. However, influenced by some
practical issues, such as issues of lossy symbolic observation and long time-horizon of
completing TL task, previous works suffer from sample inefficiency in training and sub-
optimality (or even infeasibility) in task execution. In order to tackle these issues, this paper
proposes an option-based framework to generalize TL tasks, consisting of option training
and task execution parts. We have innovations in both parts. In option training, we propose
to learn options dependent on the future subgoals via a novel approach. Additionally, we
propose to train a multi-step value function which can propagate the rewards of satisfy-
ing future subgoals more efficiently in long-horizon tasks. In task execution, in order to
ensure the optimality and safety, we propose a model-free MPC planner for option selec-
tion, circumventing the learning of a transition model which is required by previous MPC
planners. In experiments on three different domains, we evaluate the generalization capa-
bility of the agent trained by the proposed method, showing its significant advantage over
previous methods. The source code is available at https://drive.google.com/drive/folders/
128jGb3HkPbXPj-FO6FQ7NW3LTFkqUUQy?usp=drive_link

Keywords: Temporal logic task, reinforcement learning, neuro-symbolic, option learning

1

https://drive.google.com/drive/folders/128jGb3HkPbXPj-FO6FQ7NW3LTFkqUUQy?usp=drive_link
https://drive.google.com/drive/folders/128jGb3HkPbXPj-FO6FQ7NW3LTFkqUUQy?usp=drive_link

1 Introduction
Reinforcement learning (RL) is a promising framework for developing truly general agents
capable of acting autonomously in the real world, ranging from video games [1, 2] to robotics
[3, 4]. Previous RL algorithms primarily focus on solving tasks with a single goal state.
However, many real-world applications may require agents to satisfy temporally extended
goals (e.g., eventually take the key and then reach the door). Tasks consisting of temporally
extended subgoals are termed as temporal logic (TL) tasks [5, 6]. TL tasks have a wide range
of applications in the real world, such as control system and robotics. For example, a service
robot on the factory floor might have to fetch the a set of components but in different orders
depending on the product being assembled, and it may need to avoid some unsafe situations.
However, since reward function is sparse and non-Markovian in TL tasks, most previous RL
algorithms may have poor performance and low learning efficiency.

Generalization to multiple TL tasks is a key requirement for deploying autonomous agents
in many real-world domains [7]. It is important for RL agent to learn to perform zero-shot
execution of different tasks by leveraging the generalization abilities of deep learning models.
However, previous related works suffer from various deficiencies [8–12], such as optimality
and learning efficiency. Some works [9, 11, 12] solve new TL tasks by leveraging the learned
reusable skills or options, but produce sub-optimal or even infeasible solutions, especially
when the symbolic observation is lossy, i.e., one symbolic state can correspond to multiple
environment states. These methods train an independent option for reaching a specific subgoal
specified in terms of the environmental propositions, as we illustrated in an example in Section
4, which may fail to achieve the global optimality of the task completion in the case of
lossy symbolic observation. Further, [8, 10] propose to train policies conditioned on the task
specification formula directly, where the agent needs a large amount of environment samples
to learn to understand temporal operators and figure out the optimal path for satisfying the
task. These approaches have poor sample efficiency in complex tasks or environments, since
they do not utilize reusable skills when solving compositional tasks like TL tasks.

In this work, in order to tackle the above issues, we propose a hierarchical option-based
framework to solve the TL tasks and generalize to any new task without further learning. The
proposed framework consists of option training part and task execution part.

In the option training part, we train a generalizable agent which can achieve various
subgoals with different future situations. We propose two innovations for training options: 1)
We introduce future-dependent options which are trained to not only achieve the target subgoal,
but also consider other subgoals to be achieved in the future. By preventing myopic behavior in
achieving the target subgoal, the proposed options can approximate the global optimality of the
task completion as much as possible. 2) Since the task of achieving a sequence of temporally
extended subgoals may have long time horizon, learning policies of future dependent options
needs reward information of many future time steps ahead. In order to facilitate the reward
propagation in this case, we train a multi-step value function to predict the discounted return
of satisfying future subgoal sequence.

In the task execution part, the given TL task is solved by a hierarchical option framework,
where the high level is for option selection and the low level is for option execution. In the
high level, whenever the previously selected option is successfully finished, the proposed
model-free option planner first finds the optimal sequence of subgoals which not only satisfies
the given TL task and but also has the largest expected return in the multi-step value function,

2

and then selects the option for reaching the first subgoal conditioned on other subgoals in the
optimal sequence. This option planner works in a manner of model predictive control (MPC)
[13], but it does not need to learn a transition model and hence circumvents the compounding
errors caused by the inaccuracy of the learned transition model during planning. The advantage
of the proposed planner is also theoretically justified.

In experiments, we demonstrate the zero-shot generalization capability of the trained agent
in three environments, including both discrete and continuous action spaces. All these envi-
ronments are procedurally generated where the layout and task specification are randomly
generated, so that none of tasks can be solved by simple tabular methods [14]. With compre-
hensive evaluations, we show that the proposed approach outperforms previous representative
methods in terms of sample efficiency, accuracy and optimality.

2 Related Work
Extending the RL paradigm to solve multiple temporal logic tasks has been studied by many
previous works. These approaches augment the state space and obtain an equivalent product
MDP by transforming the TL task formula into its automaton equivalence. Representative pre-
vious approaches, such as Q-learning for reward machines (Q-RM) [15–17], LPOPL [6] and
geometric LTL (G-LTL) [18], augment the environment state space with the automaton trans-
formation of the LTL specification. In addition, authors in [19] proposed a DiRL framework
to complete LTL task successfully by using hierarchical RL which interleaves graph-based
planning on the automaton and guide the agent’s exploration for task satisfaction. However,
although the compositional nature of the TL task is utilized in these approaches, the composi-
tionality is not leveraged in generalization to novel tasks. As such, the agent must learn the
policy for satisfying a new TL task from scratch.

Learning independent option policies or skills for achieving each subgoal has been a
common approach towards generalization in a TL task setting [9, 20–22]. For any unseen
task specification, the agent sequentially composes these option policies to satisfy the task.
However, these methods require a lot of additional fine-tuning to satisfy the task correctly and
they cannot address the issue of lossy symbolic observation. Therefore, the optimality and
even feasibility of the solution cannot be guaranteed. Instead, we propose a general framework
for transferring learned policies to novel specifications in a zero-shot setting.

Authors in [8] proposed learning a modular policy network by composing subnetworks
via a recurrent graph neural network for each proposition and operators, based on the syntax
tree transformed from the TL task specification. Given a new task specification, the final
policy network is created by composing the subnetwork modules in the new syntax tree
corresponding to the given specification. The work in [10] proposes to use graph convolutional
networks to learn an embedding for the given TL specification to tackle novel TL specifications.
However, since the task specification is processed in its original form, the agent needs a lot of
environmental interactions to learn temporal operators and figure out the optimal path to satisfy
the task. These approaches may result in unsatisfactory performance on sample efficiency or
optimality when the task specification has complex logic relationships. We compare these
approaches with ours in experiments.

Agents learning to act in a partially observable domain may need to overcome the problem
of perceptual aliasing, i.e., different states that have similar observations but require different

3

responses. The lossy symbolic observation can be regarded as the perceptual aliasing in the
symbolic domain, which is an important problem in POMDP studied for decades [23–26].
Our work tackles it in the option-level, distinguishing different options which have same
terminal conditions (states) but require different option policies to reach terminal states. In
contrast to previous approaches [25], our framework distinguish options with perceptually
aliasing terminal states by reward information of reaching future subgoals, based on which
different option policies are trained. In addition, there are a surge of recent papers studying
goal-conditioned RL which train a unified policy to reach arbitrary goals [27]. However, these
GCRL papers solved a different problem from satisfying TL tasks, since the agent in GCRL
problem only needs to reach a single goal in each episode. Besides, some GCRL papers also
proposed to generate subgoals in a hierarchical framework [28, 29]. But these subgoals are
only used to facilitate the agent to reach distant goals, without any strict temporal orders or
relationships. Therefore, GCRL papers are not comparable with our work.

3 Preliminaries

3.1 Reinforcement Learning
RL provides a framework for learning to select actions in an environment in order to maximize
the collected rewards over time [14]. RL deals with problems formalized as Markov decision
processes (MDP). We denote an environment MDP as a tuple M = ⟨S,A, T,R, γ, S0⟩, where
S is a finite set of environment states, A is a finite set of agent actions, T : S ×A×S → [0, 1]
is a probabilistic transition function, R : S × A → [Rmin, Rmax] is a reward function with
Rmin, Rmax ∈ R, γ ∈ [0, 1) is a discount factor, and S0 : s0 ∼ S0 is a distribution of initial
states. In each time step t, the agent observes the environment state st and selects an action
at to apply, according to a policy function π ∈ Π : S ×A → [0, 1], and then collects reward
rt = R(st, at).

For some policy π, the values V and Q for any state s and state-action pair (s, a) at time t
can be defined as below,

Vπ(s) = Eπ

[∞∑
τ=t

γτ−trτ |st = s

]
(1)

Qπ(s, a) = Eπ

[∞∑
τ=t

γτ−trτ |st = s, at = a

]
, (2)

where Eπ is the expectation of accumulated rewards following some policy π. A policy is
the optimal policy π∗ if it produces the highest accumulated rewards: ∀s ∈ S,∀π ∈ Π,∀a ∈
A : Qπ∗(s, a) > Qπ(s, a). Searching π∗ can be addressed by parameterizing the policy and
finding optimal parameters θ∗ that maximize the accumulated rewards by a policy optimization
algorithm. Specifically, parameters θ can be weights of neural networks optimized by gradient
descent.

The policy optimization algorithms can be categorized into off-policy and on-policy
methods [14]. In off-policy methods, such as SAC [30], the policy π is optimized by experience
tuples (st, at, rt, st+1) generated by old policies in previous iterations and stored in a replay

4

buffer B. The weights θ of Q function are updated by minimizing the loss function as below,

L(θ; θ−) = E(s,a,r,s′)∼B

(
r + γmax

a′
Q(s′, a′|θ−)−Q(s, a|θ)

)2

(3)

where θ− are target weights of neural networks which are updated periodically for improving
numerical stability of the learning process [31]. In on-policy method, such as PPO [32], the
policy π is optimized by experience tuples generated by current policy and stored as trajectories
τ . The parameters ϑ of V function are updated by minimizing the loss as below,

L(ϑ;ϑ−) = E(s,a,r,s′)∼τ

(
r + γV (s′|ϑ−)− V (s|ϑ)

)2

(4)

where ϑ− are target parameters copied periodically from ϑ for better numerical stability [31].

3.2 Option Framework
The option framework was introduced in [33] to incorporate temporally-extended actions
(options) into reinforcement learning. An option o = ⟨I, β, π⟩ is defined by three elements:
1) the initiation set I denotes the states where the option can be started to execute; 2) the
termination condition β defines the condition when option execution ends; 3) the option policy
π selects actions to take the agent to realize β starting from any state in I. We leverage the
options framework to generalize temporal logic tasks by re-usable skills. In our framework, an
option is defined as the skill of achieving a specific subgoal.

3.3 Temporal Logic Task Specification
A temporal logic (TL) task is described by a TL specification φ, a Boolean function that
determines whether the objective formula is satisfied by the given trajectory or not [34]. The
specification of TL task is used to express (multi-task) temporally extended subgoals and
partial orders of subgoals for task completion [35]. First define a common vocabulary AT as
the set of atomic tasks. TL tasks are widely used in real-world applications. For instance, in
service robot applications, AT could include events such as opening the drawer, activating
the fan, turning on/off the stove, or entering the bathroom. Then, the TL task can include
temporally-extended occurrences of these events. For example, two possible TL tasks are (1)
"Open the drawer and activate the fan in any order, then turn on the stove" and (2) "Open the
drawer but do not enter the bathroom until the stove is turned off".

In order to study the systematic generalization of TL tasks with options, we adopt task
temporal logic (TTL) [22] to specify TL tasks. TTL is designed to be an expressive, learning-
oriented TL language interpreted over finite traces, i.e, over finite episodes. The language of
TTL is a fragment of the widely-used Linear-time Temporal Logic over finite traces (LTLf)
[5], and the translation of any TTL formula into LTLf is provably guaranteed in [21]. TTL
is expressive enough to represent tasks in [20] which is a popular benchmark in the RL-TL
literature.
Definition 1 (Task Temporal Logic [22]). Given the vocabulary AT , every formula φ in TTL is
built from atomic tasks a ∈ AT , negation ¬ (on proposition only), and sequential composition

5

";", connected by operators ∨, ∪, and U . The grammar of TTL is expressed as below:

l ::= a|¬a|l ∨ l′, α ::= lU l′, φ ::= α|φ;φ′|φ ∪ φ′ (5)

where | indicates the alternative choices between templates. Specifically, an atomic task a
represents the reachability of a corresponding subgoal in the environment. So, every atomic
task a in TTL means that its associated subgoal a needs to be achieved eventually, i.e., ♢a in
LTL language [5]. The operators ∨ and ∪ represent the non-deterministic choice. The operator
U refers to "until" and lU l′ reads l must hold before l′ is satisfied. Besides, the sequential
composition φ;φ′ represents that the formula φ′ has to become satisfied after φ holds true.
The temporal operators eventually ♢ and always □ can be also defined by operator U .
Definition 2 (Satisfaction). The truth value of a TL task specification is determined by a finite
sequence of truth assignments σ = ⟨σ0, σ1, σ2, . . . , σN ⟩ with vocabulary AT , where a ∈ σi

iff the atomic task a is achieved at time step i. Then, σ satisfies φ (5) at time i ≥ 0, denoted
by ⟨σ, i⟩ |= φ:

• ⟨σ, i⟩ |= a iff a ∈ σi, where a ∈ AT
• ⟨σ, i⟩ |= ¬a iff ⟨σ, i⟩ ̸|= a ∈ AT
• ⟨σ, i⟩ |= (a ∨ a′) iff ⟨σ, i⟩ |= a or ⟨σ, i⟩ |= a′

• ⟨σ, i⟩ |= lU l′ iff there exists j such that i ≤ j ≤ N and ⟨σ, j⟩ |= l, and ⟨σ, k⟩ |= l′ for all
k ∈ [i, j)

• ⟨σ, i⟩ |= φ;φ′ iff there exists j such that i < j ≤ N , and ⟨σ, i⟩ |= φ, and ⟨σ, j⟩ |= φ′

• ⟨σ, i⟩ |= (φ ∪ φ′) iff ⟨σ, i⟩ |= φ or ⟨σ, i⟩ |= φ′

A sequence σ is defined to satisfy φ iff ⟨σ, 0⟩ |= φ. This sequence σ here is same as the
sequence of symbolic observations in the rest of this paper.
Progression Technique. The progression function, denoted as prog(σ, φ), is defined as a
function which takes a TL specification and the current labelled state (symbolic observation)
as inputs and returns a formula that expresses aspects of the original formula that remain to
be satisfied [10, 36]. For example, in Figure 1, consider task φ := wood; diamond; ax, i.e.,
collect wood, then diamond and ax finally. It will be progressed to "diamond; ax" after wood
is collected, meaning that the agent still needs to collect diamond and then ax.

3.4 Problem Formulation
We now formulate the problem of learning an RL agent that can zero-shot solve various
TL tasks in a finite episode. Assume that the agent is working on an environment MDP
Me = ⟨S,A, T,Re, γ, S0⟩ equipped with a labelling function L : S × A → 2P , mapping
a state-action pair into a set of propositions from P . We assume the propositions in Me

consist of subgoal propositions PG and events PE , i.e., P = PG ∪ PE . Assume that the
set of subgoals G is specified by the user and known as a characteristic of the environment.
Each option is trained to achieve a subgoal g ∈ G and some subgoals may consist of multiple
subgoal propositions from PG, i.e., any subgoal task g ∈ G ⊂ 2PG . We use ∧ as conjunction
of propositions holding true at the same time. For example, assuming that PG = {a, b, c}, the
subgoals can be G = {a ∧ b, c, c ∧ d} and a ∧ b means propositions a and b hold true at the
same time. The subgoal sequence used in this work is a sequence of subgoals from G, and we
also use G as atomic tasks AT for formulating TTL specifications φ defined in (5).

6

In this paper, the proposed framework aims at solving the problem of maximizing returns
in a multi-task MDP which is a product of environment MDP and TL tasks, defined as below.
Definition 3. (Multi-task MDP) Given an environment MDP Me = ⟨S,A, T,Re, γ, S0⟩
defined in Section 3.1, a finite set of propositions P , a labelling function L : S ×A → 2P , a
finite set of TL specifications Φ, and a probability distribution τ over Φ, we construct a multi-
task MDP as MΦ = ⟨S ′,A, T ′, R′, S′0⟩, where S ′ = S × Φ, T ′(s′, φ′|s, φ, a) = T (s′|s, a)
only when φ′ = prog(L(s, a), φ) (zero otherwise), S′0(s, φ) = S0(s) · τ(φ), and

R′(⟨s, φ⟩, a) =


RF if prog(L(s, a), φ) = true
−RF if prog(L(s, a), φ) = false
Re otherwise

where RF is empirically selected, and S′0 and S0 are distributions of initial states in the
environment and multi-task MDPs, respectively.

4 Methodology
In this work, we propose an option-based framework to solve and generalize tasks with TL
specifications. Here every option is trained to achieve a specific subgoal conditioned on future
ones. This is motivated by two important issues here. The first issue is the lossy symbolic
observation, meaning that a single propositional symbol can correspond to multiple different
environment states, as explained in the following motivating example.

Figure 1: Motivating example. The
TL task is wood; diamond; ax (go to
collect wood, then diamond and fi-
nally ax). The state sA denotes the
state when the agent is at the wood in
the orange circle, and sB denotes that
the agent is in the blue circle.

The second issue is that, the long horizon of satisfy-
ing the temporally extended subgoal sequence can make
rewards difficult to propagate throughout the state space.
In order to address these issues, we propose two inno-
vations for option training, future-dependent option and
multi-step value function. For task execution, by leverag-
ing these two innovations we propose a novel model-free
planner for option selection, whose advantage is also
theoretically justified.

In the following, we first present a motivating exam-
ple. Then the general framework of option training and
task execution is illustrated. Following that, we present
future dependent option and multi-step value function
with details. Finally, the algorithms, especially the option
planner, are introduced.

4.1 Motivation
In Figure 1, assume that environment reward Re is −0.1

for every movement and the given task is φ := wood; diamond; ax (go to collect wood, then
diamond and finally ax). There are two choices (sA and sB) for the agent to collect wood.
Previous option-based approaches may myopically choose to collect the wood in the orange
circle since it is closer, and finish the task φ along the green path. However, considering Re,
the globally optimal solution of task φ is the red path. In some cases, the decision made by
myopic option-based approaches may lead to infeasible solutions. For instance, if the game

7

Environment

Sequence
generation

Option
determination

Agent

Option policy training

(a) Option Training

Environment

Sequence
selection

Option
determination

Agent

Option execution

Task formula

Task
decomposition

Option selection

(b) Task Execution

Figure 2: The proposed framework of option training and task execution. In task execution,
the option selection part is a model-free option planner. The red arrow indicates that the task
formula is progressed by the subgoal symbol g when g is achieved.

in Figure 1 has constraint that the agent cannot move more than 12 steps in one episode, the
green path with myopic choice of collecting wood is infeasible.

In this work, to address issues mentioned above, we propose a novel option framework
where every option is dependent on a sequence of future subgoals. We denote O as the set of
options. Let oξg denote the option of reaching subgoal g ∈ G conditioned on ξ as a sequence of
future subgoals to satisfy. We train each option oξg ∈ O not only by the experience of reaching
the subgoal g, but also with the reward information of satisfying subgoals in ξ (in a fixed order
same as ξ), since the option oξg is to reach subgoal g but also conditioned reaching the subgoal
sequence ξ. Therefore, in order to back-propagate the reward information of satisfying subgoal
sequence ξ (which often has long time horizon to complete), we also train a multi-step value
function V ϕ(s; ξ) to predict the discounted return obtained by reaching subgoals in ξ starting
from the state s. We use V ϕ to set target values to update value functions of options, hence
accelerating the training efficiency of options.

Consider the example in Fig. 1 again, when the option of collecting "wood" is also
trained with reward information of collecting diamond and then ax after collecting wood, i.e.,
g ="wood" and ξ :=["diamond", "ax"], the option policy πξ

g will lead the agent to sB (the
wood in blue circle) instead of sA. This is because V ϕ(sA; ξ) < V ϕ(sB ; ξ) and V ϕ sets the
targets for updating value function of option policy πξ

g .

4.2 General Framework
The proposed framework is presented in Figure 2. The option training part is to learn the poli-
cies of future-dependent options determined by subgoal sequences with various compositions
and lengths. These learned options lay the foundation of agent’s capability of generalization
to new TL tasks. Every training iteration works as below. The detailed training algorithm is
presented in Algorithm 1 in Appendix A.7.

1. Sequence generation: the environment randomly generates subgoal sequences τ which only
consist of subgoals from G. For example, with G = {a, b, c, d, e}, the subgoal sequence
τ = [a, b, d] asks the agent to first reach a, then b and finally d, where a, b, d are subgoals;

2. Option determination: given the subgoal sequence τ , the agent needs to determine ap-
propriate future dependent options to achieve subgoals in τ one-by-one. For example, if

8

τ = [a, b, d], the options determined to be trained should be obda , odb and o∅d (∅ means
empty);

3. Option policy training: the policies of determined options are trained by using an appropri-
ate RL algorithm together with agent’s experience of trying to satisfy subgoals in τ . During
the training, the reward propagation is augmented by the multi-step value function V ϕ(·; τ)
which is introduced in Section 4.4;

The task execution part in Figure 2(b) is a hierarchical framework for solving given TL
tasks without further training based on learned options, where the option selection is conducted
in the high level and the selected option is executed in the low level. In the high level, the
option selection is realized by a model-free option planner, where the task formula is first
decomposed into the set of satisfying subgoal sequences, then the optimal subgoal sequence
is selected and finally the optimal option to be executed is determined. In the low level, the
policy of selected option is executed in the environment. More details about option planner are
introduced in Section 4.5.1.

1. Task decomposition: The given task φ is first decomposed into a set K of subgoal sequences
τi, i.e., K := {τi}

Mφ

i=1 = {[gi1, gi2, . . . , giLi
]}Mφ

i=1, where each τi can satisfy φ and any gij is
from G. For instance, if φ = a; (b ∨ c); (d ∨ e), the decomposed subgoal sequences are
K = {[a, b, d], [a, b, e], [a, c, d], [a, c, e]} and Mφ = 4. The details are in Algorithm 3 in
Appendix;

2. Sequence selection: The optimal subgoal sequence τi∗ with highest expected return is
selected from K according to the multi-step value function V ϕ, i.e., i∗ = argmaxi∈[1,Mφ]

V ϕ(s0; τi) and s0 is the initial state;
3. Option determination: Different from that in the option training part, only the first option

from τi∗ , i.e., oτi∗ [1:]τi∗ [0]
, is determined and sent to the low level for execution. For example,

assuming τi∗ = [a, b, d], only obda is selected and executed in the low level;
4. Option policy execution: The agent executes the policy of option selected above in the

environment. When the selected option is successfully finished, the task formula φ is
updated by the progression with the achieved subgoal. For example, assuming that the
target task is φ = a; (b ∨ c); (d ∨ e) and the execution of option obda is successfully
finished, the task formula φ will be progressed by the subgoal symbol a and become
φ := prog(φ, a) = (b ∨ c); (d ∨ e).

Remark. The future-dependent property makes the option selection non-Markovian, and this
is reason for performance improvement. In previous option frameworks, such as [21, 22],
every option is trained to reach a specific subgoal, and option selection is independent of other
options and hence Markovian. However, this is shown to be sub-optimal in the motivating
example of Section 4.1, where making options dependent on the future can produce globally
optimal solution. However, future-dependent option is non-Markovian, since its policy is
dependent on future subgoals.

4.3 Future Dependent Option
In this work, we define a future dependent option, i.e., oξg := ⟨S, βg, π

ξ
g⟩ where ξ is a finite

sequence of subgoals to be achieved in the future after completing g. Each option is trained
to achieve its corresponding subgoal g ∈ G conditioned on future subgoals in ξ, working in

9

the multi-task MDP (Definition 3 in Section 3.4). For each option, without loss of generality,
the initial set is the same as the state space S, and the terminal function is the indicator of
satisfying the subgoal g, i.e., βg(s) = 1{L(s) |= g} where L(·) is the labeling function defined
in Section 3.3. The option policy πξ

g is trained to maximize the discounted return of achieving
the target subgoal g conditioned on achieving the future subgoals in sequence ξ, encouraging
the option policy to realize the global optimality of achieving both g and ξ. Specifically, since
achieving the future subgoal sequence ξ is taken into consideration, the return of achieving ξ
needs to be back-propagated to train the action value (Q) function of the option πξ

p, which is
helped by the multi-step value function V ϕ introduced in next section.

Generally, when the option policy is trained by an off-policy method, the agent learns
a sample-based approximation to the Q function Qπξ

g
(s, a) of option oξg in (2), denoted as

Qθ
g(s, a; ξ) referring to the expected discounted return of achieving subgoal g conditioned on

the achievement of subgoal sequence ξ in the future. Alternatively, when the option policy is
trained by an on-policy method, the agent learns a value function V θ

g (s; ξ) to approximate the
value function Vπξ

g
(s) of option oξg in (1). The Q (or V) function of option is updated by TD-1

method as (3) (or (4)). For different environments, we choose an appropriate RL method to
learn option policies, such as SAC for off-policy or PPO for on-policy method.

In option training, the option policy πξ
g is trained together with other options used to satisfy

future subgoals in ξ. Specifically, given any subgoal sequence ξ := {gi}Ki=1 in option training,
we define the sub-sequences ξk := {gi}Ki=k+1 and k = 1, . . . ,K. We then start from trying
the option policy πξ1

g1 to achieve subgoal g1. When the subgoal gk in ξ is satisfied, we switch to
use another option policy π

ξk+1
gk+1 to achieve gk+1, repeating this process until the agent satisfies

the last subgoal gK by using the option policy π∅
gK . In addition to environmental rewards, the

agent will receive the reward RF (defined in Section 3.4) when the last subgoal gK is satisfied.
For any k = 1, . . . ,K − 1, the discounted returns during the executions of option policies
from π

ξk+1
gk+1 to π∅

gK are all back-propagated to train the policy πξk
gk

(updating Qθ
g(·, ·; ξk) or

V θ
g (·; ξk)), via the multi-step value function V ϕ introduced in Section 4.4.

It is worth noting the difference between V θ
g and V ϕ. The value function V θ

g (·; ξ) is used to
train option policy πξ

g if on-policy training method is used, and it is associated with the option
oξg and subgoal g. However, V ϕ(·; ξ) is the multi-step value function used to propagate reward
information of satisfying the subgoal sequence ξ, independent of any options or subgoals.

4.4 Multi-step Value Function
Since the value functions of option policies (Qθ

g or V θ
g) are updated with TD-1 method in (3)

or (4), each update can propagate the reward information for only one time step. However, we
note that the satisfaction of a future subgoal sequence ξ can have long horizon with sparse
rewards, and the training of option policy πξ

g is dependent on satisfying ξ. Therefore, it can
be inefficient to propagate the reward information of satisfying ξ back to update Qθ

g or V θ
g in

training the option policy πξ
g . In the rest of the paper, we use ξ[k] to denote the k-th subgoal in

sequence ξ.
In order to help the propagation of reward information in long-horizon tasks, we propose

to learn a multi-step value function V ϕ(s; ξ) to estimate the discounted return of satisfying
the subgoal sequence ξ starting from state s. In option training, the output of V ϕ is used to

10

s0 s1 . . . st′ . . . st′′ . . . sT

st′s0 st′′ . . . sT

Qθ(·, ·; ξ) :

V ϕ(·; ξ) :

st′+1

VMC(0, T) VMC(t
′, T)

VMC(0, t
′) VMC(t

′, t′′)

Figure 3: Diagram of back-propagation of reward information. The green line shows that Q
functions of different options (target subgoals are omitted) are learned by TD-1 method. Note
that function V ϕ is independent of subgoals while Qθ is dependent on different subgoals. The
first and second subgoals (ξ[0] and ξ[1]) are satisfied at st′ and st′′ , respectively. The red line
shows that the multi-step value function V ϕ sets the target value for Qθ whenever a subgoal is
satisfied. The blue and cyan curves denote the Monte Carlo estimate of multi-step discounted
return VMC(·, ·). V ϕ is updated whenever a subgoal is satisfied, which has much coarser time
resolution than Qθ.

set the target value for updating Qθ
g(·, ·; ξ) or V θ

g (·; ξ) so that the reward propagation toward
option policies can be accelerated. In Figure 3, it visually shows how the reward information
is back-propagated in both Qθ and V ϕ when options are learned by an off-policy RL method.
In the on-policy case, V θ and V ϕ work in the same way. Additionally, this function V ϕ(·; ξ)
is also used to build a model-free option planner in task execution.

Specifically, the target value for updating V ϕ is calculated based on Monte Carlo (MC)
estimates of two discounted returns. 1) The first is the MC estimate of the discounted return
till the end of the trajectory (cyan curves in Figure 3), i.e., VMC(t, T) :=

∑T
k=t γ

k−trt (T is
the last time step of the trajectory). We use VMC(t, T) here since it is unbiased and good at
capturing long-term rewards, but it also has large variance [14]; 2) In order to attenuate the
variance, we also use the MC estimate of the discounted return till the satisfaction of next
subgoal ξ[0] (blue curves in Figure 3), i.e., VMC(t, t

′) =
∑t′

k=t γ
k−trt (t′ is the time when

ξ[0] is satisfied). This VMC(t, t
′) is used to build a multi-step temporal difference (TD) target

for updating V ϕ, which is together with the value estimate of satisfying other subgoals ξ[1 :]

from a lagged value network V ϕ−
[31].

Assume we have a trajectory τ = {s0, a0, r0, s1, . . . , sT−1, aT−1, rT−1, sT } with the
subgoal sequence ξ as the target task to complete. If next subgoal ξ[0] is satisfied at time t′,
the target for multi-step V ϕ function is written as

V target(st; ξ) = max{VMC(t, t
′) + γt′−tV ϕ−

(st′ ; ξ[1 :]), VMC(t, T)} (6)

In the equation above, the first term in the maximum is a multi-step TD target formed by
VMC(t, t

′) together with the lagged value network V ϕ−
. As discussed above, we also use

VMC(t, T) in (6) to directly capture the reward information till the end of the trajectory. Since
the value network always has very small values throughout the state space in early training
stages, we need to use a maximum operator in (6) to help the reward back-propagate from
the end of the trajectory. If next subgoal ξ[0] is not satisfied by any state in τ , the target
will become V target(st; ξ) = max{V ϕ−

(st; ξ), VMC(t, T)}. Finally, the value function V ϕ is
trained to predict its target value by minimizing the loss function

J(ϕ) = ℓ(V ϕ(st; ξ), V
target(st; ξ)) (7)

11

where ℓ is an arbitrary differentiable loss function.
The value function V ϕ also sets the target value to update the Q functions of option policies

(i.e., Qθ
g(·, ·; ξ)) whenever the subgoal g is satisfied. For any tuple (st, at, rt, st+1), the target

value for Qθ
g(·, ·; ξ) is expressed as,

Qtarget
g (st, at, rt, st+1; ξ) = rt + γβg(st+1)V

ϕ(st+1; ξ)

+γ(1− βg(st+1))max
a′

Qθ−

g (st+1, a
′; ξ) (8)

where θ− is the parameter of the lagged target network as [31]. This target means that when
g is not satisfied yet (i.e., βg(st+1) =false), the Q function is updated via the classical TD-1
method. However, whenever g is satisfied (i.e., βg(st+1) =true), it is updated with the target
value given by V ϕ(·; ξ) which can quickly propagate discounted return (reward information)
of satisfying ξ back to st+1, achieving the global optimality of satisfying both g and ξ. Then
Qθ

g(·, ·; ξ) can be updated by minimizing the loss as,

J(θ) = E(s,a,r,s′,g,ξ)∼B
[
ℓ(Qθ

g(s, a; ξ), Q
target
g (s, a, r, s′; ξ))

]
(9)

where B is the replay buffer.

4.5 Algorithms
The algorithms for training and testing are in Algorithm 1 and 2 in Appendix A.7, and the
algorithm for subgoal extraction is presented in Algorithm 3. The task generation for perfor-
mance evaluation is introduced in Appendix A.2. More practical implementation techniques
are in Appendix A.6.

4.5.1 Model-free Option Planner

In the high level of TL task execution, we use a model-free planner to determine the next
option to execute. As shown in Figure 2(b), it uses the standard model-predictive control
(MPC) technique [13]: first extracts all the subgoal sequences satisfying the target task ϕ, then
finds the optimal subgoal sequence ξ∗ according to multi-step value function V ϕ(s; ξ) and
finally determines the option of achieving first subgoal ξ∗[0] conditioned on achieving future
ones ξ∗[1 :], i.e., oξ

∗[1:]
ξ∗[0] , to execute. Different from previous MPC planners, we do not need

to learn a transition model here since V ϕ is already trained to predict the expected return of
achieving various subgoal sequences ξ. So, although previous model-based planners suffer
from compounding errors [37, 38], this issue can be avoided by our proposed model-free
planner. Whenever the selected option is successfully finished, the task formula needs to be
updated by progression with the symbol of achieved subgoal, as indicated by the red arrow in
Figure 2(b).

Although function V ϕ is trained to predict the return of finite subgoal sequences which
have maximum length K, V ϕ is still generalizable to longer sequences, since the representation
of subgoal sequence is extracted by GNN which has strong power of generalization. This is
validated by the following experiments.

12

During the task execution, in order to avoid unsafe symbols, whenever task formula is
updated the agent finds a set of unsafe symbols Uunsafe which can falsify the current task φ,
i.e., Uunsafe = {q|q ∈ G, prog(q, φ) = false}. In the low level of the task execution framework,
actions at which can lead the agent too close to symbols in Uunsafe will be ignored, where the
closeness is measured by the action value function Q∅

g for ∀g ∈ Uunsafe. The details of task
execution are presented in Algorithm 2 in Appendix.

4.5.2 Theoretical Justification
In this section, we theoretically justify the proposed model-free MPC planner in a deterministic
transition environment which contains all the environments where our empirical results are
evaluated later. First define the reward function R(s, g) as the maximum expected return
obtained for reaching a single subgoal g starting from state s, where the transition function
T (·|s, g) gives the next state when g is reached with s as the starting state. Both R(s, g)
and T (·|s, g) are obtained by following the optimal policy of reaching g only. Then, denote
R(s, g; ξ) as the reward function conditioned on reaching subgoal sequence ξ in the future,
where T (·|s, g; ξ) denotes the state transition function conditioned on reaching ξ in the future.
Let Qπ denote the Q-function under any (myopic) subgoal policy π, i.e., Qπ(s, g). Note that
with a slight abuse of notation we also use Qπ to denote the multi-step Q-function, defined as

Qπ(s, g̃1, . . . , g̃K) = Esτ+1∼T (·|sτ ,gτ ;gτ+1:K)

[K∑
τ=1

R(sτ , gτ ; gτ+1:K)

∣∣∣∣g1 = g̃1, . . . , gK = g̃K

]

+Egτ ∼ π(·|sτ),
sτ+1 ∼ T (·|sτ , gτ)

[∞∑
τ=K+1

R(sτ , gτ)

]
(10)

The first term in (10) is equal to the expectation of multi-step value function V ϕ(s; g̃1:K)
formulated in Section 4.4, since the MC estimate is unbiased. When the satisfying subgoal
sequence extracted from task formula φ is not longer than K, the second term in (10) can be
ignored and we have Qπ(s, g̃1, . . . , g̃K) = V ϕ(s; g̃1:K) for any π.
Theorem 1. Let Π be the set of one-step Markov stationary (myopic) policies for sub-
goal selection, i.e., for any π ∈ Π, π : S → ∆(G). Suppose the transition dynamics
T of reaching subgoals is deterministic. For any given reward R, denote the K-step sub-
goal policy obtained from K-step policy improvement as π′K : S → GK , defined as
π′K(s) ∈ argmax(g1,...,gK)∈GK maxπ∈Π Qπ(s, g1, . . . , gK), for all s ∈ S. Let Vπ′

K
denote

the value function under the policy π′K . Then, we have that for all s ∈ S

Vπ′
K
(s) ≥ max

g1:K∈GK
max
π∈Π

Qπ(s, g1, . . . , gK) ≥ max
g∈G

max
π∈Π

Qπ(s, g) (11)

The proof of this theorem is in Appendix A.1. This result shows that the value function of the
greedy multi-subgoal policy (π′K) improves over all the possible K-step subgoal sequences,
with the policy after step K to be any policy in Π. Moreover, the value function of π′K also
improves overall one-step policies if the policy after the first step onwards follows any policy
in Π. The proposed model-free option planner selects multiple subgoals (at most K subgoals)
greedily according to V ϕ, working same as the greedy multi-subgoal policy π′K . Note that
previous option selection policies for TL task execution [9, 20, 21] are all one-step myopic
policies in Π. Therefore, based on Theorem 1, the advantage of the proposed planner over
previous ones is theoretically justified.

13

e

d

b

c

d

a

b

c

a

e

(a) Letter (b) Room (c) Navigation

Figure 4: Environments. Note that these environments are procedurally generated and hence
tasks cannot be solved by simple tabular methods.

5 Experiments
Our experiments are designed to evaluate the performance of multi-task RL agent trained by the
proposed framework, including sample efficiency, optimality and generalization. Specifically,
we focus on the following questions: 1) Performance: whether the proposed framework can
outperform previous representative methods in terms of optimality and sample efficiency; 2)
Ablation study: what is the influence of different components of the proposed framework
on the learning performance; 3) Long horizon tasks: whether the proposed framework can
train the multi-task agent to better solve long-horizon unseen tasks; 4) Visualization: what
the learned value function looks like for options conditioned on different future subgoals.
The neural architecture and hyper-parameters used in experiments are also introduced in the
appendix.

5.1 Experiment Setup
We conducted experiments across different environments and TL tasks, where the tasks vary
in length and difficulty. All the environments are procedurally generated, where the layout and
positions of objects are randomly generated upon reset. The positions and properties of objects
are unknown to the agent. As such, none of the environments adopted here can be solved by
simple tabular-based methods.

In every training episode, the agent uses appropriate option policies to satisfy a subgoal
sequence ξ which is randomly selected from the set of subgoals of the environment. After
every fixed number of training steps or episodes, the agent is evaluated on a fixed number of
tasks with TL specifications randomly sampled from a large set of possible tasks (more than
106). We also evaluate the agent on TL tasks whose solution has longer horizons than subgoal
sequences used in the training stage, verifying the generalization of the trained agent to more
difficult tasks. The environments are introduced in the following.
Remark. The algorithm performance reported here can be also regarded as the evaluation of
zero-shot generalization. First, since the agent is only trained to complete subgoal sequences,
the TL tasks in evaluation are unseen in the training. Second, the agent directly applies the
policies of trained options to complete tasks in evaluation, so that no further learning is needed
for any unseen tasks in the evaluation. These two arguments also hold in baselines. Therefore,
the zero-shot generalization capability of the proposed framework is evaluated and compared
with baselines.

14

Letter. This environment is a n× n grid game which is a variant of that in Figure 1, replacing
objects by letters. Out of the n2 grid cells, m grids are associated with k (where m > k)
unique propositions (letters). Note that some letters may appear in multiple cells, giving the
option of reaching them in multiple ways. An example layout is shown in Figure 4(a) with
n = 7,m = 10 and k = 5. At each step the agent can move along the cardinal directions (up,
down, left and right). The agent is given the task specification and is assumed to observe the
full grid (and letters) from an egocentric point of view with the image-based observation. Each
task is described by a TL formula in terms of these letters. But positions of these letters are
unknown to the agent. The agent must visit these letters’ locations in certain way to satisfy the
TL formula.

Room. This environment is also a grid-world game, but its observation is divided into four
rooms as shown in Figure 4(b). There are 5 letters located in 8 positions, corresponding to 5
propositions randomly allocated in these rooms. An example of layout is shown in Figure 4(b).
The agent is randomly placed into one of these rooms. Each room is connected to its neighbors
by corridors. Two randomly selected corridors are blocked by locks. The agent can open a
lock by using a key corresponding to that specific lock (having the same color). These (green
and yellow) keys are placed in positions which the agent can reach. This environment is an
upgrade of MineCraft with obstacles and dependencies between objects imposed by keys and
locks. The observation is also image-based here and the agent does not know the positions of
objects. Every task formula is a TL formula in terms of object’s letters. The agent must visit
these letters’ locations in certain way to satisfy the TL formula.

Navigation. This is a robotic environment with continuous action and state spaces. It is
modified from OpenAI’s Safety Gym [39]. As shown in Figure 4(c), the environment is a 2D
plane with 6 to 9 colored circles, called "navigation". Here each color represents a proposition
in task specification, with some circles sharing the same color. We use Safety Gym’s Point robot
whose actions are steering and forward/backward acceleration. Its observation includes the
lidar information towards the circles and other sensory data (e.g., accelerometer, velocimeter).
The circles and the robot are randomly positioned on the plane at the start of each episode and
the robot has to visit and/or avoid certain colors in a particular manner described by the TL
specification.

5.1.1 Tasks

We evaluate the proposed framework on two categories of tasks, i.e., DNF and Recursive task.
Every category has millions of possible tasks. Every TL task for testing is randomly selected,
and the agent does not know any information about the task before learning starts. The details
of task generation are introduced in Appendix A.2.

5.1.2 Baselines

The proposed algorithm is compared with three baselines. The model architecture and hyper-
parameters of the proposed method and baselines are introduced in Appendix A.5 and A.8.
The first baseline (Option) is based on the conventional option framework, where every option
is only trained to achieve next proposition as the subgoal without considering the future. This
baseline is essentially same as methods in [21, 22], whose idea was widely used by previous
works on multi-task RL [9, 20–22, 40, 41]. Following [21, 22], in Option baseline the TL task

15

is first decomposed into subgoal sequences and the agent applies pre-trained option policies
to achieve subgoals in the sequence one-by-one, where the options were trained myopically
without considering future subgoals. In order to make comparisons to be fair, in Option
baseline the RL algorithms for training the agent and hyper-parameters are the same as the
proposed method, where HER and formula transformation are both adopted. However, in
Option baseline, since options are not conditioned on future subgoals, their training does not
need future rewards and the multi-step value function V ϕ is not used.

The second baseline (GCN-LTL) is modified from [10], where the task formula is processed
by a graph convolutional network (GCN) [42] and progresses over time. The architecture of
GCN here is the same as that in [10] with T = 8 message passing steps and 32-dimensional
node embedding. Other parts of agent’s model are the same as the proposed method. The third
baseline (GRU-LTL) is based on the method in [8]. This approach trains an agent that considers
the whole task specification as an extra input and uses GRU [43] to learn an embedding of the
TL specification which does not progress over time. The learned task embedding has the size
of 32 which is same as the size of embedding of future subgoals in our method. Other parts of
agent’s model are the same as the proposed method.

In original papers of GCN-LTL and GRU-LTL [8, 10], the agent is trained by on-policy
PPO algorithms. In order to make them comparable with the proposed framework, GCN-LTL
and GRU-LTL use same RL algorithm as our framework, with the same hyperparameters as
ours. In the letter and room domains, the agents in GCN-LTL and GRU-LTL are trained by
the off-policy Q learning [1] approach. In the navigation domain, GCN-LTL and GRU-LTL
still use the PPO algorithm. Since the agent takes the original TL specification as its input
directly, formula transformation and HER cannot be used in GCN-LTL or GRU-LTL. Since
their original implementations are not option-based, the multi-step value function V ϕ is not
used either.

5.2 Results
In this section, we present the comparison results of the proposed method with baselines. The
overall performance comparisons in terms of average return for satisfying TL tasks are first
presented. Then, we demonstrate the ablation studies to investigate the effects of different
components of the proposed framework. More ablation study on the multi-step value function
in the navigation domain is shown in Section 5.2.2. In each plot of the proposed framework,
the x-axis is the number of environment steps used in the option training algorithm, while the
y-axis is the evaluation performance of task execution algorithm by applying trained options.
In evaluation, the task is randomly generated according to some template.

5.2.1 Performance

In Figure 5, the proposed method is compared with three baselines introduced in Section 5.1.2.
We can see that although Baseline-1 can learn fast in the early stage, its overall performance is
the worst. The optimality in Baseline-1 degrades because the resulting options myopically focus
on the next subgoal only, without looking ahead. It shows the importance of the dependence of
options on future subgoals. In addition, the proposed method can learn much faster than GCN-
LTL and GRU-LTL, confirming that leveraging reusable skills via options can achieve better
sample efficiency. Further, the agents in GCN-LTL and GRU-LTL, which are conditioned

16

(a) Letter, DNF Task (b) Room, DNF Task (c) Navigation, DNF Task

(d) Letter, Rec. Task (e) Room, Rec. Task (f) Navigation, Rec. Task

Figure 5: Performance Comparisons. The x-axis is the environmental step, and the y-axis is
the return. "Rec." is short for recursive. The first row is for evaluating DNF tasks, and the
second row is for evaluating recursive tasks. The definitions of DNF and recursive tasks are in
Appendix A.2. The return is defined as the sum of rewards along the trajectory.

on the task specification directly, need a lot of environment samples to understand temporal
operators and find out the optimal path in the formula to finish the task.

5.2.2 Ablation Study

The ablation study is first to examine the difference between GNN and GRU when used in
option critics Qθ

p(·, ·; ξ) and value function V ϕ(·; ξ) to learn the embedding of the sequence
ξ of future subgoals. Specifically, the nodes of GNN represent subgoals and every subgoal
is connected to its successor by a directed edge. The embedding of sequence ξ is learned by
GCN with multi-step message passing (T = 8). In addition, when the GRU is used, sequence
ξ, with every element one-hot encoded, is fed into GRU and the embedding can be obtained at
the output of GRU. More details of agent’s model are in Appendix. In Figure 6, we can see
that the GRU performs slightly worse than GNN.

In addition, we study the effects of multi-step value function V ϕ and HER by comparing
"No-value" and "No-HER" with the proposed method in Figure 6. We can see that when
V ϕ or HER is not used, the learning performance can degrade significantly, implying their
importance in performance improvement. Since the time horizon of tasks in the navigation
domain is much longer than other domains, we find that the multi-step value function V ϕ plays
a more important role in navigation domain. The reward propagation is more difficult when
task’s time horizon increases, and hence the usage of V ϕ can improve the sample efficiency of
our framework significantly in this case.
Multi-step Value Function. In navigation domain, the time horizon of every task is 1000
which is much longer than that in other domains. The experiments in this section are conducted
in two environments of navigation domain. The first environment has 3 colors and 6 objects,
denoted as "Nav1" whereas the second environment has 5 colors and 10 objects, denoted as

17

(a) Letter, DNF Task (b) Letter, Rec. Task (c) Room, DNF Task (d) Room, Rec. Task

Figure 6: Ablation study. The x-axis is the environmental step, and the y-axis is the return. "No-
HER" refers to the proposed method without using HER. "No-value" refers to the proposed
method without using the multi-step value function.

(a) Nav1, DNF Task (b) Nav2, DNF Task (c) Nav1, Rec. Task (d) Nav2, Rec. Task

Figure 7: The ablation study of the multi-step value function V ϕ in navigation domain. The
x-axis is the environmental step, and the y-axis is the success rate.

"Nav2". Both DNF and Recursive tasks are evaluated in these two environments. The results
of ablation study on the multi-step value function V ϕ are shown in Figure 7, where the curve
of "No Value" refers to our framework without using V ϕ. Compared with other experiment
results, we can see that V ϕ can improve the sample efficiency more in navigation domain.

5.3 Long Horizon Tasks
In order to verify the effectiveness of the reward propagation, we evaluate the performance of
the trained RL agent in tasks with long time horizon. We focus on the letter domain where the
map size and the depths of the TL specification are changed for comparison. The depth of a
formula φ is the length of optimal subgoal sequence to satisfy φ. Baseline Option only learns
independent option for each subgoal and does not consider reward propagation. Baseline GRU-
LTL uses recurrent GNN to process the TL specification not progressed, so its performance
on TL tasks with long horizon is much worse than Baseline GCN-LTL. Therefore, we do not
consider Baselines GCN-LTL and GRU-LTL for comparison here. In every experiment, there
are 8 unique letters on the map and every letter appears twice.

The comparison results in terms of episodic return are shown in Figure 8. Since the
evaluation results of long-horizon tasks have large variances, we only show the results as
charts here. The TL specification for evaluation is a DNF task consisting of 3 conjunctions
with the depth of d, where every letter is randomly generated without repetition. Every task
here has longer horizon than that in Figure 5. Every result in Figure 8 is the average of 10
formulas, and the variance is obtained from 5 seeds. We can see that the proposed method
can significantly outperform the Baseline Option. Moreover, the superiority of our proposed

18

0

2

4

6

8

10

12

3M 5M 10M

Proposed Baseline-2Proposed Option
12

10

8

6

4

2

0
3M 5M 10M

(a) n = 9, d = 10

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2Proposed Option
10

8

6

4

2

0
3M 5M 10M

(b) n = 9, d = 12

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2Proposed Option
10

8

6

4

2

0
3M 5M 10M

(c) n = 9, d = 15

0

2

4

6

8

10

12

3M 5M 10M

Proposed Baseline-2

0

2

4

6

8

10

12

3M 5M 10M

Proposed Baseline-2Proposed Option
12

10

8

6

4

2

0
3M 5M 10M

(d) n = 11, d = 10

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2Proposed Option
10

8

6

4

2

0
3M 5M 10M

(e) n = 11, d = 12

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2Proposed Option
10

8

6

4

2

0
3M 5M 10M

(f) n = 11, d = 15

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2

0

2

4

6

8

10

12

3M 5M 10M

Proposed Baseline-2Proposed Option
12

10

8

6

4

2

0
3M 5M 10M

(g) n = 15, d = 10

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2Proposed Option
10

8

6

4

2

0
3M 5M 10M

(h) n = 15, d = 12

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2

0

2

4

6

8

10

3M 5M 10M

Proposed Baseline-2Proposed Option
10

8

6

4

2

0
3M 5M 10M

(i) n = 15, d = 15

Figure 8: Performance comparison for long-horizon tasks in letter domain. The x-axis is
the number of environment steps taken for option training. The y-axis is the average sum of
rewards received in the trajectory. The map size is n× n and the task formula has depth of d.
The evaluation takes place at the steps of {3, 5, 10} × 106, during the option training.

method improves with map size and formula depth, showing that the proposed method can
solve the long-horizon tasks well and the effect of reward propagation is significant.

5.4 Visualization
Finally, in order to show the effects of the dependence of options on future subgoals, we
visualize the Q functions of the same option dependent on different future subgoals. The color
of very grid represents the discounted return to the target subgoal, where the brighter the color
is, the higher the return will be.

In Figure 9, the first row shows the Q functions of reaching subgoal a in letter domain
in three scenarios, namely dependent on nothing, b and b → c. Every grid represents the
environment state where the agent is in that grid. On the map shown in Figure 9(a), there are
three letters a. According to Figure 9(b), the agent should go to the closest a. Figures 9(c) and
9(d) tell us that when dependent on b or b → c, the option of reaching a regards a in first row
or 7-th row as the target.

In the second row of Figure 9, we can see that in room domain, the option of reaching C
has different targets when the future subgoal sequences ξ are different. Specifically, In Figure
9(h), the grid containing the yellow key has the highest value in the bottom rooms and the grid

19

d
f

a

a

a

b

b

c

h

d

f

g

c

(a) Letter (b) Qθ
a(·, ∗;∅) (c) Qθ

a(·, ∗; b) (d) Qθ
a(·, ∗; b, c)

(e) Room (f) Qθ
C(·, ∗;∅) (g) Qθ

C(·, ∗;B) (h) Qθ
C(·, ∗;B,A)

Figure 9: Visualization of trained action-value function of options. The first row is for the
option of reaching a in letter domain, and the second row is for the option of reaching C in
room domain. The color in every grid (state s) corresponds to the Q value of the optimal action,
i.e., ∀s,Qθ

p(s, ∗; ξ) = maxaQ
θ
p(s, a; ξ).

having C in the upper left room has the highest value across the whole map. This indicates
that in environment states where the agent is in the bottom rooms, the agent should first go to
pick up the yellow key as an intermediate target and then go to C in the upper left corner. It
shows that the agent successfully learns the skill of opening a lock by the right key, without
having any key proposition or prior knowledge.

6 Conclusion
In this work, we propose a novel framework for generalizing TL tasks by options dependent on
the future subgoal sequence. Moreover, to facilitate the reward propagation of satisfying future
subgoals, we propose to learn a multi-step value function updated by Monte Carlo estimates
of discounted return. Based on these, we also propose a new model-free option planner for
task execution, which circumvents the compounding errors caused by the learned transition
model. With comprehensive experiments, the proposed method is confirmed to have significant
advantages over previous methods in terms of optimality and sample efficiency.

The limitation of this proposed framework is that it cannot solve TL tasks with noisy
symbolic observations [44]. In real-world applications the values of symbols or propositions
can be stochastic, and the achievement of subgoals and even tasks can be probabilistic.
In the future work, we will extend the proposed framework to handle TL task with noisy
symbolic observations by learning a probabilistic model of symbols conditioned on the input
observation.

20

7 Declarations

7.1 Funding
This study was funded by National Science Foundation (NSF) under Award No. 1837369.

7.2 Conflicts of Interests
Not applicable.

7.3 Ethics Approval
Not applicable.

7.4 Consent to Participate
Not applicable.

7.5 Consent for Publication
Not applicable.

7.6 Availability of Data and Material
Not applicable.

7.7 Code Availability
Not applicable.

7.8 Authors’ Contributions
D.X. formulate the problem, designs the algorithm, conducts the experiments and writes the
paper. F.F. revises the paper and provides the supervision.

References
[1] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves,

A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level control through
deep reinforcement learning. Nature 518(7540), 529–533 (2015)

[2] Badia, A.P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, Z.D., Blundell,
C.: Agent57: Outperforming the atari human benchmark. In: International Conference on
Machine Learning, pp. 507–517 (2020). PMLR

[3] Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor
policies. The Journal of Machine Learning Research 17(1), 1334–1373 (2016)

[4] Inala, J.P., Ma, Y.J., Bastani, O., Zhang, X., Solar-Lezama, A.: Safe human-interactive
control via shielding. arXiv preprint arXiv:2110.05440 (2021)

21

[5] De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite
traces. In: IJCAI’13 Proceedings of the Twenty-Third International Joint Conference on
Artificial Intelligence, pp. 854–860 (2013). Association for Computing Machinery

[6] Toro Icarte, R., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Teaching multiple tasks to
an rl agent using ltl. In: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 452–461 (2018)

[7] Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research 10(7) (2009)

[8] Kuo, Y.-L., Katz, B., Barbu, A.: Encoding formulas as deep networks: Reinforce-
ment learning for zero-shot execution of ltl formulas. In: 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5604–5610 (2020). IEEE

[9] Araki, B., Li, X., Vodrahalli, K., DeCastro, J., Fry, M., Rus, D.: The logical options
framework. In: International Conference on Machine Learning, pp. 307–317 (2021).
PMLR

[10] Vaezipoor, P., Li, A.C., Icarte, R.A.T., Mcilraith, S.A.: Ltl2action: Generalizing ltl
instructions for multi-task rl. In: International Conference on Machine Learning, pp.
10497–10508 (2021). PMLR

[11] Hengst, F., François-Lavet, V., Hoogendoorn, M., Harmelen, F.: Reinforcement learning
with option machines. In: Proceedings of the Thirty-First International Joint Confer-
ence on Artificial Intelligence, IJCAI-22, pp. 2909–2915 (2022). International Joint
Conferences on Artificial Intelligence Organization

[12] Liu, J.X., Shah, A., Rosen, E., Konidaris, G., Tellex, S.: Skill transfer for temporally-
extended task specifications. arXiv preprint arXiv:2206.05096 (2022)

[13] Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice—a
survey. Automatica 25(3), 335–348 (1989)

[14] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, ???
(2018)

[15] Camacho, A., Icarte, R.T., Klassen, T.Q., Valenzano, R.A., McIlraith, S.A.: Ltl and
beyond: Formal languages for reward function specification in reinforcement learning.
In: IJCAI (2019)

[16] Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines for high-
level task specification and decomposition in reinforcement learning. In: International
Conference on Machine Learning, pp. 2107–2116 (2018). PMLR

[17] Icarte, R.T., Klassen, T.Q., Valenzano, R., McIlraith, S.A.: Reward machines: Exploiting
reward function structure in reinforcement learning. Journal of Artificial Intelligence

22

Research 73, 173–208 (2022)

[18] Littman, M.L., Topcu, U., Fu, J., Isbell, C., Wen, M., MacGlashan, J.: Environment-
independent task specifications via gltl. arXiv preprint arXiv:1704.04341 (2017)

[19] Jothimurugan, K., Bansal, S., Bastani, O., Alur, R.: Compositional reinforcement learning
from logical specifications. Advances in Neural Information Processing Systems 34,
10026–10039 (2021)

[20] Andreas, J., Klein, D., Levine, S.: Modular multitask reinforcement learning with policy
sketches. In: International Conference on Machine Learning, pp. 166–175 (2017). PMLR

[21] León, B.G., Shanahan, M., Belardinelli, F.: Systematic generalisation through task
temporal logic and deep reinforcement learning. arXiv preprint arXiv:2006.08767 (2020)

[22] León, B.G., Shanahan, M., Belardinelli, F.: In a nutshell, the human asked for this: Latent
goals for following temporal specifications. In: International Conference on Learning
Representations (2021)

[23] Chrisman, L.: Reinforcement learning with perceptual aliasing: The perceptual distinc-
tions approach. In: AAAI, vol. 1992, pp. 183–188 (1992). Citeseer

[24] Shani, G., Brafman, R.: Resolving perceptual aliasing in the presence of noisy sensors.
Advances in Neural Information Processing Systems 17 (2004)

[25] Shani, G.: A survey of model-based and model-free methods for resolving perceptual
aliasing. Ben-Gurion University (2004)

[26] Lajoie, P.-Y., Hu, S., Beltrame, G., Carlone, L.: Modeling perceptual aliasing in slam
via discrete–continuous graphical models. IEEE Robotics and Automation Letters 4(2),
1232–1239 (2019)

[27] Liu, M., Zhu, M., Zhang, W.: Goal-conditioned reinforcement learning: Problems and
solutions. arXiv preprint arXiv:2201.08299 (2022)

[28] Li, S., Zhang, J., Wang, J., Yu, Y., Zhang, C.: Active hierarchical exploration with stable
subgoal representation learning. arXiv preprint arXiv:2105.14750 (2021)

[29] Chane-Sane, E., Schmid, C., Laptev, I.: Goal-conditioned reinforcement learning with
imagined subgoals. In: International Conference on Machine Learning, pp. 1430–1440
(2021). PMLR

[30] Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H.,
Gupta, A., Abbeel, P., et al.: Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905 (2018)

[31] Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

23

[32] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

[33] Sutton, R.S., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence 112(1-2), 181–211
(1999)

[34] Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations
of Computer Science (sfcs 1977), pp. 46–57 (1977). ieee

[35] Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge university press, ??? (2004)

[36] Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowledge for
planning. Artificial intelligence 116(1-2), 123–191 (2000)

[37] Asadi, K., Misra, D., Littman, M.: Lipschitz continuity in model-based reinforcement
learning. In: International Conference on Machine Learning, pp. 264–273 (2018). PMLR

[38] Lambert, N., Pister, K., Calandra, R.: Investigating compounding prediction errors in
learned dynamics models. arXiv preprint arXiv:2203.09637 (2022)

[39] Ray, A., Achiam, J., Amodei, D.: Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708 7, 1 (2019)

[40] Sohn, S., Oh, J., Lee, H.: Hierarchical reinforcement learning for zero-shot generalization
with subtask dependencies. Advances in Neural Information Processing Systems 31
(2018)

[41] Sun, S.-H., Wu, T.-L., Lim, J.J.: Program guided agent. In: International Conference on
Learning Representations (2019)

[42] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

[43] Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

[44] Li, A.C., Chen, Z., Vaezipoor, P., Klassen, T.Q., Icarte, R.T., McIlraith, S.A.: Noisy sym-
bolic abstractions for deep rl: A case study with reward machines. In: Deep Reinforcement
Learning Workshop NeurIPS 2022 (2022)

[45] Schlichtkrull, M., Kipf, T.N., Bloem, P., Berg, R.v.d., Titov, I., Welling, M.: Modeling re-
lational data with graph convolutional networks. In: European Semantic Web Conference,
pp. 593–607 (2018). Springer

[46] Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Pieter Abbeel, O., Zaremba, W.: Hindsight experience replay. Advances in

24

neural information processing systems 30 (2017)

[47] Xu, D., Fekri, F.: Generalizing ltl instructions via future dependent options. arXiv preprint
arXiv:2212.04576 (2022)

25

Appendix A Appendix

A.1 Proof of Theorem 1
In this section, we present the proof of Theorem 1 in Section 4.5.2. Define

Qmax
K (s, g1, . . . , gK) := max

π∈Π
Qπ(s, g1, . . . , gK), and Qmax(s, g) := max

π∈Π
Qπ(s, g) (A1)

We define the Bellman operator under the multi-step policy π′K (open-loop) as follows: for
any Q ∈ R|S|×|G|K

Tπ′
K
(Q)(s, g1, . . . , gK) = E

[∑
k∈[K]

γk−1R(sk, gk; gk+1:K)+γKQ(sK+1, π
′
K(sK+1))

∣∣∣∣s1 = s, g1:K

]
(A2)

Note that Tπ′
K

is a contracting operator, and we denote the fixed point of this operator as

Qπ′
K

∈ R|S|×|G|K , which is the Q-function of the multi-step policy π′K . According to the
definition [14], we also know the its state-value function Vπ′

K
(s) = Qπ′

K
(s, π′K(s)) which

applies the multi-step policy π′K to subgoals g1:K in Qπ′
K
(s, g1:K). Then, we have

Tπ′
K
(Qmax

K)(s, g1, . . . , gK) = E
[∑
k∈[K]

γk−1R(sk, gk; gk+1:K) + γKQmax
K (sK+1, π

′
K(sK+1))

∣∣∣∣s1 = s, g1:K

]

= E
[∑
k∈[K]

γk−1R(sk, gk; gk+1:K) + γK max
gK+1:2K

Qmax
K (sK+1, gK+1:2K)

∣∣∣∣s1 = s, g1:K

]
(A3)

≥ E
[∑
k∈[K]

γk−1R(sk, gk; gk+1:K) + γK max
gK+1:2K

Qπ(sK+1, gK+1:2K)

∣∣∣∣s1 = s, g1:K

]
(A4)

≥ E
[∑
k∈[K]

γk−1R(sk, gk; gk+1:K) + γKQπ(sK+1, π(sK+1), . . . , π(s2K))

∣∣∣∣s1 = s, g1:K

]
(A5)

= Qπ(s, g1, . . . , gK) (A6)

for any π ∈ Π, where (A3) is due to the definition of π′K , (A4) is from the definition of
Qmax

K , (A5) is from the max operator, and (A6) uses the definition. Therefore, because of the
monotonicity of Tπ′

K
shown above, we have

Qπ′
K
(s, g1:K) = lim

n→∞
(Tπ′

K
)n(Qmax

K)(s, g1:K) ≥ Qmax
K (s, g1:K) ≥ max

π∈Π
Qπ(s, g1:K) (A7)

Applying π′K on both sides of (A7) yields,

Vπ′
K
(s) = Qπ′

K
(s, π′K(s)) ≥ max

π∈Π
Qπ(s, π

′
K(s)) = max

g1:K
max
π∈Π

Qπ(s, g1:K) (A8)

Since the multi-step maximization is not smaller than single-step maximization, we have,

max
g1:K

max
π∈Π

Qπ(s, g1:K) ≥ max
g

max
π∈Π

Qπ(s, g) (A9)

which can prove the theorem in the combination with (A8).

26

(a) Nav1, DNF Task (b) Nav1, Rec Task (c) Nav2, DNF Task (d) Nav2, Rec Task

Figure A1: Performance evaluation in Navigation environment with Car agent. Nav1 and 2
are different setups of navigation environment, introduced in Section 5.2.2.

A.2 Task Generation
We define the depth of a task formula φ as the length of the shortest subgoal sequence to
satisfy φ. We generate two kinds of tasks to evaluate agent’s performance.

The first kind of task is the "DNF" task described by a disjunctive normal formula that
concatenates terms by disjunctive operator ∪, i.e., φdnf = φdnf ∪ φ′ and φ′ = φ′; s|φ′;¬g.
Here, s and g are propositions denoting two different subgoals. The notation | denotes alterna-
tive. When generating a task formula, two sub-formulae around | are randomly selected. For
instance, φdnf = (a; b;¬e) ∪ (c; d). Specifically, the number of terms that are connected with
the disjunctive operator ranges between 3 and 5, and the number of propositions in every term
is between 1 to 5.

The second type of task is called "Recursive" task, which can be formulated as φrec =
φrec;φ

′|φrec ∩φ′ and φ′ = g∨φ′|¬sU(g∨φ′)|¬sUg. Here, s and g are propositions denoting
two different subgoals. The depth of the recursion is randomly selected between 3 and 5. An
example of "recursive" task is (¬a ∪ (b ∨ c)); e; (¬f ∪ g), and the shortest subgoal sequence
for satisfying this task is b → e → g or c → e → g with the depth of 3.

A.3 Additional Results in Navigation Environment
In addition to Section 5.2.1, we conduct more experiments in Navigation environment with
more complex agent of car. This agent simulates a wheeled robot with differential drive control.
The performance evaluation is shown in Figure A1. The setups of Nav 1 and 2 are same as
that introduced in Section 5.2.2. Here, we compare the proposed framework with Option
baseline which learns options of reaching different subgoals myopically without looking into
the future, similar as that in [21, 22]. Then the proposed framework without multi-step value
function is also evaluated, denoted as No-value. We can see that, in all these experiments, the
option baseline performs the worst, showing the importance of future subgoals. The no-value
baseline can reach similar performance as the proposed framework, but it has a much slower
convergence speed, demonstrating the effect of multi-step value function on accelerating the
value propagation and learning speed.

A.4 Comparison of Time and Memory Complexity
In this section, we evaluate the proposed framework for the CPU time and memory consump-
tion in letter and navigation domains. The computer where the experiments are conducted has
Intel i5 CPU, 32G memory, and a 3090 Ti GPU. The tasks for evaluation have long horizon,

27

(a) Letter, DNF Task (b) Letter, Rec Task (c) Nav, DNF Task (d) Nav, Rec Task

Figure A2: Time comparison of the proposed framework and baseline methods. The experi-
ments are conducted in letter and navigation (Nav) domains with DNF and Rec tasks evaluated.
We compare the amount of training hours used by different methods to achieve the same per-
formance in terms of episodic return. The missing values for Baseline Option are due to the
fact that the corresponding performance cannot be achieved by this method.

with the depth of d = 10. The baselines compared here are Option and GCN-LTL. For time
comparison, although the CPU time for every environmental step is similar, different algo-
rithms still need different amount of time to achieve the same performance. So, we compare
the proposed framework with baselines on the amount of consumed time for achieving the
same evaluation performance. The metric of performance here is the average episodic return
of evaluated tasks.

In Figure A2, defining "optimal return" as the best performance achieved by evaluated
methods, we compare the amount of training hours used by proposed and baseline methods to
achieve the same percentage of optimal return. We can see that the Option has the best time
efficiency, since it only trains options independently without considering the future. But it
cannot achieve the same optimal performance as other methods in terms of episodic return and
hence sacrifices the optimality. The GCN-LTL method can achieve same optimal return as the
proposed one, but it has poor time efficiency, since it does not train or use options as reusable
skills. In navigation domain, the gap of time consumption is larger between the proposed and
GCN-LTL, since the control of simulated robot is more difficult in this environment.

Table A1: Memory Complexity
Comparison (unit: MB)

Letter Nav.
Proposed 2403 2237
Option 2135 1969

GCN-LTL 2358 2172

In Table A1, we also compare the memory complexity
of different methods. We only focus on GPU memory
since every experiment is conducted on GPU. Memory
is primarily consumed by the agent’s model and it is not
related with evaluation tasks. The memory consumption
in Letter domain is larger than that in Navigation domain.
This is because the observation in Letter is processed by
a CNN as images, and the observation in Navigation is
status of the robot and processed by an MLP. The Option

method has smallest memory consumption, since it trains every option myopically with simple
value function. The GCN-LTL has similar memory consumption as the proposed one.

A.5 Neural Network Architecture
The agent’s architecture of critic (Q or V function) is shown in Figure A3. The input consists
of observation, subgoal embedding and subgoal sequence. The observation is processed by
the perception module. The subgoal embedding is the one-hot encoding of the subgoals in G.
The future subgoal sequence is processed by GNN or GRU. After inputs are processed, the

28

embeddings of observation, subgoal and future subgoal sequence are concatenated and fed into
an MLP to predict the return. The multi-step value function V ϕ has the same architecture as
the critic function, except that its inputs are only the observation and future subgoal sequence.

The perception module is determined by the observation space of the environment. In
letter/room domain with map size of n× n, we used a 3-layer convolutional neural network
(CNN) which have 16, 32 and 64 channels, respectively, where the kernel size is l ∈ {2, 3, 4}
and stride is 1. In navigation domain, we used a 2-layer fully-connected network with [256,
256] units and ReLU activations.

The sequence of future subgoal is processed by GNN or GRU here. The GNN used here is a
graph convolutional network (GCN) [42, 45] with 8 message passing steps and 32-dimensional
node embeddings. The GRU used here is a 2-layer bidirectional GRU with a 32-dimensional
hidden layer.

MLP Module

Module
GNN/GRU

Observation Subgoal

Perception

Sequence
Subgoal

Figure A3: Neural Architecture of
Qθ

p(·, ·; ξ) or V θ
p (·; ξ), where p is the

subgoal and ξ is the future subgoal se-
quence.

For the MLP part of the critic function in Figure
A3, we use 3 fully-connected layers with [64, 64,
da] units and ReLU activations for all three domains.
For discrete action space environments, ad is the
number of possible actions, and the output of critic
function was passed through a logit layer before
softmax. For the continuous case, ad is the action
dimension and we also need to train an actor net-
work sharing same architecture as the critic network
except the Tanh activation. Then we assume a Gaus-
sian action distribution and parameterized its mean
and standard deviation by sending the actor’s output
to two separate linear layers.

In three baselines, the Q/value networks and actor network of the agent have the same
architectures introduced here, keeping the same model complexity as the proposed method. In
baseline Option, since the option does not consider future subgoals, the critic network does
not have any module to process the subgoal sequence. In baselines GCN-LTL and GRU-LTL,
since they do not use options, the critic network and actor network do not have any subgoal
as its input, where TL specification is first transformed into a syntax tree and processed by a
GCN (in baseline GCN-LTL) or GRU (in baseline GRU-LTL without progression). The GCN
has the same architecture as that introduced above. The GRU in baseline-3 is also a 2-layer
bidirectional GRU with 32-dimensional hidden layers.

A.6 Practical Implementation Techniques
Training Curriculum. In the option training, the agent is trained to satisfy a randomly
generated subgoal sequence ξ with maximal environment return. Denote the maximum length
of ξ as K. The training curriculum consists of K levels. As such, in the k-th level (k =
1, . . . ,K), the length of subgoal sequence ξ is set to be k. Whenever the average success rate
in k-th level is above a threshold (e.g., 80%), the agent will proceed to (k + 1)-th level where
the length of subgoal sequences becomes longer. Therefore, the difficulty of tasks increases
gradually as the agent proceeds to higher levels. For any subgoal sequence ξ, the agent applies
options to satisfy subgoals in ξ one-by-one with conditions of future subgoals. The details are
introduced in Algorithm 1. In letter and room domains, we use deep Q learning [1] (off-policy)

29

to train options, whereas in the navigation domain, we use PPO [32] algorithm (on-policy) to
train options. The details of hyper-parameters are introduced in Section A.8.
Adversarial Scheme. We also adopt an adversarial scheme for selecting training options
which can improve the learning efficiency in empirical experiments. In the k-th level, at the
beginning of each episode with initial state s0, multiple subgoal sequences with the same
length are randomly generated, i.e., {ξi}NT

i=1, and the j-th sequence with the lowest value is
selected as the training task for the agent, i.e., j = argmini=1,...,NT

V ϕ(s0; ξi). This implies
that a difficult task in the current level is selected to train the agent, always pushing forward
the capability of the learning agent.

Table A2: Hyperparameters of PPO in Navigation
Domain

Hyperparameter Value
Env. steps per update 2048

Minibatch size 256
Discount 0.995

Time horizon of an episode 1000
Total number of steps 15e6

Satisfaction Reward RF 10
HER trajectory modification ratio 1.0

Evaluation interval (episodes) 100
Evaluation episodes 10

Optimizer Adam
Learning rate 3× 10−4

GAE-λ 0.95
Entropy coefficient 0.01

Value loss coefficient 0.5
Gradient clipping 0.5
PPO clipping (ϵ) 0.2

Hindsight Experience Replay In early
learning stage, most trajectories pro-
duced by agent’s policies cannot achieve
or satisfy the given task, which cannot
provide any useful reward information to
train agent’s policy and value functions.
Therefore, in training the options, in or-
der to improve the learning efficiency,
we propose to modify the hindsight expe-
rience replay (HER) [46] to better utilize
the past unsuccessful trajectories. We ex-
tend HER to temporal logic domain by
modifying any unsuccessful trajectory
whose given task was not successfully
finished. Specifically, in any unsuccess-
ful trajectory τ associated with subgoal
sequence ξ (ξ is not finished by τ), we
find ξ′ which is the subgoal sequence sat-
isfied by τ actually and replace ξ by ξ′,
so that the trajectory τ associated with
ξ′ becomes a successful trajectory (ξ′ is
satisfied by τ). Then, assigning a large positive reward RF at the time step when ξ′[−1]
becomes satisfied, designating the trajectory τ successful and hence useful to the training.

A.7 Algorithms
We summarize the detailed operations in option training and task execution in Algorithms 1
and 2, respectively. Algorithm 1 trains the Q function in line 21 via off-policy method, which
can be trivially extended to train V function via on-policy method. The algorithm of extracting
subgoal sequences from the TL task is presented in Algorithm 3.

A.8 Hyper-parameters
In the proposed framework, we use deep Q learning [1] to learn options in letter and room
domains, while we use PPO [32] in the navigation domain. All experiments were conducted
on a compute cluster using 1 GPU (RTX 2080 Ti). The hyper-parameters used for deep Q
learning in letter and room domain are introduced in Table A3. The hyper-parameters for PPO

30

Algorithm 1 Option Training Algorithm
1: Environment MDPMe; labeling function L; positive reward for task completion RF ; The set of

propositions P and subgoals G; multi-step value function V ϕ(s; ξ); Q function of option policy
Qθ

g(s, a; ξ) for ∀g ∈ G; the subgoal planner Γϑ; replay buffer B; trajectory buffer Bt; episodic buffer
E ; maximum length of subgoal sequence K; performance threshold ζ of upgrading to next level

2: Initialize parameters θ, ϑ and ϕ;
3: Initialize B ← [];
4: % levels from 1 to K;
5: for k = 1, . . . ,K do
6: % train the options;
7: while the average success rate is below ζ do
8: Initialize E ← [];
9: Reset environment s← s0;

10: Randomly generate NS subgoal sequences, and select ξ with lowest value on V ϕ;
11: for l = 1, . . . , len(ξ) do # len(ξ) denotes the length of ξ
12: s̃0 ← s;
13: for t = 0, . . . , TS − 1 do
14: Apply option policy π

ξ[1:]
ξ[0]

into the environmentMe;
15: Obtain reward rt and next state s̃t+1;
16: Store experience tuple (s̃t, at, rt, s̃t+1, ξ[0], ξ[1 :]) into E and B;
17: if L(s̃t+1) |= ξ[0] then
18: Set s← s̃t+1 and ξ ← ξ[1 :];
19: Go to 10;
20: end if
21: Sample a minibatch BM from B and update Q function according to (9);
22: Sample trajectories from Bt and update V ϕ according to (7);
23: end for
24: Break; # the trajectory E is unsuccessful and needs to be relabeled
25: end for
26: if E is unsuccessful then # relabel unsuccessful trajectory by HER
27: Randomly select subgoal sequence ξ′ satisfied by E ;
28: Relabel the subgoal and condition (future subgoal) of every tuple in E based on ξ′;
29: end if
30: Store transitions of E into B;
31: Store E into Bt;
32: end while
33: end for

in navigation domain are presented in Table A2. The agents in three baselines are trained by
the same RL algorithms in the proposed method, using the same algorithm hyperparameters of
the proposed method. In baseline Option, we do not consider any future subgoal sequence. In
baselines GCN-LTL and GRU-LTL, we cannot use TTL transformation or HER since the TL
specification is transformed into a syntax tree from its original form.

A.9 Discussion
We have a preprint version of this paper uploaded on arXiv [47]. There are significant differ-
ences between [47] and this work. First, in order to improve computing efficiency in evaluation,

31

Algorithm 2 Task Execution Algorithm
1: The environmentMe; labeling function L; the set of propositions P; progression function prog(·, ·) introduced in [22]; multi-

step value function V ϕ and critics of options Qθ
g for ∀g ∈ G trained by Algorithm 1; the threshold of closeness κ; the test task

specification φ;
2: Reset environment and obtain the initial state s0;
3: Transform task specification φ into a setK = {ξi}

Mφ
i=1 of accepting subgoal sequences by using Algorithm 3;

4: Given φ, obtain the set of unsafe subgoals Us;
5: Select ξ∗ with largest value such that ξ∗ = argmaxξ∈K V ϕ(s0; ξ);
6: set t← 0;
7: while every sequence ξ ∈ K is not empty do
8: Sample action at from the option policy π

ξ∗[1:]

ξ∗[0]
(·|st) until ∀g ∈ Us, Qθ

g(st, at;∅) < κ

9: Obtain next state st+1;
10: if L(st+1) |= ξ∗[0] then
11: Progress the formula φ← prog(L(st+1), φ)
12: Update the set Us ← {q|q ∈ PG, prog(q, φ) = false};
13: ∀ξ ∈ K, if L(st+1) |= ξ[0], then ξ.pop(ξ[0])
14: Select again ξ∗ = argmaxξ∈K V ϕ(st+1; ξ);
15: end if
16: t← t + 1
17: end while

Algorithm 3 Transforming task specification into a list of subgoal sequences [22]
1: Task specification φ; the set of propositions P ;
2: InitializeK ← {};
3: for each atomic task p ∈ φ do
4: if p is atomic positive or negative then
5: for all Seq ∈ K do
6: Seq.append(p)
7: end for
8: else
9: # There are non-determinstic choices

10: Initialize choice list: CL
11: LK←− len(K)
12: for all Seq ∈ K do
13: for all choice ∈ p do
14: CL.append(choice)
15: Generate a clone per choice Seq′ ←− Seq
16: K.append(Seq’)
17: end for
18: end for
19: Initialize counter c←− −1
20: for i = 1, 2, . . . , len(K) do
21: if i%LK == 0 then
22: c+ = 1
23: end if
24: We append a different choice to each sequence clonedK[i].append(CL[c])
25: end for
26: end if
27: end for
28: ReturnK

this work proposes a model-free MPC planning method which is different from that in [47].
Second, this work has theoretical study for the proposed planner and conducts more experi-
ments in navigation domain. Third, this work limits the application scope from general LTL to
LTL in finite traces (LTLf), since the framework in [47] cannot solve every general LTL task
which may have infinite task horizon.

32

Table A3: Hyperparameters of Deep Q Learning in Letter and Room
Domain

Hyperparameter Value in Letter Value in Room
Batch size for training options 256 256
Batch size for training planner 64 64

Discount 0.99 0.99
Exploration ϵ init value 0.75 0.75
Exploration ϵ final value 0.05 0.05

Exploration ϵ factor 0.5 0.5
Curriculum level K 5 5

Total number of steps 10e6 10e6
Satisfaction Reward RF 1 1

Q update interval 10 5
Q target update interval 2000 1500

V update interval 10 5
V target update interval 2000 1500

HER trajectory modification ratio 0.5 1.0
Evaluation interval 10 10
Evaluation episodes 10 10

Optimizer Adam Adam
Adam ϵ 2× 10−5 2× 10−5

β1, β2 0.9, 0.999 0.9, 0.999

Learning rate 3× 10−4 2× 10−4

Replay buffer size |B| 1e6 1e6

33

	Introduction
	Related Work
	Preliminaries
	Reinforcement Learning
	Option Framework
	Temporal Logic Task Specification
	Problem Formulation

	Methodology
	Motivation
	General Framework
	Future Dependent Option
	Multi-step Value Function
	Algorithms
	Model-free Option Planner
	Theoretical Justification

	Experiments
	Experiment Setup
	Tasks
	Baselines

	Results
	Performance
	Ablation Study

	Long Horizon Tasks
	Visualization

	Conclusion
	Declarations
	Funding
	Conflicts of Interests
	Ethics Approval
	Consent to Participate
	Consent for Publication
	Availability of Data and Material
	Code Availability
	Authors' Contributions

	Appendix
	Proof of Theorem 1
	Task Generation
	Additional Results in Navigation Environment
	Comparison of Time and Memory Complexity
	Neural Network Architecture
	Practical Implementation Techniques
	Algorithms
	Hyper-parameters
	Discussion

