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 ABSTRACT 

Recently, most of distraction detection research results focus on the driver's distraction detection in a car and the 

detection object is almost the one. However, the detection object may be more than two in some application scenarios. For 

example, using a camera to perform attention detection on multiple students, how to accurately assess students' attention 

without disrupting their learning becomes our primary research goal. In this paper, the behavior of student was defined as 

the student's distraction while the student turns his head, yawning, and eyes closing in the classroom. In this condition, most 

of existed researches only could be used for one-object detection but could not be used for multi-object detection through 

one detector. Moreover, less of researches could be used for facial landmark detection with multi-object. Hence, a 

distraction evaluation by facial landmark detection for multi-object by multi-task neural Network is required. To reduce the 

cost and space, and improve the ease of installation, our proposal is designed with the embedded system. Therefore, a 

distraction evaluation by facial landmark detection with lightweight multi-task neural network, DEFLD-LMTNN, was 

proposed in this paper to address the above issues. In DEFLD-LMTNN, the distraction detection could be applied for 

multi-object. When the behavior was evaluated as our defined distraction, the student will be marked as distracted in the 

monitor screen and an alert could be notified to teacher immediately. The teacher also could track student's learning status 

based on the number or frequency of distraction afterwards by our DEFLD-LMTNN. In the experimental results, the 

accuracy of DEFLD-LMTNN could be up to 90%. It was proved that distraction evaluation by facial landmark detection 

with lightweight multi-task neural network, DEFLD-LMTNN, proposed in this paper could be applied for distraction 

evaluation with multi-object in the embedded system with low cost and space. 

Keywords: Distraction Detection, Multi-Object Detection, Facial Landmark Detection, Embedded System, Lightweight 

Multi-Task Neural Network 

1. INTRODUCTION 

Facial recognition technology had attracted a lot of attention recently due to the progress of information and communications 

technology. Thus, various fields of facial recognition technology were used in different applications, such as security, 

human-computer interaction, and AR/VR. Since the facial recognition is based on facial feature detection, how to propose the 

efficient and accurate facial feature extraction and recognition are important for the facial recognition. In daily life, facial expressions 

have always been a crucial means of conveying important messages in social interactions. Facial expressions could reflect an 

individual's emotions, concentration, and other states. With the development of deep learning technology, attention evaluation based 

on facial features has become a popular research topic. Traditional facial feature detection methods are based on machine learning for 

feature extraction. However two challenges are occurred. In the first challenge, the stability and accuracy of traditional methods could 

not be used in complex scenarios directly, such as low light conditions or occlusions. Secondly, the existed methods often required 

the significant computational resources not to be unsuitable for embedded device. Therefore, a new efficient facial feature detection 

lightweight model to address the above challenges is needed for distraction evaluation. In the current stage of research papers, many 

propose a series of model compression techniques to alleviate computational burdens. For instance, distillation technology [1] is to 

transfer the knowledge of a large complex model (teacher model) to a lightweight model (student model) for reduce computing 

requirements. Pruning techniques [2]-[3] reduces computational load by eliminating redundant weights and simplifying model 

structures. Weight binarization [4] restricting weights to +1 and −1, enabling accelerated inference in resource-constrained 

embedded systems. In this paper, we propose a lightweight multitask neural network, DEFLD-LMTNN, designed for facial 

detection. This network is divided into two tasks: face positioning network and face key points network. Our primary objective is to 

perform attention detection on multiple targets using a single camera in an embedded system without the need for any additional 

sensors. The remaining chapters of this thesis are structured as follows: Chapter 2 introduces relevant knowledge in the field, Chapter 

3 presents the design of the DEFLD-LMTNN model architecture, Chapter 4 proposes our attention detection evaluation algorithm, 

Chapter 5 discusses the experimental results, and finally, Chapter 6 provides the conclusion and future prospects. 

2. RELATE WORK 

In the field of facial recognition and facial feature detection, precise facial key points are crucial. The challenge of facial key points 

detection lies in handling variations in various scenes, lighting conditions, and angles, while addressing factors such as facial 

occlusion and expression changes. These challenges have long been the difficulties faced by researchers. Currently, there are several 

outstanding architectures proposing solutions to these problems. For instance, RetinaFace [5] employs the technique of multi-scale 

feature map fusion, enabling effective handling of faces of different sizes and angles. Additionally, this architecture adopts the 

lightweight MobileNet [6] model for operation on embedded systems. MTCNN [7] is a multi-task neural network composed of 

mailto:alanwu@yuntech.edu.tw


2 

P-Net, R-Net, and O-Net. P-Net generates preliminary candidate face regions by sliding windows on feature maps of different scales. 

R-Net further filters the results of P-Net through a series of convolutions, and O-Net, similar to R-Net, aims to output the final results, 

including face confidence, face bounding box, and facial key points through deep network. YOLOV5Face [8] adopts the method of 

treating faces as objects for detection and directly regresses facial key points within the detection box. Furthermore, to simulate the 

differences in face size caused by different distances in real environments, this architecture is designed with detection heads of 

different scales. The aforementioned methods are all based on detecting 5 face facial key points. In contrast, the DEFLD-LMTNN 

proposed in this paper is based on 68 facial key points. In situations where the picture is obscured or blurred, Distraction detection can 

be judge by utilizing other key points, thus improving accuracy. 

3. MODEL DESIGN 

This chapter introduces the proposed lightweight multi-task neural network (DEFLD-LMTNN) for attention assessment, as 

illustrated in Fig. 1 The network consists of both a face positioning network and face key points network. Initially, the face position is 

determined by the face positioning network. Subsequently, the feature information from the located face serves as the input for the 

face key points network. Finally, the facial key points are obtained to assess whether students are experiencing distraction or fatigue. 

...

...

...

...

......

...... ...

Face Positioning Network

Face Key Points Network

 

Fig. 1. Schematic diagram of the structure of DEFLD-LMTNN 

3.1 Face Positioning Network 

The first architecture in this paper is the face positioning network, which is used to locate faces in the images. Finding the position 

of faces is crucial for providing valuable information for the subsequent distraction detection. The face positioning network is 

designed with a backbone, neck, and detection head. The loss function consists of three components: confidence, class, and bounding 

box. Confidence and class components use (focal loss, FL) [9]. Focal loss (FL) is primarily used to address the issue of mismatched 

positive and negative samples and handling difficult samples. If the number of negative samples in a grid is larger than the positive 

samples, the task tends to focus on the negative samples, making it challenging to accurately learn the features of positive samples. 

FL was defined as (1), where the parameters ω and 𝛾 are the adjustable constants. Parameter ω controls the balance between 

positive and negative samples and 𝛾 manages the difficulty in distinguishing difficult samples. 

𝐹𝐿 = −𝜔(1 − 𝑝)𝛾𝑙𝑜𝑔⁡(𝑝) (1) 

The loss function CIOU (Complete-IOU) was defined as (2) [10]. It takes into account the distance between the real box and the 

predicted box, the overlapping area, and the distance between their center points. This approach further stabilizes the regression of the 

target box. As shown in Fig. 2, the orange box represents the predicted box, while the blue box represents the ground truth box. 

Parameters 𝑏 and 𝑏𝑔𝑡  denote the centers of the two rectangular boxes, parameter 𝑐  represents the diagonal of the minimum 

enclosing area of the two rectangular boxes, and parameter 𝜌 represents the Euclidean distance between the centers of the two 

rectangular boxes. IOU (Intersection over Union) represents the overlap area between the predicted box and the real box 

𝐶𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (2) 
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In CIOU, there are two adjustable parameters:⁡α and 𝑣. α⁡is used to penalize the 𝑣 parameter. The⁡𝑣 represents the aspect ratio 

between the predicted box and the real box. When IOU is large, indicating a significant overlapping area, increasing 𝛼 affects the 𝑣 

value. Conversely, when IOU is small, indicating a small overlapping area, decreasing 𝛼 influences the reduction of 𝑣. 

𝛼 =
𝑣

(1 − 𝐼𝑂𝑈) + 𝑣
 (3) 

From this, it can be deduced that if the overlapping area between the predicted box and the real box is small, the influence of v is 

relatively minor. In this scenario, the focus is on reducing the distance between the two. Conversely, if the overlapping area 

between them is large, the influence of v is significant. In this case, the emphasis is on adjusting the aspect ratio between the real 

box and the predicted box. 

𝑣 =
4

𝜋2
(𝑎𝑟𝑐𝑡𝑎𝑛

𝑤𝑔𝑡

ℎ𝑔𝑡
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑤

ℎ
)2 (4) 

 
Fig. 2. Schematic diagram of CIOU loss function 

3.1.1 Backbone Design 

The backbone design of this study was inspired by the GoogleNet [11] network architecture. GoogleNet proposed the fusion of 

convolutional kernels of different sizes to obtain better feature representations, as shown in Fig. 3, Asymmetric Block is designed by 

our backbone. CBR (Conv + BatchNorm + ReLU) represents performing normalization calculation after convolution and then 

obtaining the result through ReLU. DWCBR (Depth-wise Conv + BatchNorm + ReLU) represents performing normalization 

calculation after depth-wise separable convolution and then obtaining the result through ReLU. ADD is the result of network 

residual operation. Concat is the result of channel merging. CB (Conv + BatchNorm) stands for normalization after convolution. 

DWCB (Depth-wise Conv + BatchNorm) stand for depth-wise separable convolution after normalization. The architecture of this 

paper first performs channel amplification through 1 × 1 CBR, subsequently two branches were designed with⁡3 × 3 and 5 × 5 

DWCBR to extract deeper features. The networks in these two branches utilized asymmetric convolutions, splitting the kernel into 

𝑘 × 1 and 1 × 𝑘, to focus on both horizontal and vertical features simultaneously. Finally, the feature maps from the two branches 

were merged. 1 × 1 CB was employed for the final channel output. 

 
Fig. 3. Asymmetric Block Architecture Diagram 

3.1.2 Neck Design 

The neck architecture adopts the FPN [12] design. In this study, this paper takes input images with a size of 512 × 288, as shown 

in Fig. 4, the image undergoes a total of five down-samplings. The feature maps from L1 and L2 belong to the shallow layers of the 

network. Due to their large sizes, which would consume a significant amount of computational resources, only the feature maps from 

L3, L4, and L5 are utilized. By fusing feature maps of different sizes, the accuracy of target detection can be enhanced. 
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Fig. 4. Schematic diagram of downsampling 

 The neck neural network adopts the GhostNet [13] architecture, as shown in Fig. 5, in the Ghost_Branch, there are two branches: 

one consists of 3 × 3 DWCBR, and the other is composed of Ghost_Modules. The Ghost_Module comprises⁡1 × 1CBR and⁡3 × 3 

DWCBR. 

 
Fig. 5. Ghost Branch Architecture Diagram 

3.1.3 Detected Head 

After passing through the neck neural network, this paper generates three types of detection heads in different sizes: 16 × 9 for 

detecting large objects, 32 × 18 for detecting medium-sized objects, and 64 × 32 for detecting small objects. These detection 

heads include coordinates (x, y, w, h), confidence scores, and categories. Finally, the original image is segmented into regions 

corresponding to the sizes of these detection heads. Non-maximum suppression [14] is applied to these regions to obtain our final 

prediction results. As shown in Table1, the overall architecture of the face key points network in this paper is as follows: the ID 

represents the input network number, Layer Name refers to the network architecture introduced in the previous sections, among them, 

Asy_Block is the backbone design mentioned Asymmetric Block in Chapter 3.1.1, and Ghost_Branch and Ghost_Module are the 

neck design mentioned in Chapter 3.1.2. Output indicates the output image size, S represents the stride, Expand Ratio represents the 

number of hidden layers, and the model's channels are enlarged by a corresponding Expand Ratio multiplier based on the input 

channels. Output Channels represent the output channels of the network. 

Table 1 Face Positioning Network Architecture 

ID Layer Name 

Input 

Layer 

ID 

Output 

Size 
S 

Expand                   

Ratio 

Output 

Channels 

0 

1 

2 

3 

4 

5 

6 

7 

8 

CBR 

Asy_Block 

Asy_Block 

Asy_Block 

Asy_Block 

Asy_Block 

Asy_Block 

Asy_Block 

Asy_Block 

- 

0 

1 

2 

3 

4 

5 

6 

7 

512x288 

256x144 

128x72 

128x72 

64x36 

64x36 

32x18 

32x18 

16x9 

2 

2 

1 

2 

1 

2 

1 

2 

1 

- 

- 

2 

- 

2 

- 

2 

- 

2 

3 

16 

16 

16 

32 

32 

64 

64 

128 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Ghost_Module 

Upsample 

Concat 

Ghost_Branch 

Ghost_Module 

Upsample 

Concat 

Ghost_Branch 

Ghost_Module 

Concat 

Ghost_Branch 

Ghost_Module 

Concat 

Ghost_Branch 

Output 

Output 1 

Output 2 

8 

9 

5, 10 

11 

12 

13 

3, 14 

15 

16 

13, 17 

18 

19 

9, 20 

21 

15 

18 

21 

16x9 

32x18 

32x18 

32x18 

32x18 

64x36 

64x36 

64x36 

32x18 

32x18 

32x18 

16x9 

16x9 

16x9 

64x36 

32x18 

16x9 

1 

- 

- 

1 

1 

- 

- 

2 

1 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

128 

128 

160 

64 

32 

32 

48 

32 

32 

64 

32 

64 

192 

64 

8 

8 

8 
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3.2 Face Key Points Network 

The neural network design for facial key points can be divided into Block 1, Block 2, Detected Head, and an Auxiliary Network. 

Through experiments, this paper discovered that utilizing the auxiliary network to predict the Euler angles in the 3D world and 

incorporating the Euler angle information trained from the auxiliary network into the loss function contributes to a faster convergence 

speed of the model.  

3.2.1 Block 1 Network 

The design of Block 1 is based on the design of MobileNet. As shown in Fig. 6, first⁡1 × 1 CBR is used to extend the number of 

neural network channels to generate more feature maps, and then a 3 × 3 DWCBR is used to do the sampling to reduce the 

amount of computation, and then the final channel is output by a liner⁡1 × 1 CB, and the last layer of 1 × 1 convolution adopts a 

linear approach without an activation function because the mapping of the high-dimensional channels in⁡3 × 3 back into the 

lowdimensional channels in 1 × 1 produces a large number of values less than 0, and the activation function used in ReLU will 

destroy the feature information. 

 
Fig. 6. Block 1 Architecture Diagram 

3.2.2 Block 2 Network 

The design of Block 2 is based on the GhostNet, MobileNet, and ShuffleNet-V2 [15] architectures. The MobileNet network 

architecture utilizes an inverted residual design, which first performs channel amplification through 1 × 1 convolution, followed by 

deeper channel feature extraction through 3 × 3 convolution. Finally channel dimensionality reduction is performed by 1 × 1 

convolution. As shown in Fig. 7, first 1 × 1 CBR and 3 × 3 DWCBR are fused with the number of channels so that more useful 

features can be extracted later. Next, this paper uses the idea proposed by the GhostNet architecture to halve the number of input 

channels and divide it into two parts. The first part is reducing the number of channels by 1 × 1 CB. The second part is⁡3 × 3 

DWCB. Finally, the number of channels produced by both are fused to reduce the computation and enrich the features. Finally, with 

this design, the size of the original number of channels is kept consistent with the number of input channels. It is based on 

ShuffleNet-V2 which proposes that equal inputs and equal outputs can minimize memory accesses. 

 
Fig. 7. Block 2 Architecture Diagram 

3.2.3 Auxiliary Network  

Through experiments with [16] , it is evident that incorporating auxiliary networks contributes to more accurate key points 

regression. Since key points regression tasks tend to be unstable during the initial stages of training, relying solely on 2D image 

information increases the model's complexity. Integrating 3D facial pose information into the process and merging 2D and 3D 

information through a designed loss function helps the model converge faster and more steadily. Facial poses can be inferred using 

Euler angles. In Fig. 8, the facial key points information used in this paper is displayed. By mapping annotated 2D key points P36, 

P45, P33, P48, and P54 back to 3D space through camera coordinate system transformation, rotation matrices are obtained. Utilizing 

these rotation matrices, Euler angles can be calculated, leading to accurate predictions of head poses. 

 
Fig. 8. Facial key point output positions and corresponding identifiers. 

3.2.4 Detected Head 

From the first three subsections, we can conclude that our network structure consists of Table2, this thesis has gone through 

five down-sampling, and after the second down-sampling, it will be divided into two streams of networks, the first one is to do the 

facial key points task regression, which utilizes the fusion of multi-dimensional feature maps to combine the results of the last three 
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down-sampling, and increases the accuracy of the model by fusing the shallow network and the deep network information, and the 

second one is to do the facial posture prediction, also through the three down-sampling, using the full connectivity layer to classify 

the three Euler angles, and the auxiliary network structure is only executed in the training stage, so it is not executed in the 

reasoning stage. For the face posture prediction, the three Euler angles are also categorized by using the full connectivity layer after 

three down-sampling. The auxiliary network architecture is only executed in the training stage, but not in the inference stage, so the 

auxiliary network algorithm can be eliminated in the inference stage. As shown in Table2, the overall architecture of the face key 

points network in this paper, 'Output' representing the 2D coordinates of the 68 facial key points used in this study. 'Output1' denotes 

the head pose trained by the auxiliary network. 

Table 2 Face Key Points Network Architecture 

ID Layer Name 

Input 

Layer 

ID 

Output 

Size 
S 

Expand                   

Ratio 

Output 

Channels 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

CBR 

CBR 

Block 1 

Block 2 

Block 2 

Block 2 

Block 2 

Block 1 

Block 2 

Block 2 

Block 2 

Block 2 

Block 2 

Block 2 

Block 1 

CBR 

CBR 

- 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

112x112 

56x56 

56x56 

28x28 

28x28 

28x28 

28x28 

28x28 

14x14 

14x14 

14x14 

14x14 

14x14 

14x14 

14x14 

7x7 

1x1 

2 

1 

2 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

2 

7 

1 

- 

- 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

- 

- 

3 

64 

64 

64 

64 

64 

64 

128 

128 

128 

128 

128 

128 

128 

16 

32 

128 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

Fully Connect 1 

Fully Connect 2 

Fully Connect 3 

Concat 

OUTPUT 

CBR 

CBR 

CBR 

CBR 

Fully Connect 4 

OUTPUT1 

14 

15 

16 

17,18,19 

20 

6 

22 

23 

24 

25 

26 

1x1 

1x1 

1x1 

1x1 

1x1 

28x28 

14x14 

14x14 

7x7 

1x1 

1x1 

- 

- 

- 

- 

- 

2 

1 

2 

7 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

16 

32 

128 

176 

136 

64 

128 

128 

32 

128 
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3.2.5 Loss Function 

The design of the loss function in this paper was inspired by the idea proposed in Wing loss [19], which incorporates the 

calculation of facial pose Euler angles in 3D space through an auxiliary network for backpropagation. The training of Wing loss 

adopts a two-stage approach. In the first stage, during the early training, there is a significant error between the predicted and actual 

values of key points. Therefore, the descent offset should be relatively large. In the second stage, in the middle to later stages of 

training, a few key points still exhibit significant errors between the actual and predicted values. If the loss function used during the 

early training is continued, key points with large errors in backpropagation would dominate the entire task, affecting the regression 

of other key points. 

𝑤𝑖𝑛𝑔(𝑥) = {
𝑤 𝑙𝑛 (1 +

|𝑥|

𝜖
) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓|𝑥| < 𝑤⁡⁡⁡⁡⁡

|𝑥| − 𝐶⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒⁡⁡⁡⁡

 
(5) 

Wing loss defined as (5), the⁡𝑤 and 𝜖 in Wing loss are adjustable parameters, the role of 𝑤 is to control the nonlinear part in 

the interval [−𝑤,𝑤], and the role of ⁡𝜖 is to limit the curvature of the nonlinear region, 𝐶 = 𝑤 − 𝑤⁡𝑙𝑛⁡(1 + 𝑤/𝜖) ,which is to be 

used for connecting the linear and nonlinear parts, and the experimental results of this paper show that w = 10,⁡𝜖 = 2 has a better 

effect on the overall network regression. 

𝐷𝐿𝑙𝑜𝑠𝑠 =
1

𝑀
∑ ∑(∑(1 − 𝑐𝑜𝑠 𝜃𝑘)

𝐾

𝑘=1

)𝑤𝑖𝑛𝑔(𝑥)

𝑁

𝑛=1

𝑀

𝑚=1

 (6) 
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After regressing the key point positions through Wing loss, we also considered the disparities between the predicted Euler 

angles from the auxiliary network and the ground truth values. As shown in Equation 6, 𝐷𝐿𝑙𝑜𝑠𝑠 is the method we proposed, Here 

M represents the total number of facial samples, N represents the 2D coordinates (x, y) of key points, and K represents the total 

number of Euler angles. In the initial stages of neural network training, due to inaccuracies in the predictions made by the auxiliary 

network, larger weight adjustments are propagated back during backpropagation if significant disparities exist. As the network 

gradually converges, most samples can be accurately predicted. However, for samples with exaggerated poses, training becomes 

more challenging. In such cases, the functionality of the auxiliary network can assign higher weights to these difficult-to-train 

samples, allowing for more effective training. Conversely simpler samples receive reduced weight adjustments. 

4. METHOD 

4.1 Data Preparation 

WFLW [20] was used as the dataset in this paper. WFLW encompassed a wide range of facial expressions, poses, and lighting 

variations. To enhance the diversity of the data, the data augmentation techniques were used, such as rotation, blurring, and 

occlusion. In the rotation, it simulated the changes in head poses of the real world to allow our model to be better in various 

scenarios. Blurring was applied to enable the model to learn global features instead of localized details. Lastly, the random 

occlusion of partial face led the model to learn features from occluded regions. Through the data augmentation, the model could 

gain an understanding of different facial poses in real situations to improve the accuracy in practical applications. 

4.2 Head Turning Detection Algorithm 

The model architecture designed in Chapter Three is ultimately capable of detecting 68 facial key points. To infer the 3D head 

pose coordinates through these key points in 2D images, we need to perform a transformation in the camera coordinate system. 

First, we need to understand how each coordinate point in pixel space should be mapped to positions in real-world space. This 

mapping requires the assistance of camera intrinsic and extrinsic parameters. As shown in Fig. 9, In the camera model, there are a 

total of four coordinate systems: pixel coordinates refer to the initial positions of objects in image pixels, image coordinates 

represent the projection of the camera coordinate system onto positions in the image, and camera coordinates constitute a 3D 

coordinate system representing the position of the camera's optical center. These three coordinate systems constitute the camera's 

intrinsic parameters. The camera's extrinsic parameters correspond to the world coordinate system, representing the positions of 

objects in the real world. This set of parameters consists of a 3 × 3 rotation matrix and a⁡3 × 1 translation matrix. 

[
𝑢
𝑣
1
] = [

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

] [
1 0 0 0
0 1 0 0
0 0 1 0

] [
𝑅 𝑇
0 1

] [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

] (7) 

 
Fig. 9. Pixel coordinates, image coordinates, camera coordinates, and world coordinates schematic diagram. 

After completing the camera coordinate transformation, we need to use external parameters to obtain a rotation matrix R, which 

is used to describe the positional relationship between the camera and the head. This paper employs the Euler angles method to 

determine the head's pose [21]. Euler angles are a way to describe the rotational orientation of an object in three-dimensional space. 

It decomposes the rotation into three angles: Pitch, Yaw, and Roll, and can be categorized into intrinsic (or internal) and extrinsic 

(or external) rotations. Intrinsic rotation involves rotating around one of the object's axes, while extrinsic rotation fixes one axis and 

rotates around the other two. In this paper, the rotation matrix obtained through the camera perspective utilizes extrinsic rotation. 

First, it fixes the rotation angle 𝛼 around the X-axis, then the angle 𝛽⁡around the Y-axis, and finally the angle 𝛾 around the 

Z-axis. Ultimately, by multiplying these three rotation matrices sequentially: 𝑅𝑥(𝛼), 𝑅𝑦(𝛽), 𝑅𝑧(𝛾), the rotation matrix 𝑅 can be 

obtained. As shown in Fig. 10, the rotation around the x-axis is first fixed to obtain 𝑥′, 𝑦′, and 𝑧′. Subsequently, fixing the rotation 

around the y-axis results in 𝑥′′, 𝑦′′, and 𝑧′′. Final fixing the rotation around the z-axis yields the final values of 𝑥′′′, 𝑦′′′, and 𝑧′′′ 
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𝑅𝑥(𝛼) = [
1 0 0
0 𝑐𝑜𝑠𝛼 −𝑠𝑖𝑛𝛼
0 𝑠𝑖𝑛𝛼 𝑐𝑜𝑠𝛼

] 
(8) 

𝑅𝑦(𝛽) = [
𝑐𝑜𝑠𝛽 0 𝑠𝑖𝑛𝛽
0 1 0

−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠𝛽
] 

(9) 

𝑅𝑧(𝛾) = [
𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾 0
𝑠𝑖𝑛𝛾 𝑐𝑜𝑠𝛾 0
0 0 1

] 
(10) 

𝑅 = [

𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛽
𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾 + 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛾 𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛾 −𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛼𝑠𝑖𝑛𝛾 − 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑐𝑜𝑠𝛾 𝑐𝑜𝑠𝛼𝑠𝑖𝑛𝛽𝑠𝑖𝑛𝛾 + 𝑠𝑖𝑛𝛼𝑐𝑜𝑠𝛾 𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽

] 
(11) 

 
Fig. 10. Rotation matrix diagram 

By using the rotation matrix, we can obtain the Pitch rotation around the X-axis, Yaw rotation around the Y-axis, and Roll 

rotation around the Z-axis. Through these three angles, we can predict whether the current head posture has caused a distracted 

state. 

𝑃𝑖𝑡𝑐ℎ = 𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑅21, 𝑅22) (12) 

𝑌𝑎𝑤 = 𝑎𝑟𝑐𝑡𝑎𝑛2(−𝑅20, √(𝑅00)
2 + (𝑅10)

2) 
(13) 

𝑅𝑜𝑙𝑙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑅00, 𝑅10) (14) 

4.3 Fatigue Detection Algorithm 

The fatigue detection algorithm in this paper involves detecting key points on the eyes and mouth calculating their Euclidean 

distances in 2D images. If these distances are smaller than a threshold value set by us, the system flags it as a state of fatigue. 

Taking Fig. 8 as an example, the thresholds for individual eyes are calculated from P36 to P47. Finally, the average of the 

thresholds for both eyes is compared to the threshold value we set. 

𝐿𝑒𝑓𝑡𝑒𝑦𝑒 =
(𝑃37 − 𝑃41) + (𝑃38 − 𝑃40)

2(𝑃36 − 𝑃39)
 

(15) 

𝑅𝑖𝑔ℎ𝑡𝑒𝑦𝑒 =
(𝑃43 − 𝑃47) + (𝑃41 − 𝑃46)

2(𝑃42 − 𝑃45)
 

(16) 

By utilizing six key points, namely P48, P50, P52, P56, P58, and P54, the current state of mouth openness can be obtained to 

determine if a person is yawning or not. 

𝑌𝑎𝑤𝑛 =
(𝑃50 − 𝑃58) + (𝑃52 − 𝑃56)

2(𝑃48 − 𝑃54)
 (17) 

During the experimentation, we believe it is not appropriate to solely rely on the threshold calculated from the current frame to 

determine whether a student is in a closed-eye state. This approach can lead to misjudgments, especially when a student is simply 

lowering their gaze. Therefore, this paper adopts an Adaptive Threshold as the criteria for determination. We record the eye 

thresholds from the student's previous five frames, calculate the average, and then compare it with our predefined threshold. Only 

when the average is below the predefined threshold, the student is considered to be in a state of fatigue. 
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𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒⁡𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
1

𝑀
∑𝑓𝑟𝑎𝑚𝑒𝑚

𝑀

𝑚

 (18) 

As shown in Figure 11, where the x-axis represents frames and the y-axis represents the threshold, the blue line represents 

closed-eye states, and the orange line represents the threshold set in this paper. It can be observed that between frame 0 and frame 

110, all values are below the threshold we set, thus being determined as closed-eye states. Between frame 110 and frame 300, 

occasional values are below our set threshold, indicating instances of blinking. Through our adaptive threshold algorithm, these 

blinking instances will not be misclassified as closed-eye states, further improving the accuracy of the judgment. 

 
Fig. 11. Adaptive Threshold schematic diagram 

5.  EXPERIMENTAL ANALYSIS RESULTS 

In this chapter, we will present the evaluation methods and comparative results of DEFLD-LMTNN. In this experiment, we 

utilized the NVIDIA GeForce RTX 4070 as the hardware platform for training our model, employing the WFLW dataset, which 

was divided into 7500 images for training and 2500 images for validation. Through data augmentation techniques such as rotation, 

blur, and occlusion, we expanded the training dataset to 75,000 images. Our model underwent a two-stage training process. In the 

initial pre-training stage, given the absence of weight references, we chose a larger batch size and learning rate to prevent the 

model from getting stuck in local minima and to enhance convergence speed. During the second training phase, we used the 

pre-trained weights as a reference and reduced the batch size and learning rate. Since the model had already converged in the 

pre-training stage, our goal was to guide the model to find the global minimum to improve accuracy. Next, we will introduce the 

evaluation methods and comparative results of the two models. Firstly, for the face positioning network, we employed the 

following evaluation metrics: Precision, Recall, F1-Score, Map, and FLOPs. The first three metrics require the use of a confusion 

matrix, consisting of TP (True Positive, predicted positive and actual positive), TN (True Negative, predicted negative and actual 

negative), FP (False Positive, predicted positive but actually negative), and FN (False Negative, predicted negative but actually 

positive). Recall is the proportion of correctly predicted positive samples among all actual positive samples. F1-Score is the 

weighted harmonic mean of precision and recall. FLOPs are millions of floating points operations per second, the unit is M. In this 

paper, we will modify the backbone architecture under the same dataset conditions to incorporate current state-of-the-art 

lightweight architectures, as shown in Table3, and compare them using MobileNet and GhostNet. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (19) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(20) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(21) 

Table 3 Comparison of Results for Face Positioning Network in this Paper 

Backbone Precision Recall F1-Score mAP@.5 mAP@.5:.95 FLOPs(M) 

MobileNet 0.90 0.87 0.8847 0.937 0.661 295.05 

GhostNet 0.868 0.814 0.8679 0.913 0.621 322.53 

Asy_Block 0.93 0.88 0.904 0.945 0.686 279.13 

Here is an overview of the evaluation metrics for the Face Key Points Network, including Accuracy, ION, IPN, FLOPs, and 

Parameter. Taking Fig. 8 as an example, ION involves normalizing the interocular distance D (P36, P45). 

𝐼𝑂𝑁 =
∑ ||𝑥𝑝𝑟𝑒𝑑_𝑖 − 𝑥𝑔𝑡_𝑖||2
𝑁
𝑖=1

𝑁 × 𝐷
 (22) 

IPN involves calculating the distance between the pupils of both eyes, As shown in Fig. 12, the calculation involves finding the 

center of points P36 to P41 and points P42 to P47. Finally, the Euclidean distance between these two centers is computed 
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(Indicated by red line), resulting in the parameter T. By standardizing the pupil distance, for instance, using ION and IPN, we 

assess the difference between predicted and actual values. A smaller numerical value indicates a smaller difference between the 

two, thereby reflecting the accuracy of our predictions. 

𝐼𝑃𝑁 =
∑ ||𝑥𝑝𝑟𝑒𝑑_𝑖 − 𝑥𝑔𝑡_𝑖||2
𝑁
𝑖=1

𝑁 × 𝑇
 (23) 

 
Fig. 12. IPN calculation diagram 

This paper face key points network builds upon the ideas proposed in PFLD [22], aiming for improvements. Under the same 

dataset WFLW, we conducted comparisons using three different methods. The first method employed the model architecture and 

loss function used by the original authors. The second method utilized the same architecture but incorporated our custom loss 

function. The third method involved our own designed model architecture and loss function. The model architecture of PFLD 

adopts the MobileNet framework and employs the L2 loss function. L2 loss function defined as (24), it measures the mean squared 

difference between the true values and the predicted values. In contrast, our model architecture adopts the face key points network 

mentioned in Chapter 3, and the loss function follows our proposed 𝐷𝐿𝑙𝑜𝑠𝑠. 

𝐿2𝑙𝑜𝑠𝑠 =
1

𝑁
∑(𝑥𝑖 − 𝑥𝑖

∗)2
𝑁

𝑖=1

 (24) 

Table 4 Comparison of Results for Face Key Points Network 

Model / Loss function Accuracy ION IPN FLOPs(M) Parameter(M) 

MobileNet / L2 0.8702 0.065 0.0921 396.89 1.25 

Face Key Points Network / L2 0.8916 0.0542 0.0767 396.89 1.25 

Face Key Points Network / DL 0.8992 0.0505 0.0715 455.96 1.34 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose an attention assessment method based on a lightweight multitask neural network. In traditional 

classroom settings, teachers find it challenging to simultaneously monitor the learning status of every student. Our research 

achieves a one-to-many distraction detection scenario through facial feature extraction. With the model we designed, we can 

monitor students' attention states in real-time, including behaviors such as turning heads, yawning, and closing eyes. This method 

holds significant value in educational contexts. It not only assists teachers in identifying and promptly correcting distracted 

students but also provides a deeper understanding of students' learning conditions. With technological advancements, approaches 

similar to our facial feature-based attention assessment method are expected to find broader applications. We will continue to 

optimize our model, enhancing its accuracy and efficiency, and apply it to embedded systems to extend its usability across various 

fields. Our ongoing research and exploration in this area aim to contribute to the development of educational technology and 

enhance students' learning experiences. 
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