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3Departamento de Matemáticas, CINVESTAV, Mexico City, Mexico
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Abstract

We study the algorithmic problem of optimally cover-
ing a tree T with k mobile robots. The tree is known
to all robots, a robot moves along the edges of T . The
time and cost of traveling an edge of T is unitary. Our
goal is to design a covering strategy in which every
vertex of T is visited by at least one robot. This is
achieved by asigning to each robot a walk. Two objec-
tive functions are considered: the cover time and the
cover length. The cover time is the maximum time
a robot needs to finish its assigned walk; the cover
length is the sum of the lengths of all the walks. We
also consider a variant in which the robots must ren-
dezvous periodically at the same vertex in at most a
certain number of moves. We show that the problems
are essentially different for both cost functions. Some
variants of our problems can be solved in polynomial
time while others are NP-hard. A summary of our
results is shown in Figure 1.

1 Introduction

Terrain coverage is a crucial task to many robotic
applications, such as search-and-rescue, lawn mow-
ing, surveillance by unmanned aerial vehicles ([2], [1]),
just to name a few. Evidently, coverage can be sped
up with the use of multiple robots, in which cover-
age path planning is performed by a set of robots.
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In these scenarios, the environment can be modeled
by a geometric structure, represented as the union of
polygonal obstacles, or a graph structure. The for-
mer model assumes that the robots know everything
within their sight. For the latter model, the terrain
is partitioned into cells inducing a graph whose nodes
correspond to locations in the cells, and edges corre-
spond to paths between the locations. In this paper
we consider the graph model in which the underly-
ing graph is a tree obtained from a triangulation of a
simple polygon whose interior has to be guarded. Our
guards must then traverse the edges of the dual graph
of the triangulation which is a tree. In fact, spanning
trees have been frequently used in multi-robot cover-
age problems [5].
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Figure 1: Complexity of the tree covering optimiza-
tion problems.

Choset [3] provides a survey of coverage algorithms,
which distinguishes between off-line algorithms, in
which a map of the work-area is given to the robots,
and on-line algorithms, in which no map is given. Two
variants can also be considered according to the move-
ment cost: in the first one, called uniform, the cost
of moving a robot from a region to a neighboring one
takes unit time and, non-uniform, otherwise. In this
paper we work on the off-line/uniform-cost scenario.
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We also consider the variant in which the robots are
required to meet at most every p units of time, for
some fixed positive integer p. We assume all robot
rendezvous at the same vertex. This rendezvous ver-
sion is motivated by papers such as [6].

Regarding objective functions, it is frequently desir-
able to minimize the time in which coverage is com-
pleted. In this case, the multi-robot coverage prob-
lem refers to computing a walk for each robot so that
the cover time is minimized. However, the energy
efficiency of the walk of a robot can also take into
account the distance it travels. Thus in this paper
we consider the cover length, that is the sum of the
lengths of the walks of all robots needed to cover the
tree. Note that these cost functions are different be-
cause in some cases, when a robot may stay put at a
vertex, the overall cover time can increase but not the
cover length.

A covering strategy is an assignment of a walk
to each robot such that every vertex is visited at
least once. We consider the following optimiza-
tion problems according to the tree/off-line/uniform-
cost/rendezvous framework:

• Minimum Length Covering Problem
(MLCP) Find a covering strategy of minimum
length with k robots, each starting at a possible
different position.

• Minimum Length Covering Problem with
Rendezvous (MLCPR) Given an integer p,
find a covering strategy of k robots with mini-
mum length such that the robots are required to
rendezvous in at most p units of time. The robots
start each at a possible different position.

• Minimum Time Covering Problem
(MTCP) Find a covering strategy of mini-
mum time for k robots all starting at the same
position.

• Minimum Time Covering Problem with
Rendezvous (MTCPR) Find a covering strat-
egy of minimum time for k robots all starting at
the same starting position, in which the robots
rendezvous at most every p units of time, for a
given positive integer p.

In the graph model, most of the optimization prob-
lems stated above are NP-hard [7]. In this paper we
show that the complexity of the above optimization
problems is essentially different for the two objective
functions, length and time. Our results are summa-
rized in Figure 1.

2 Notation

Suppose we are given a tree T that has to be covered
by k identical robots modeled by moving points.

We assume that the robots may occupy the same
vertex of T at a given time without colliding, and
that they do not block each other. We also assume
the robots can move along the edges of T , and that
traversing an edge takes an unit of time. At any given
unit of time, a robot can traverse an edge of T , or
decide to stay put at a vertex. Finally, we assume
that all robots share an internal synchronized clock.

We represent the journey made by a robot by a
sequence W := (u1, . . . , um) of vertices of T where
two consecutive elements are either adjacent or equal.
When they are equal the robot did not move remain-
ing at the same vertex. For convenience, we assume
that the robot stop at the last vertex of the sequence.
We refer to such a sequence as a walk in T .

Similarly, a path in this paper is a walk in which
each vertex is visited once. However, a robot may stay
at a given vertex for a certain time before moving to
the next vertex. We denote the set of vertices of a
tree T (respectively a walk W ) as V (T ) (respectively
V (W )).

The time of W , t(W ), is the number of steps the
robot needs to carry out the journey described by W .
Formally, it is the number of terms in W minus one.
The length of W , l(W ), is the number of times the
robot changes position.

A strategy is a tuple S := (W1, . . . ,Wk) of k walks
on T , where Wi is the walk assigned to the i-th robot,
1 ≤ i ≤ k. We say that S is a covering strategy if
every vertex of T is in some Wi.

The time of a strategy S, t(S), is the total time it
takes for the robots to carry out the journey described
by their assigned walks. Since the robots move in
parallel we have:

t(S) = max
1≤i≤k

{t(Wi)}.

The length of a strategy S, l(S), is the sum of the
lengths of its walks. Thus,

l(S) =

k∑
i=1

l(Wi).

The robots rendezvous at time i if they are all at the
same vertex at time i, that is if the i-th term of all
the walks is the same.

3 Minimum Length Covering Problem (MLCP)

The next result enables us to translate the problem
of finding a minimum length strategy for T with k
robots to the problem of finding a set of k paths of T .

Observe that the set of vertices covered by the i-th
robot induce a subtree Ti of T . It is easy to see that
each edge of Ti is traversed once or twice. The edges
traversed once form a path from the initial position of
the i-th robot to its final destination. Thus we have:
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Lemma 1 In an optimal covering strategy S :=
(W1, . . . ,Wk) which minimizes the total length tra-
versed by the robots, the set of edges of each Wi can
be decomposed into a path P (Wi) and a forest F (Wi).
The edges in P (Wi) are traversed once, and those in
F (Wi) twice.

Suppose now that S := (W1, . . . ,Wk) is a minimum
length covering strategy for T . Let e be an edge of T .
By Lemma 1 we have the following. If e is in exactly q
of the paths P (Wi), then it is visited exactly q times.
If e is not in one of the paths P (Wi), then it is visited
exactly twice. Therefore, the cost of S is given by

l(S) =

k∑
i=1

l(P (Wi)) + 2

∣∣∣∣∣V (T ) \
k⋃

i=1

V (P (Wi))

∣∣∣∣∣ (1)

Observe that the cost of S in Equation 1 only de-
pends on the paths P (Wi). Suppose that (P1, . . . , Pk),
is a tuple of k paths in T . Then we can construct
in O(n) time a covering strategy S = (W1, . . . ,Wk)
for T that satisfies Lemma 1 and such that for ev-
ery 1 ≤ i ≤ k, P (Wi) = Pi. In particular, this im-
plies that to find the minimum covering strategy for T
with k robots, it is sufficient to find a tuple of k paths
(P1, . . . , Pk) that minimizes the following expression.

k∑
i=1

l(Pi) + 2

∣∣∣∣∣V (T ) \
k⋃

i=1

V (Pi)

∣∣∣∣∣ (2)

3.1 All Robots Starting at the Same Vertex

First we consider the case when all robots start at the
same vertex u. For the purposes of this section we
assume that T is a tree rooted at u. By the previous
remarks, it is enough to find a tuple Q = (P1, . . . , Pk)
of paths, all starting at u, that minimizes (2). Note
that, in particular, the fact that all the Pi start at u,
implies that every Pi ends at a leaf of T .

We show a sketch of the algorithm based on dy-
namic programming to find Q. Assume that the chil-
dren of every vertex of T are listed in some arbitrary
order. For every vertex v of T , let Tv be the subtree
of T rooted at v. For every 1 ≤ i ≤ degree(v) − 1,
let v(i) be the i-th child of v; and let Tv[i] be the
subgraph of T consisting of the union of the subtrees
rooted at the first i children of v and the edges joining
these children with v.

We use two tables C[v, i, j] and P [v, i, j], where v
runs over all vertices of T , 1 ≤ i ≤ degree(v), and
0 ≤ j ≤ k. The table C[v, i, j] stores the minimum
cost given by (2) for Tv[i] of a tuple of j paths all start-
ing at v. The table P [v, i, j] stores this tuple, where
each path is stored as a linked list of vertices, with
a pointer to the first vertex in the path. This repre-
sentation enables us to concatenate paths in constant
time. Note that P [u,degree(u), k] is our desired Q.

For j = 0 and every vertex v in T , we set C[v, i, 0] to
be equal to twice the number of vertices in Tv[i]. Let
v be any vertex of T and let v1, . . . , vm be its children.
Let P be a tuple of j paths achieving C[v, i, j]. Let s
be the number of paths of P that end at a vertex of
Tvi . If s = 0, then C[v, i, j] is equal to

C[v, i− 1, j] + C[vi,degree(vi), 0].

If s > 0, then j − s paths end at Tv[i− 1]. Therefore,
we have the following formula:

C[v, i, j] = C[v, i−1, s]+C[vi,degree(vi), j−s]+j−s.
(3)

Therefore, if the previous values have been com-
puted, C[v, i, j] and P [v, i, j] can be computed in O(k)
time by checking over all possible values of s, and tak-
ing the minimum value.

We compute C[v, i, j] and P [v, i, j] bottom up. For
all leaves v of T and every 1 ≤ j ≤ k, we set
C[v, 0, j] = 0; we also set P [v, 0, j] to be a list of
j paths each consisting only of the vertex v. Hav-
ing computed C[v, i, j] and P [v, i, j] for all vertices of
height h, we compute these values for the vertices at
height h + 1. In total this takes O(nk2) time and we
have the following result.

Theorem 2 Let k be a positive integer, and let u be
a vertex of T . Then for every 1 ≤ i ≤ k, a mini-
mum length covering strategy for T with i robots, all
starting at u, can be computed O(k2n) total time.

In a similar way we can prove the next result which
will be used in the next section:

Theorem 3 Let k be a positive integer and let x1, xm

be vertices of T . We can find in O(nk2) time a tuple
of k paths such that all of them start at x1, at least j
of them end at xm, and minimize (2).

3.2 Robots starting at different vertices

We first consider the case in which each robot starts
at one of two given vertices. Suppose that in an opti-
mal covering strategy for T , a robot starts at x1 and
eventually visits the node xi+1. Let x1W1xixi+1W2

be the walk made by this robot. Suppose that in
such an optimal covering strategy for T another robot
starts at xm and eventually visits the node xi. Let
xmW ′1xi+1xiW

′
2 be the walk made by this robot. If

we replace the walk of the first robot with x1W1xiW
′
2

and the walk of the second robot with xmW ′1xi+1W2,
we obtain an exploring strategy of smaller length; this
is a contradiction. Therefore, every edge (xi, xi+1) is
only traversed by robots in one direction. We exploit
this property in our algorithms. Generalizing the dy-
namic programming approach used when all robots
start at the same vertex, we can prove:
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Theorem 4 Let k be a positive integer and let u, v
be two vertices of T . We can find in O(nk3) time a
tuple of k paths such that s of them start at u, t paths
start at v, s + t = k, and they minimize (2).

Theorem 4 is used to prove that the general problem
can also be solved with dynamic programming, as well
as the main result in this section:

Theorem 5 A minimum length covering strategy for
T , with k robots at arbitrary starting positions, can
be computed in O(k3n + 2kkk+1) time.

4 Minimum Length Covering Problem with Ren-
dezvous (MLCPR)

In this section we study the following problem:

Problem 6 (LCSR) Find a continuous covering
strategy of T such that the robots have to rendezvous
repeatedly, the time between consecutive rendezvous
is at most p, and the distance traveled by the k robots
between consecutive rendezvous, l(S) is at most l.

We can prove that LCSR problem is NP-Complete
by a reduction from 3-PARTITION. This problem is
known to be strongly NP -complete [4]. The following
result can be proved:

Theorem 7 The LCSR Problem is NP-complete.

Proof. (Sketch) Whether a given strategy satisfies
that the robots rendezvous every p steps can be ver-
ified in polynomial time. Since the length of a given
strategy also can be computed in polynomial time, we
have that LCSR is in NP. Let (A,B) be an instance of
3-PARTITION such that |A| = 3m and B is bounded
by a polynomial on m. We construct in polynomial
time an instance of LCSR that has a solution if and
only if A admits a 3-PARTITION.

Let A := {a1, . . . , a3m}. Let P1, . . . , P3m be m
paths, all starting at the same vertex u, such that
l(Pi) = ai. Let

T ′ =

m⋃
i=1

Pi.

Let Q = (v1, . . . , v3B+1) be a path of length 3B. Let

T := T ′ ∪Q ∪ (u, v1).

Note that since B is bounded by a polynomial on
m, T can be constructed in polynomial time. Let
k := m + 1, p := 2B and l = 4mB + 2B + 2m.

We claim that T has a covering strategy, with k
robots starting at v1, that rendezvous at most every
p steps, and of length at most l if and only if A admits
a 3-partition. �

5 Minimum Time Covering Problem (MTCP)

The problem of computing a Minimum Time Cov-
ering Strategy is NP-hard, regardless if periodic ren-
dezvous is required. The corresponding decision prob-
lem (Time Covering Strategy, TCS) is as follows:

Problem 8 (TCS) Let T be a tree, with k robots at
given starting positions. Let t be a positive integer.
We want to know if there exists a covering strategy S
for T with these robots so that t(S) is at most t.

The TCS problem can also be shown to be NP-
Complete by a reduction from 3-PARTITION.

Theorem 9 The TCS Problem is NP-complete.
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