
EasyChair Preprint

№ 345

Modeling Hint-Taking Behavior and Knowledge

State of Students with Multi-Task Learning

Ritwick Chaudhry, Harvineet Singh, Pradeep Dogga and
Shiv Kumar Saini

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 14, 2018

Modeling Hint-Taking Behavior and Knowledge State of
Students with Multi-Task Learning

Ritwick Chaudhry∗†
Indian Institute of Technology

Bombay
Mumbai, India

ritwickchaudhry@gmail.com

Harvineet Singh∗
Adobe Research
Bengaluru, India

harvines@adobe.com

Pradeep Dogga†
Indian Institute of Technology

Kharagpur
Kharagpur, India

pradeepdogga@gmail.com

Shiv Kumar Saini
Adobe Research
Bengaluru, India
shsaini@adobe.com

ABSTRACT
Interactive learning environments facilitate learning by pro-
viding hints to fill the gaps in the understanding of a con-
cept. Studies suggest that hints are not used optimally by
learners. Either they are used unnecessarily or not used at
all. It has been shown that learning outcomes can be im-
proved by providing hints when needed. An effective hint-
taking prediction model can be used by a learning environ-
ment to make adaptive decisions on whether to withhold or
provide hints. Past work on student behavior modeling has
focused extensively on the task of modeling a learner’s state
of knowledge over time, referred to as knowledge tracing.
The other aspects of a learner’s behavior such as tendency
to use hints has garnered limited attention. Past knowledge
tracing models either ignore the questions where a hint was
taken or label hints taken as an incorrect response. We pro-
pose a multi-task memory-augmented deep learning model
to jointly predict the hint-taking and the knowledge tracing
task. The model incorporates the effect of past responses as
well as hints taken on both the tasks. We apply the model
on two datasets – ASSISTments 2009-10 skill builder dataset
and Junyi Academy Math Practicing Log. The results show
that deep learning models efficiently leverage the sequential
information present in a learner’s responses. The proposed
model significantly out-performs the past work on hint pre-
diction by at least 12% points. Moreover, we demonstrate
that jointly modeling the two tasks improves performance
consistently across the tasks and the datasets, albeit by a
small amount.

1. INTRODUCTION
∗These authors contributed equally
†Work done during an internship at Adobe Research

E-learning is changing knowledge creation and sharing in a
profound way by bringing personalized learning experiences
to a learner’s device. Assessments in the form of quizzes or
assignments form an important component of an e-learning
software. A personalized e-learning environment identifies
the gaps in understanding of a concept and effectively uses
learning aids such as hints to fill these gaps. Knowledge trac-
ing is the task of estimating a learner’s state of knowledge
over time with the goal of predicting the performance of the
learner in future assessments. Knowledge tracing is used for
deciding which question to ask in an adaptive learning envi-
ronment. Current set of knowledge tracing models neither
incorporate the effect of a learning aid on the level of under-
standing of a concept nor predict whether a learner is likely
to use a learning aid.

A learning aid, common to many interactive learning en-
vironments, is the option to take a hint during an assess-
ment [3]. However, the data shows that learners tend to use
hints inappropriately. One problem is that of abusing hints
[2]. They tend to spend less time on solving the assessment
and opt for hint without attempting to solve the problem.
Figure 1 shows the percentage of responses with correct an-
swers, incorrect answers, and percent directly opted for hint
by each question. The x-axis is sorted by the percent of cor-
rect responses for a question in increasing order. The data
for this chart is from ASSISTments dataset [14] for 2009-
2010.1 As expected, % hint taken is negatively correlated
with % correct. In other words, more learners tend to take
hints on difficult questions. However, as Figure 2 shows, the
hint takers tend to spend less time on a question than the
learners who attempt the question, irrespective of whether
the question is correctly or incorrectly answered. The re-
search on this subject shows that the learners who attempt
a question tend to have a higher probability of achieving
proficiency in the subject [19]. Also, the learners who use
hints very frequently tend to have the lowest learning rate
[13]. Section 3 presents a review of the literature on hints
as a learning aid. The literature shows that hints are an im-
portant learning aid but offering hints indiscriminately can
lead to poor learning outcomes. A personalized e-learning

1The dataset is available at https://sites.google.com/
site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.

●

●

●

●

●

●

●

● ●

●
● ●

● ●

● ●

●

●

● ●
●

● ●

●
●

● ●
●

● ● ●

●
● ● ● ●

●
● ● ● ●

●

●
● ● ● ● ●

● ●
● ●

● ● ● ● ● ●
● ● ●

●

● ● ●
●

● ● ●
●

● ● ●

●
● ● ●

● ● ●
●

● ●
● ● ●

● ● ● ● ● ● ●

● ●
●

●
● ●

●

● ● ● ●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●●

●

●

●●●●

●

●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●●

●

●

●●●
●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●
●●●

●

●

●

●

●

●0.00

0.25

0.50

0.75

0 30 60 90

Questions, ranked in decreasing order of difficulty

%
 r

es
po

ns
e

{c
or

re
ct

, i
nc

or
re

ct
, h

in
t}

 o
n

th
e

qu
es

tio
n

Legend
●●●

●●●

●●●

●●●

●●●

●●●

% Correct Responses
% Correct Responses (Fitted)
% Hint Taken
% Hint Taken (Fitted)
% Incorrect Responses
% Incorrect Responses (Fitted)

Figure 1: Percent of correct attempts, incorrect attempts,
hints opted for each question in ASSISTments data. The ques-
tions are sorted by % correct responses.

0

50

100

150

3 6 9

Questions, ranked in decreasing order of difficulty

T
im

e
ta

ke
n

(in
 s

ec
on

ds
)

Response Type
Correct
Incorrect
Hint

Figure 2: The box plot shows the distribution of time taken
to attempt a question when response was correct (in green
color), incorrect (in red), and when hint was taken (in blue).
x-axis is sorted from lowest % correct on left to highest in
right.

environment can use likelihood of taking a hint and the ef-
fect of taking a hint on learning to decide whether to show a
hint. For example, the environment can proactively suggest
hints to students who are stuck with a concept and have a
low likelihood of taking a hint themselves.

Another reason to model the hint-taking behavior is to im-
prove the performance of a knowledge tracing model. The
existing knowledge tracing models do not model the hint-
taking behavior. Section 2 presents the past work on knowl-
edge tracing and hint-taking prediction. Traditional knowl-
edge tracing models either tag a hint taken as an incorrect
response or remove the data point where hints were taken.
The two responses, i.e. attempting to solve a question and
taking a hint directly, tend to result in different learning out-
comes. Hence, conflating an incorrect response with a hint
taken can deteriorate model performance. We show that
explicitly modeling the hint-taking behavior improves per-
formance of the model. Additionally, a higher propensity to
take hints might be informative about the likelihood of an-
swering questions correctly [19, 13]. Hence, throwing away
the data points where hints were taken is akin to throw-
ing away useful information. Conversely, knowledge tracing
tasks contain information about whether a student is likely
to take a hint. The synergies between the knowledge trac-
ing and the hint-taking task motivates the application of a
multi-task learning model [8]. Another important model-
ing consideration is the parameterization of the skill level.
A knowledge tracing model is parameterized by deciding
the level of heterogeneity in a learner’s skill level and the
question difficulty parameters. In the traditional knowledge
tracing models, one might represent the skill level using one
common parameter for all concepts or use a different param-
eter for each concept or a group of concepts clustered based
on domain knowledge. Recently, deep learning based mod-
els have been used for knowledge tracing [23, 16, 34] which
automatically capture the dependencies between different
concepts based on the student response sequences. We ex-
tend the memory-augmented deep learning model proposed
by Zhang et al. [34] to include hints taken in the past as
an input and the prediction of hint-taking as an auxiliary
task. We call this model Colearn. Section 4 describes the
proposed model. Section 6 describes the evaluation method-

ology and estimation approach, including how the model
hyperparameters are set.

The proposed model is compared with the baseline models
from traditional approaches as well as deep learning based
approaches. Section 7 describes the baseline models. We
perform experiments on two popular datasets – ASSIST-
ments 2009-2010 skill builder dataset and Junyi Academy
Math Practicing Log. Section 5 describes the two datasets.
Both the datasets contain information on whether a hint
was taken. ASSISTments dataset contains the information
whether a learner first attempted a question or directly took
a hint. However, Junyi dataset contains noisy information
on hints taken as it contains information on whether a hint
was taken regardless of whether a hint was taken first or the
question was attempted prior to it. The importance of this
distinction is supported by past studies.

Results show that a memory-augmented deep learning model
improves hint prediction performance from 79.10% to 91.12%
on ASSISTments dataset and from 77.62% to 92.31%. Colearn,
which is a multi-task memory-augmented deep learning model,
further improves, by a small margin, the performance of the
hint-taking prediction task by 0.63% and 0.03% point, re-
spectively for the two datasets. Additionally, Colearn im-
proves the performance on the knowledge tracing task for
ASSISTment dataset by 0.25% point and for Junyi dataset
by 0.18% points. Note that the baseline model for knowledge
tracing is another memory-augmented deep learning model.
Although the effect on performance is small, a benefit of the
joint modeling of the two tasks is that we can work with
only one model instead of two while training and scoring.

One of the criticisms of the deep learning based approaches
is that the estimated parameters do not enhance our under-
standing of how the world works. We try to understand the
meaning of the estimated parameters, especially the ques-
tion embedding vectors, in Section 7.3. The analysis shows
that a question embedding tends to capture question’s diffi-
culty.

In summary, the main contributions of this work are four-
fold. First, we show a large improvement in the perfor-

mance of the hint-taking prediction task by using a memory-
augmented deep learning model. Second, we motivate joint
modeling of knowledge tracing and hint-taking prediction
tasks which have been modeled separately in the prior work.
Third, we extend a recent memory-augmented deep learn-
ing model for knowledge tracing to the task of hint-taking
prediction. The proposed model, Colearn, incorporates the
sequence of correct, incorrect response as well as hint-taking
behavior on past questions as inputs. The model adds the
hint-taking prediction as an auxiliary task. Fourth, we ex-
tensively evaluate the proposed model on two real-world
datasets and show that our approach outperforms the com-
petitive baselines on both the tasks.

2. RELATED WORK
This paper builds on the literature on knowledge tracing
and on learning aids such as hints. Knowledge tracing in an
interactive learning environment is an extensively studied
area. Different approaches have been proposed in past.

Item Response Theory or IRT models the probability
that a student answers a question correctly as a function of
the following two parameters: one representing the student’s
skill level and the second representing the question difficulty
[12]. The probability that a student answers a question cor-
rectly decreases with the question difficulty and increases
with the student skill level, all else being equal. The stu-
dent skill level and question difficulty are scalars which are
estimated from data. Recent extensions to IRT, such as Hi-
erarchical IRT, partition questions into groups, e.g. based on
concepts covered, and model student skill level and item dif-
ficulty for each group separately [30]. However, these mod-
els do not use the information present in the sequence of
responses. This results in incorrect responses followed by
correct responses to be treated the same as the reverse se-
quence. Intuitively, a knowledge tracing model should put
more weight on the performance on recent responses.

Bayesian Knowledge Tracing or BKT is another widely-
used model. It uses information in the sequence of responses.
BKT uses a Hidden Markov Model with the student skill as
the latent variable and the responses as the observed vari-
ables [11]. One reason for the popularity of BKT is that,
unlike IRT, it models student’s skill in each concept sepa-
rately. This information can be used by a learning system
to personalize a learning activity. For example, a learning
system can repeat a concept, switch to a new concept or
skip a concept altogether based on the estimates of the skill
level attained in the concepts.

Deep Learning based approaches have been employed
due to the flexibility these approaches provide in modeling
the skill of a student and the difficulty level of a question.
Piech et al. [23] use Long Short-Term Memory (LSTM)
cells to model sequence of student responses. They show
significant improvement over BKT in predicting the student
responses on many datasets. There has been concern voiced
due to the lack of interpretability of the Deep Learning based
approaches. Khajah et al. [16] show that DKT’s perfor-
mance can be matched by modifying BKT model. However,
matching DKT’s performance required significant domain

knowledge on the processes involved in the learning process
and insights from DKT model [16]. On the other hand, a
Deep Learning based model performs well even without ex-
plicitly building a domain specific knowledge into the model.
Memory-augmented neural networks, proposed for this task
by Zhang et al. [34], provide even more flexibility to model
student skill and question difficulty. A similar network ar-
chitecture has been used for question-answering on free-form
text documents [20].

Hints as a study help strategy has been extensively stud-
ied. The literature on how to provide hints has focused on
whether to provide hints on-demand or proactively. Duong
et al. [13] propose a model incorporating hint usage infor-
mation in knowledge tracing. However, they do not use this
information to predict the probability that a user will take
a hint or not. Castro et al. [9] use a technique called tabling
method to predict whether a student will attempt or take a
hint in the next question. The model does not consider the
complete sequence of student responses in the past and it
is difficult to train for the longer sequences. This results in
poor performance of the model.

In summary, there is rich literature on predicting the like-
lihood of a correct response and some recent work in pre-
dicting hint usage. However, the literature, to the best of
our knowledge, has not modeled these two related prob-
lems jointly. Past work on multi-task learning (MTL) [8]
suggests that adding an auxiliary task can help in improv-
ing the performance on both the tasks. MTL has shown
considerable benefits in many domains including computer
vision [21], natural language processing [17], health diag-
nostics [35], among others. Our proposed model includes
effect of hints on future probability of answering a question
correctly. This information can be used to decide when to
provide a hint on a particular question.

Our Contribution: We extend the model proposed by
Zhang et al. [34]. We include the hint usage information
by changing the encoding of the inputs to the network. In
addition, we add the components which share the network
weights for the auxiliary task of predicting the probability of
taking a hint. This results in increased prediction accuracy
for the tasks of whether the learner will take a hint as well
as whether a learner will answer a question accurately.

3. BACKGROUND
There is a large literature on hints as a learning aid that
provides motivation for the joint modeling of item response
and hint usage. The literature shows that hints are impor-
tant but prone to misuse if provided indiscriminately. The
research also shows that attempting a question and taking a
hint directly have different implications for learning a con-
cept.

Mathews et al. [19] shows that learners who first attempt to
solve a question tend to learn by themselves and have higher
probability to master the knowledge. This result has a basis
in the theory that the process of attempting a question acti-
vates self-explanation, which is an important meta-cognitive
skill [4, 10, 7, 22, 25, 29]. While hints are useful learning
aid, the research on how hints are used show that easy ac-
cess to hints may lead to sub-optimal outcomes. In studies

of help-seeking from human tutors, it has been found that
those who need help the most are the least likely to ask for
it [15, 24, 26]. Computer-based help systems can poten-
tially improve the use of help [32]. Given that many learn-
ing environments provide some form of on-demand help, it
might seem that effective use of help would be an important
factor influencing the learning results obtained with these
systems. However, there is evidence that learners are not
using the help facilities offered by learning environments ef-
fectively [3]. They often ignore the help facilities or use them
in ways that are not likely to help learning. They frequently
use the system’s on-demand hints to get answers, without
trying to understand how the answers are derived or the rea-
sons behind the answers [1]. It is shown that the learners
who opt for hints very frequently tend to have the lowest
learning rate [13]. On the other hand, there is also evidence
that, when used appropriately, on-demand help in an inter-
active learning environment can have a positive impact on
performance [1, 5] and learning [27, 31, 32]. Also, provid-
ing tutoring with respect to student’s help-seeking behavior
helps them to become better help seekers and thus better
future learners [6]. A request for help is appropriate when
a student is stuck while solving a tutor problem but not
when she has not yet thought about the problem. Further,
students should carefully read and interpret the help given
by the system. Aleven et al. [2] described a model of help-
seeking behavior within a cognitive tutor. The authors have
created a taxonomy of errors in student’s help-seeking be-
havior. Based on the frequency of the meta-cognitive bugs
defined by their model, it was observed that 36% of the ac-
tions taken by students were classified as help abuse bugs
and 19% of the actions as help avoidance. To make a better
tutoring system which can guide the students in regulating
their help-seeking behavior, it is essential to incorporate the
effect of hints in knowledge tracing. Traditional knowledge
tracing models do not take the hint usage into account.

3.1 Notations
Next, we introduce notations for the joint model. Let the
interactions of a learner till time T are denoted by X =
(x1, x2, x3, . . . , xT). Here, each interaction xt is an encod-
ing representing the tuple (qt, rt, ht) containing an identifier
for the question attempted qt, a binary indicator rt, encod-
ing the response, and another binary indicator ht, encoding
hint usage. The hint usage variable is positive only if the
hint was taken directly instead of attempting the question
first. Let Q = {qt}t be the set of distinct questions. The in-
teraction tuple can contain additional information collected
such as time taken to attempt, type of question, concepts
involved in the question and so on. The task of a knowledge
tracing model is to predict the probability of correctly an-
swering a question qt′ ∈ Q, t′ > T , i.e. Prob(rt′ = 1|qt′ , X).
And, the task of predicting a hint usage model is to esti-
mate Prob(ht′ = 1|qt′ , X). Both of these tasks are super-
vised learning problems and can be modeled using a binary
classifier. Instead of building two separate models for these
tasks, we model them jointly within a deep learning based
classification framework.

4. MODEL
Zhang et al. [34] proposed a memory-augmented neural net-
work model, called Dynamic Key-Value Memory Networks
or DKVMN, for knowledge tracing. This model performed bet-

ter than the baseline models on three real-world datasets.
This model is used as a baseline for the proposed multi-task
model due its many favorable properties. It does not require
extensive feature engineering or metadata information such
as mapping of items to skills and the model offers flexibil-
ity in adding more tasks as well as inputs. We first give a
brief description of their model, followed by our modifica-
tions. Reader is referred to Zhang et al. [34] for further
implementation details regarding the original model.

4.1 Dynamic Key-Value Memory Networks,
DKVMN

The neural network is designed to store the knowledge state
of a learner based on past interactions. This is done using a
memory component which works like a key-value store. Each
attempted question is mapped to a set of concepts which are
the keys in the memory component. The corresponding val-
ues are a learner’s knowledge state in each of these concepts.
The network has a mechanism to update the states because
of learner’s response to the question. The key-value pairs are
modeled using vectors instead of scalars for more represen-
tational flexibility. So, for each question the output from the
memory component gives a learner’s knowledge state. This
is compared with the difficulty level of the question, which
is the output of another component, to arrive at probability
of correctly answering the question. All operations are im-
plemented using differentiable operators like multiplication,
addition, sigmoid function on matrices so that the network
can be trained end-to-end using gradient descent optimiza-
tion techniques.

4.2 Proposed Model, Colearn
The DKVMN model does not consider the effect of taking hints
during assessment. It considers hint usage as an incorrect
attempt by the learner, as is the standard approach in ex-
isting models. However, the update in knowledge state of a
learner is different when a question is attempted as opposed
to when a hint is taken without any attempt. We modify
DKVMN to incorporate hint information by changing the input
and output layers of the model. Figure 3 shows the modified
network. Next, we describe the components of DKVMN and
our modifications to it.

4.2.1 Input Layer
In the update phase of the model, instead of using one-hot
encoding of (qt, rt), we encode (qt, rt, ht) into a vector of
length 2|Q| + 1, where Q is the set of distinct questions.
The first |Q| dimensions are a one-hot vector representing
the correct attempt on the question, i.e. in case of a cor-
rect attempt, the vector has 1 at the index of the question
and has 0 everywhere else. Similarly, the next |Q| dimen-
sions encode incorrect attempt. The last dimension of the
vector is a binary value indicating whether a hint is taken.
This input encoding changes the way the value vectors in
the memory component are changed due to the information
whether a hint is used or not is also present. An example of
the input encoding is illustrated in Table 1 where there is a
total of two exercises.

We tried different ways of representing the three outcomes,
viz. correct response, incorrect response, and hint taken.
These included one-hot encoding with all three outcomes

Figure 3: Architecture of the neural network for joint modelling of knowledge state and hint use. KT and HT refer to
Knowledge tracing and Hint-Taking tasks.

Response Encoding
DKVMN Colearn

Q2-Correct (0, 1, 0, 0) (0, 1, 0, 0, 0)
Q2-Incorrect (0, 0, 0, 1) (0, 0, 0, 1, 0)

Q2-Hint – (0, 0, 0, 0, 1)
Q1-Hint – (0, 0, 0, 0, 1)

Table 1: Response encoding in case of two exercise tags

with a length of 3|Q|. The chosen encoding gave the best re-
sults in the experiments. This encoding represents response
on two different questions where hints are taken with the
same vector (see example in Table 1). Since the network
already incorporates index of the current question as a sep-
arate input, using |Q| extra dimensions for hint encoding in
update phase adds more parameters which are not required.

4.3 Key-Value Store
Key-value memory networks, introduced in [20], have an ex-
plicit memory component which is an array of pairs of mem-
ory slots where each slot is a real-valued vector. Given a
query, the relevant information is fetched from the slots us-
ing an attention-based mechanism depending on which slots
are relevant for that query. The mechanism has three major
components which are described next.

• Key Hashing: The key part of the pairs holds the static
information representing the various hidden concepts us-
ing vectors. Each of the key vectors (Mk(1), . . . ,Mk(n))
represents a concept.

• Key Addressing: Given the tth question answered by a
student, the relevance of each concept in that question is
found out using an attention mechanism. Each question
is first converted into an embedding

kt = Aqt (1)

and the weight of each concept ci in qt is given by

wt(i) = Softmax(kt
TMk(i)) (2)

where A is the question embedding matrix, qt denotes the
one-hot encoded question, Mk(i) denotes the key vector
of the ith concept and Softmax(xi) = exi/

∑
j e

xj . The
question embedding vector kt obtained from matrix A,
the key matrix Mk are shown in yellow color and attention
weight vector wt = (wt(1), . . . , wt(n)) is shown in orange
in Figure 3.

• Value Reading: Given the weight wt(i) of each concept
ci in question qt given by Equation 2, the student’s skill
in that question is calculated as the weighted sum of the
knowledge in each of the concepts, as taken from value
matrix Mv

t . The value matrix is shown in pink color in
Figure 3. The student’s skill in the question qt is returned
as

st =

n∑
i=1

Mv
t (i) ∗ wt(i) (3)

This skill is then used to make predictions about the stu-
dent’s response correctness and hint usage.

• Value Writing: Once we get student’s actual response
to the question, knowledge state is updated. This part is
shown in green color in Figure 3. The update in each of
the concept ci’s value vectors are also weighted according
to the calculated weight wt(i) of the concept (2). The
student’s response is encoded in a vector, xt of size 2|Q|+1
to represent a correct attempt or an incorrect attempt or
a hint taken.

xt = encoded tuple(qt, rt, ht)

This encoding, described in 4.2, is then converted into an
embedding vt, given by

vt = Bxt

where B is the response embedding matrix. When updat-
ing the student’s knowledge state, the memory is erased

first before new information is added.
The erase vector et is calculated as

et = Sigmoid(ETvt + be)

where E is a linear transformation matrix, be is the bias
and Sigmoid(xi) = 1/(1 + exi).
The addition vector at is calculated as

at = Tanh(DTvt + ba)

where D is a linear transformation matrix, ba is the bias
and Tanh(xi) = (exi − e−xi)/(exi + e−xi).
After the tth response, the value matrix is updated as

Mv
t (i) = Mv

t−1(i)� [1− wt(i)et] + wt(i)at

Thus, the model adds and forgets student knowledge in
concepts as more and more assessments are attempted.

4.4 Final Predictions
The final predictions for both, correct attempt and hint-
taking, probabilities are calculated by applying two separate
linear transformations followed by a sigmoid activation on
ft which is given by

ft = Tanh(WT
f ∗ (st||kt) + bf) (4)

Here, Wf is a linear transformation, st is the final read
knowledge state of the student in question qt illustrated
earlier in Equation 3, kt is the question embedding in Equa-
tion 1, bf is the bias and || is the concatenation operator.
The final probabilities for a correct-attempt and hint-taking
are

ppredr = Sigmoid(WT
r ∗ ft + br

p) (5)

ppredh = Sigmoid(WT
h ∗ ft + bh

p) (6)

where both WT
r , WT

h are linear transformations, and br
p,

bh
p are bias vectors.

4.4.1 Prediction Loss at Output Layer:
The output layer of DKVMN predicts the probability whether
a question will be answered correctly. For the task of pre-
dicting whether a hint will be taken in the question, the
factors like the knowledge state of the learner, the difficulty
level of the question and past hint-taking behavior are im-
portant. Since the first two are already being modeled by
DKVMN, we learn both the tasks simultaneously by using a
multi-task learning approach. As shown in Equation 6, the
final output layer of Colearn adds a linear transformation of
ft followed by a sigmoid activation to predict the hint-taking
task. The loss is given by taking a weighted sum of losses
from knowledge tracing and hint-taking prediction and is
evaluated as

L = α1cross entropy(pactr , ppredr)+α2cross entropy(pacth , ppredh)

where ppredr is given in Equation 5 and ppredh in Equation 6 are
the probabilities predicted at the output layer. The actual
values pactr and pacth are 0 or 1 depending on the observed
response. The cross entropy function

cross entropy(pact, ppred) = pactlog(ppred)+(1−pact)log(1−ppred)

We set both α1 = α2 = 1 to give equal weight to the knowl-
edge tracing and hint-taking prediction tasks. This loss is

backpropagated to update the network weights. When a
learner takes a hint, only the loss of the hint-taking predic-
tion is propagated. In other words, the loss for the knowl-
edge tracing task is 0 in this case. The network weights,
except the final output layer, are shared between the two
tasks (See Figure 3). Multi-task learning acts as a regu-
larizer for learning network weights as with the same set
of weights the network should maximize two objectives. It
also encourages sharing of knowledge across tasks through
sharing of network weights. Experimental results demon-
strate that the network trained using multi-task learning
marginally outperforms current state-of-the-art models on
both the tasks.

5. DATASETS
To evaluate the performance of the model we used the fol-
lowing two datasets:

• ASSISTments 2009-2010 skill builder dataset2: AS-
SISTments [14] is an online tutoring system which can
be used by teachers for grade school-level Mathematics
instruction and evaluation. The system can be used to
identify common wrong answers and see student-reports
for assignments in a class. The dataset contains activity
logs of students solving exercises on the system and it is
widely-used as a benchmark dataset for knowledge trac-
ing [23, 34]. Log data includes information such as student
responses, time spent on exercise, chronological order of
attempts, if a hint is taken, tagged skill for an exercise.
We use the updated version of this dataset. It corrects an
issue, identified by Xiong et al. [33], with duplicated rows
in the original version. We use the skill tag corresponding
to an exercise as its identifier in the input to the models.
Thus, the set of distinct questions, Q, is same as the set of
distinct skill tags in the dataset. All rows with an empty
skill tag are removed. Some rows contain invalid values
in the column specifying student’s first action i.e. values
other than the permissible ones – {attempt, hint}. These
transactions are removed. In case a student has multiple
actions on the same exercise, we know whether the first
action was a correct attempt, an incorrect attempt or a
hint request. For the hint-taking prediction task, only the
rows with the first action as a hint request are taken as a
positive label.

• Junyi Academy Math Practicing Log3: Junyi Academy4

is an e-learning platform, like Khan Academy, where stu-
dents can practice exercises on various subjects including
Mathematics, Biology, Computer Science. Like ASSIST-
ments, the dataset contains attempt, hint taken, time
spent, and skill tag information for an exercise. It has
transactions for around 200,000 students. To the best of
our knowledge, it is one of the largest student interac-
tion datasets. As part of the data cleaning process, rows
which contained non-binary values in the columns speci-
fying whether hint was used or not and whether question

2ASSISTments 2009-2010 skill builder dataset is available
at https://sites.google.com/site/assistmentsdata/home/
assistment-2009-2010-data/skill-builder-data-2009-2010
3Junyi Academy Math Practicing Log is available at
datashop.web.cmu.edu/DatasetInfo?datasetId=1198
4
https://www.junyiacademy.org/

was answered correctly or not were removed. Students
with only one transaction in the dataset are removed. If
a student requests a hint as one of the actions on a par-
ticular exercise, we do not know whether the hint was
requested as the first action or it was requested after one
or more incorrect attempts. In other words, we only know
whether a hint request was one of the actions performed
by the student. Therefore, for the hint-taking prediction
task, all transactions which contain a hint request, irre-
spective of being the first action or not, are assigned the
positive label. Note that this adds noise to the hint-taking
label for this dataset.

The statistics comparing the two datasets are provided in
Table 2.

Statistic Datasets
ASSISTments Junyi

of Students 4, 151 199, 549
of Exercise/Skill Tags 111 722
of Concept Tags – 40
of Records 325, 637 25, 628, 935
% of Attempts (Both Correct

and Incorrect)
92.78% 93.56%

% of Hints 7.22% 6.44%

Table 2: Aggregate statistics from the two datasets

For extracting labels for the prediction tasks, it is assumed
that a question is attempted only once. If a hint is taken first
then the response is labeled as hint-taken. Else, the response
is marked as correct or incorrect based on the outcome. So,
if there are instances where multiple responses for a question
are observed, we keep the first response on each question and
remove subsequent responses. This is done to conform with
the standard practice followed while evaluating knowledge
tracing models. However, responses to subsequent attempts
can also be incorporated in our setup.

6. EVALUATION METHODOLOGY
In each dataset, students and the corresponding transactions
are randomly split into two parts – 80% for training and 20%
for testing. Training set is further split, out of which 80%
(i.e. 64% of total) is used for training the models. The
rest 20% (i.e. 16% of total), called validation set, is used to
tune hyperparameters of the models. Trained models with
different values of hyperparameters are evaluated on the val-
idation set in order to select the best hyperparameters.

6.1 Accuracy Metric
Both the prediction tasks are considered in a classification
setting — answering a question correctly or not and taking
a hint on a question or not. Hence, we compare the model
performance based on Area under ROC curve (AUC) which
is a standard classification metric. For knowledge tracing
task, we follow the same evaluation procedure as followed
by [23, 30, 34]. The model is trained using transactions
from the training set. During the testing phase, the model
is updated after each question response from the testing set.
The updated model is used to perform the prediction for the
next question.

6.2 Hyperparameter Tuning
Hyperparameters are learned using the validation set. We
used Bayesian Optimization [28] to tune the hyperparam-
eters for Colearn model. The model required several hy-
perparameters which cannot be set by hand easily. The
method uses Bayesian techniques instead of gradient-based
techniques to optimize the unknown function from the hy-
perparameter space to validation loss. The objective is to
find the set of hyperparameter values which minimizes the
validation loss while evaluating the model for only a small
number of hyperparameter combinations. The tuned hyper-
parameters are:

Number of value vectors: Since the number of value vec-
tors represent the number of ‘hidden’ concepts, this cannot
be set by hand. The values were varied from 5 to 50 vectors.

Key vector size: The size of each key vector depends on
efficient representation of the difficulty of questions and their
similarity to the hidden concepts. The size was varied from
10 to 200.

Value vector size: The value vectors are a representation
of the different concepts and an efficient representation de-
pends on the size of these vectors. The size was varied from
10 to 200.

Hyper-parameters obtained for Colearn model are as follows
– number of value vectors are 20 and 5 for ASSISTments and
Junyi respectively, key vector size (i.e. question embedding
size) is 50 for both, value vector size (i.e. question-attempt
embedding size) is 200 and 100 for ASSISTments and Junyi
respectively.

6.3 Training details
Stochastic gradient descent with momentum and norm-clipping
was employed to train the weights of the network. The mo-
mentum was set to be 0.9 throughout the training and the
norm was clipped to a threshold of 50.0. The learning rate
was initialized as 5∗10−2 and annealed after every 20 epochs
till the learning rate reached 10−5. Since the sequences of
responses varied in length, the sequence length was fixed to
200 and 500 in ASSISTments and Junyi, respectively, with
appropriate truncation or padding. Batch size for stochastic
gradient descent is fixed to 32 and number of epochs is set
to 100. Network weights corresponding to the epoch with
least validation loss are taken for testing.

After training, learned weight values for the key and value
matrices are saved and loaded at beginning of testing each
student sequence. Key matrix is kept unchanged through-
out the sequence, whereas the value matrix is updated in-
dependently for each student sequence as more actions are
observed.

To check for robustness to initialization of network weights,
we perform training 5 times with different random seeds
(to get {AUCi}5i=1). We report the average (i.e. AUC =
1
5

∑5
i=1 AUCi) and standard deviation (i.e. [1

5

∑5
i=1(AUCi−

AUC)2]
1
2) of test AUC values across the 5 models.

7. RESULTS AND DISCUSSION

Model Datasets
ASSISTments Junyi

Colearn 91.75± 0.07% 92.34± 0.009%
DKVMN–hints 91.12± 0.06% 92.31± 0.01%
HH (n=3) 77.69% 76.66%
HH (n=4) 79.10% 77.62%

Table 3: Hint-taking Prediction task. Performance
(AUC values) of proposed approach (Colearn) compared
with the baselines on two datasets.

Model Datasets
ASSISTments Junyi

Colearn 81.48± 0.04% 80.56± 0.009%
DKVMN 81.23± 0.02% 80.38± 0.007%
HIRT 77.40% 79.45%
IRT 76.51% 77.46%

Table 4: Knowledge Tracing task. Performance
(AUC values) of proposed approach (Colearn) compared
with the baselines on two datasets.

To the best of our knowledge, no prior work models both of
the prediction tasks jointly. Therefore, we report compar-
isons with prior work for each task separately. The Colearn

results reported are for the model jointly trained on both
the tasks.

7.1 Hint-taking Prediction
7.1.1 Baselines

Castro et al. [9] proposed a method called Hint-History
model (HH) for predicting student actions on next question
i.e. whether student will take a hint or attempt the next
question. The method considers the sequence of n most re-
cent student actions for predicting action on the next ques-
tion. They use a technique called tabling method which
counts the number of times a sequence resulted in a par-
ticular action in the training set. For instance, while mak-
ing a prediction for a student who has taken two hints in a
row followed by an attempt, the method finds students with
same action sequence in the training set and uses the next-
action probability for them as the predicted value in current
case i.e. calculate number of times students with this action
sequence took hint on the next question divided by total
number of such students in the training dataset. These sim-
ple approaches have been used for knowledge tracing tasks
[13] as well.

The tabling method is compared with two approaches that
are proposed in this paper. The first one is using DKVMN [34]
model with class labels being hint-taking indicators instead
of question correctness (referred to as DKVMN–hints). The
second one is Colearn.

7.1.2 Results
Table 3 summarizes the results. We compare with HH model
for two different values of length of action sequences, n =
3, 4. DKVMN–hints shows 12% points improvement in AUC
on ASSISTments dataset and 15% on Junyi datset. Colearn
further improves the AUC on the two datasets. A memory-
augmented deep learning model considers longer term de-
pendencies in student sequences instead of taking a fixed-
length history, as is the case with HH. It can also effectively
model student-specific variations from individual sequences
whereas HH model output is based only on population-level
statistics. Lastly, multi-task training, Colearn model, also
helps to increase performance on the task by a small margin
due to the synergies across the tasks.

7.2 Knowledge Tracing
7.2.1 Baselines

We compare our model with three competitive baselines
namely DKVMN [34], IRT [30] and Hierarchical IRT (HIRT) [30].
In IRT, student skill level and item difficulty are modeled
separately and probability of answering correctly is taken
as a pre-determined function of these two quantities such
as sigmoid or logistic. In HIRT, related items are grouped
together (e.g. those belonging to same concept) and the
difficulty of each item is distributed normally around a per-
group mean, which is distributed normally around a hyper-
prior. DKVMN model was shown to outperform BKT [11]
and DKT [16], hence we do not compare with those mod-
els. For DKVMN, best performing hyperparameters reported
in [34] were taken. Note that the best-reported AUC of
DKVMN (81.57%) on ASSISTments dataset differs from what
we report for their model (81.23%), for the same hyperpa-
rameters. This results from different train-test set propor-
tions, i.e. 20% sequences in test as compared to 30% used
by Zhang et al. We could replicate DKVMN results using code
published by the authors5 on the dataset split provided by
them. For IRT and HIRT models we use the code published
by the authors6. For the baselines, the transactions where
hints are taken are labelled as incorrect responses. This is
the same approach followed in the baseline publications.

7.2.2 Results
The AUC values for the different methods on both datasets
for knowledge tracing are shown in Table 4. The AUC value
for deep learning models is sensitive to the initial values
of network weights. Hence, we report average and stan-
dard deviation (separated by ±) of the AUC from five, ran-
domly initialized, models. Colearn improves test set AUC
on ASSISTments dataset by 4% points and on Junyi by 1%
points as compared to HIRT method. The improvement due
to multi-task model is consistent across datasets and tasks,
albeit small. This means that students’ past hint taking
behaviour is not predictive of question correctness. Fac-
tors such as difficulty of the question and correctness on
past attempts mostly can explain their future performance.
Interestingly, performance increase is less in case of Junyi
dataset than ASSISTments dataset in both the tasks. As
discussed earlier, the way hint information is available in
Junyi dataset adds some noise to the training signals. In
cases where student takes a hint, we do not know whether
hint was the first action before any attempt or was taken
after making incorrect attempt(s). This might be the rea-
son why we get relatively less advantage from incorporating
hint information in Junyi dataset.

5https://github.com/jennyzhang0215/DKVMN
6https://github.com/Knewton/edm2016

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
0.00

0.25

0.50

0.75

1.00

Exercise difficulty

(a) Exercise Difficulty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

#concepts= 40

Exercise Concepts

(b) Exercise Concept Mapping

Figure 4: t-SNE visualizations of question representation for Junyi dataset. Color denotes difficulty (in (a)) and concepts (in
(b)) of the questions.

7.3 Discussion on Learned Representations
We have shown that the Colearn model performs better
than the baseline models. In this section we explore the
meaning of the estimated parameters. Specifically, how can
we use the estimated parameters to represent a question and
what does the representation represent?

To get representation for each question, qt, we use a ques-
tion’s attention weights over the concepts in the key matrix.
Each question is represented by a vector of length equal to
the number of latent concepts where the value corresponding
to each latent concept in the vector is given by Equation 2.
This representation is obtained assuming that a student has
not yet started to answer any question. Recall that, before
the start of an assessment, the value matrix is set to the
initial value matrix, Mv

0 . This initial matrix is part of the
parameter set and it is estimated. The question represen-
tation is a vector that is based on the performance of all
students, questions, and responses in the training set but
not specific to any one student.

To understand how the question representations are related
to each other, we visualize them using t-SNE [18]. Figure 4a
and Figure 4b present the t-SNE visualizations of the ques-
tion representations of the exercise tags in Junyi dataset.
ASSISTments dataset is not used for this analysis because it
does not contain the concepts for the exercise tag. Each dot
in the scatter diagram represents a single exercise tag. The
only difference between the two panels is the color used to
represent each tag. In Figure 4a each exercise tag is colored
according to the difficulty level of the question, with blue
color representing the easiest and red color representing the
most difficult exercise tags. The difficulty level is estimated
using the fraction of correct responses in each question tag.
The color of a dot in Figure 4b represents the concept of the
exercise tag. There are 40 concepts for 722 exercise tags in
Junyi dataset which include concepts like fractions, algebra,
trigonometry.

One of the hypothesis is that the question representation
captures the concept map [34]. If this was the case then the
exercise tags within a concept should be close in the question

representation space. However, Figure 4b shows that the
exercise tags within a concept do not cluster together. In
fact, the exercise tags seem to be randomly scattered in the
question representation space. On the other hand the color
of the exercise tags in Figure 4a shows a definite pattern
with the easiest question tags towards the left and the most
difficult ones towards the right. This shows that the question
representation vectors tend to capture the difficulty level
of an exercise tag. Note that, the question representation
vector might capture other aspects such as prerequisite map.
However, a complete in-depth analysis is out of the scope of
this paper and left for future explorations.

8. CONCLUSION
Assessments (specifically, formative ones) are an important
part of an interactive learning system as they help learners
to gauge their progress. If a learner is stuck at a particular
question, many learning platforms provide learning aids in
the form of hints. Predicting when to provide an option of
taking an hint is essential to regulating its excessive use or
to avoid underuse. The probability of taking a hint relates
to modeling the knowledge state of a learner during an as-
sessment, which has been studied separately as knowledge
tracing. Hence, we jointly modeled the hint-taking predic-
tion task along with the knowledge tracing task. Through
experiments we showed that our approach outperforms the
baseline hint-taking prediction models and marginally im-
prove on baseline knowledge tracing models. The approach
proposed in the paper can be easily extended to incorporate
other types of learning aids such as interactive tutorials,
links to reading material and videos.

Better knowledge tracing and hint-taking models allow an
e-learning system to make decisions such as number of ques-
tions to ask, the sequence of questions and whether to show a
hint based on learner’s proficiency. Such decisions affect the
long-term learning outcomes. Future work involves integrat-
ing the predictions for the two tasks to develop strategies for
optimizing long-term learning outcomes. High accuracy on
both the tasks, as demonstrated, will allow to build student
simulators for evaluating such strategies.

9. REFERENCES
[1] V. Aleven and K. R. Koedinger. Limitations of

student control: Do students know when they need
help? In Intelligent tutoring systems, volume 1839,
pages 292–303. Springer, 2000.

[2] V. Aleven, B. Mclaren, I. Roll, and K. Koedinger.
Toward meta-cognitive tutoring: A model of help
seeking with a cognitive tutor. International Journal
of Artificial Intelligence in Education, 16(2):101–128,
2006.

[3] V. Aleven, E. Stahl, S. Schworm, F. Fischer, and
R. Wallace. Help seeking and help design in
interactive learning environments. Review of
educational research, 73(3):277–320, 2003.

[4] V. A. Aleven and K. R. Koedinger. An effective
metacognitive strategy: Learning by doing and
explaining with a computer-based cognitive tutor.
Cognitive science, 26(2):147–179, 2002.

[5] T. Bartholomé, E. Stahl, S. Pieschl, and R. Bromme.
What matters in help-seeking? a study of help
effectiveness and learner-related factors. Computers in
Human Behavior, 22(1):113–129, 2006.

[6] J. D. Bransford and D. L. Schwartz. Chapter 3:
Rethinking transfer: A simple proposal with multiple
implications. Review of research in education,
24(1):61–100, 1999.

[7] A. Bunt, C. Conati, and K. Muldner. Scaffolding
self-explanation to improve learning in exploratory
learning environments. In Intelligent Tutoring
Systems, pages 109–156. Springer, 2004.

[8] R. Caruana. Multitask learning. Mach. Learn.,
28(1):41–75, July 1997.

[9] F. E. V. Castro, S. Adjei, T. Colombo, and
N. Heffernan. Building models to predict
hint-or-attempt actions of students. International
Educational Data Mining Society, 2015.

[10] C. Conati and K. Vanlehn. Toward computer-based
support of meta-cognitive skills: A computational
framework to coach self-explanation. International
Journal of Artificial Intelligence in Education
(IJAIED), 11:389–415, 2000.

[11] A. T. Corbett and J. R. Anderson. Knowledge tracing:
Modeling the acquisition of procedural knowledge.
User Modeling and User-Adapted Interaction,
4(4):253–278, Dec 1994.

[12] F. Drasgow and C. L. Hulin. Item response theory.
Handbook of industrial and organizational psychology,
1:577–636, 1990.

[13] H. Duong, L. Zhu, Y. Wang, and N. T. Heffernan. A
prediction model that uses the sequence of attempts
and hints to better predict knowledge: ”better to
attempt the problem first, rather than ask for a hint”.
In EDM, 2013.

[14] M. Feng, N. Heffernan, and K. Koedinger. Addressing
the assessment challenge with an online system that
tutors as it assesses. User Modeling and User-Adapted
Interaction, 19(3):243–266, 2009.

[15] S. A. Karabenick and J. R. Knapp. Help seeking and
the need for academic assistance. Journal of
educational psychology, 80(3):406, 1988.

[16] M. Khajah, R. V. Lindsey, and M. C. Mozer. How
deep is knowledge tracing? arXiv preprint

arXiv:1604.02416, 2016.

[17] X. Liu, J. Gao, X. He, L. Deng, K. Duh, and Y.-Y.
Wang. Representation learning using multi-task deep
neural networks for semantic classification and
information retrieval. In HLT-NAACL, pages 912–921,
2015.

[18] L. v. d. Maaten and G. Hinton. Visualizing data using
t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605, 2008.

[19] M. Mathews and T. Mitrović. How Does Students’
Help-Seeking Behaviour Affect Learning?, pages
363–372. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[20] A. H. Miller, A. Fisch, J. Dodge, A. Karimi,
A. Bordes, and J. Weston. Key-value memory
networks for directly reading documents. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2016, Austin, Texas, USA, November 1-4, 2016, pages
1400–1409, 2016.

[21] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert.
Cross-stitch networks for multi-task learning. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3994–4003,
2016.

[22] A. Mitrovic. Self-explanation in a data normalization
tutor. 2003.

[23] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami,
L. Guibas, and J. Sohl-Dickstein. Deep knowledge
tracing. In Proceedings of the 28th International
Conference on Neural Information Processing
Systems, NIPS’15, pages 505–513, Cambridge, MA,
USA, 2015. MIT Press.

[24] M. Puustinen. Help-seeking behavior in a
problem-solving situation: Development of
self-regulation. European Journal of Psychology of
education, 13(2):271–282, 1998.

[25] A. Renkl. Worked-out examples: Instructional
explanations support learning by self-explanations.
Learning and instruction, 12(5):529–556, 2002.

[26] A. M. Ryan, M. H. Gheen, and C. Midgley. Why do
some students avoid asking for help? an examination
of the interplay among students’ academic efficacy,
teachers’ social–emotional role, and the classroom goal
structure. Journal of educational psychology,
90(3):528, 1998.

[27] S. Schworm and A. Renkl. Learning by solved example
problems: Instructional explanations reduce
self-explanation activity. In Proceedings of the
Cognitive Science Society, volume 24, 2002.

[28] J. Snoek, H. Larochelle, and R. P. Adams. Practical
bayesian optimization of machine learning algorithms.
In Advances in neural information processing systems,
pages 2951–2959, 2012.

[29] J. G. Trafton and S. B. Trickett. Note-taking for
self-explanation and problem solving.
Human-computer interaction, 16(1):1–38, 2001.

[30] K. H. Wilson, Y. Karklin, B. Han, and C. Ekanadham.
Back to the basics: Bayesian extensions of irt
outperform neural networks for proficiency estimation.
arXiv preprint arXiv:1604.02336, 2016.

[31] D. Wood. Scaffolding, contingent tutoring, and

computer-supported learning. International Journal of
Artificial Intelligence in Education, 12(3):280–293,
2001.

[32] H. Wood and D. Wood. Help seeking, learning and
contingent tutoring. Computers & Education,
33(2):153–169, 1999.

[33] X. Xiong, S. Zhao, E. Van Inwegen, and J. Beck.
Going deeper with deep knowledge tracing. In EDM,
pages 545–550, 2016.

[34] J. Zhang, X. Shi, I. King, and D.-Y. Yeung. Dynamic
key-value memory networks for knowledge tracing. In
Proceedings of the 26th International Conference on
World Wide Web, pages 765–774. International World
Wide Web Conferences Steering Committee, 2017.

[35] J. Zhou, J. Liu, V. A. Narayan, and J. Ye. Modeling
disease progression via fused sparse group lasso. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 1095–1103. ACM, 2012.

