
EasyChair Preprint
№ 14908

Functional Verification Using C Model: DPI-C
VS Static Value Tables

Djordje Velickovic and Katarina Bozinovic

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 16, 2024

1

 Functional Verification Using C Model: DPI-

C VS Static Value Tables

 Djordje Velickovic, Verification Engineer, Veriest Solutions, Nis, Serbia (djordjev@veriests.com)

 Katarina Bozinovic, Verification Engineer, Veriest Solutions, Nis, Serbia (katarinab@veriests.com)

Abstract— This paper describes two popular approaches for usage of a code written in C language in functional

verification process. These approaches are integration of C model using DPI-C System Verilog function and usage of

static and pre-generated in/out C model value tables. The paper gives a short overview of their implementations and

compares their performance through a case study set on an exemplary design. It also gives comparative analysis

between these two approaches in terms of effort, range of suitability for different design cases, reusability and

integrability. The goal of the paper is to help and guide verification engineers in choosing the most appropriate method

of C model integration into their verification environment, for their specific needs.

Keywords— System Verilog, UVM, Functional Verification, DPI-C, C model

I. INTRODUCTION

 Use of C modeling in functional verification is pretty widespread in today’s industry. Traditionally associated

with DSP related design, C models in design and verification processes are being used seemingly more than ever.

The need for efficient and standardized use of C models during verification comes with ever increasing complexity

of the mathematical manipulation of the signals inside such design modules. This is commonly done for

complicated designs, when block contains mathematical calculations and statistics, that are hard to mimic in a

verification environment as a reference model. The general principle is to have a dedicated team who will create

a model in the form of C language function, which will produce the results of mathematical manipulation of the

signals as described in the specification of the module. Then it’s up to a verification engineer to integrate the C

language model and verify the design.

When it comes to the process of using a C model for verification purposes there are multiple solutions circulating

around the industry. Two of the more popular approaches for C model utilization in functional verification are:

• Integration of C model using DPI-C System Verilog function

• Usage of static, pre-generated in/out C model value tables

Both of these methodologies are well established within the industry and have been in use for many years.

Over the years, they have been refined and they received multiple variations on implementation guidelines, driven

by various specific project needs. When two solutions are established for a unique problem, in this case problem

of C model utilization in a verification process, there is always a question, which one to use. This paper will try

to give an answer to that question by comparing two approaches mentioned above. It will do so, by giving brief

overlook on implementations of integration of C model using DPI-C function and usage of pre-generated C model

value tables and showcase results from simulations on a selected case study, providing a quantitative basis for

comparing their effectiveness. For the purposes of the study, UVM based environment [1] is built with an option

to use either of the two approaches and therefore provides a way of comparing their performance in multiple

categories. The goal that this paper aims to achieve is to give a guide for verification engineers in choosing the

most appropriate method for their specific needs, ultimately enhancing the reliability and efficiency of their

verification processes when verifying DUTs which are mandating usage of a C model.

2

II. IMPLEMENATTION

A. Integartion of C model using DPI-C System Verilog function

Integration of C model using DPI-C [2] system Verilog function relies on a DPI (Direct Programming

Interface) feature of the System Verilog language. DPI is an interface between System Verilog and a foreign

programming language [3]. Further, DPI-C allows direct inter-language function calls between System Verilog

and any foreign programming language with a C function call protocol and linking model. This feature gives the

ability to verification engineer to call a C function which contains mathematical calculations generated by an

algorithm specialist anywhere from regular verification checking flow.

One of the most common ways of integrating the C model using DPI-C System Verilog function is through a

scoreboard component of the environment. Monitors of both input and output interfaces are connected to the

scoreboard through ports as usual in UVM based verification environments. When a transaction from an input

interface monitor arrives in the scoreboard, it is unpacked and a value which represents the input signal, is being

used to calculate an expected value of the signal at the output interface. This is being done by calling a DPI-C

function with a value, unpacked from an item, received from the input interface monitor, as an argument. When

the monitor of the output interface sends a transaction to the scoreboard, the value representing an output signal

is being compared to the predicted value, which was calculated using the DPI-C function. In this way for each

valid transfer through the module, the verification environment confirms if the design is outputting a correct value

for any input value that has been driven at its input. A diagram showing verification environment which integrates

C model through DPI-C function and uses it for data checking is presented in Figure 1.

Figure 1 - Verification environment diagram with integrated DPI-C function

As said earlier, a C function can be called anywhere from the checking flow of the environment which means

that implementation through scoreboard is not mandatory.

B. Usage of static, pre-generated in/out C model value tables

Static, pre-generated input/output values can be provided by a design-based model written in C, C++, HDL or

MATLAB code [4]. The verification team can then use simulation-based testing and static analysis to complement

the model-based design to find errors faster and in the earlier stages of testing [4]. The team which handles the C

code model needs to generate a table of input values and the corresponding results table presenting expected

values at the module output. This would mean that the process of creating reference input/output tables needs to

be done in a separate flow before any running of the simulation. Input and output values are usually provided as

a text file, that is further used in verification environment.

To create the stimuli, a verification engineer should implement a logic for loading values from the input table

into the driver component of the agent connected to the input interface of the module. This logic should usually

contain mechanisms for opening the input file, reading, tracking a position in the file, and flags for empty file or

for end of file. In some cases, there is an additional file with instructions on how to read the input values table.

3

This file can include information on how data is ordered in the input value table, if there are several samples,

position of the LSB and MSB bit, also information if there are control signals. Under some methodologies text

files/tables are also called “traces”.

There are several ways how reading of the input trace can be implemented. One of them is to set the number

transactions from a controlling sequence to be 1. This means that once the file is opened and the driver starts

reading it, control will be returned to the test flow from the driver once the reading is complete. That means that

the transaction will be fully executed once the driver is done with reading the input trace and driving read values

to the interface. The second option, for example, is to treat each line in the trace as one transaction. The point is

that since there is an input that is not completely controlled by a verification engineer then also the control of the

test flow is different.

Commonly, In UVM based verification environments data integrity checking is performed in the scoreboard

component of an environment. Data is first collected from interface by the monitor component and then sent as a

transaction to the scoreboard. When using a static predefined reference, the output data checking is similar, with

some exceptions. The difference is that in the scoreboard there is no logic for the reference model that provides

the expected data. Instead of that, expected data is provided within a trace file, that should be read and used as a

reference. According to that, logic in the scoreboard should contain code for repacking the data from the monitor

transaction, providing expected data from the file, and comparison logic. Similarly to the input, for the output

checking it is important to have instructions on how to properly read the trace file.

Some approaches can use testbench wrappers for checking the data, instead of the scoreboard component since

there is no reference model logic. In that case, testbench should contain the logic for reading the file and all needed

checkers on data output.

Figure 2 - Diagram of verification environment which uses pre-generated value tables

III. CASE STADY

For the purposes of this paper, a case study is set up with the aim to showcase performance differences of the

two approaches of C model utilization in verification, explained above. Under the study, the verification

environment is implemented with two variations – one that integrates C model through DPI-C function and the

other which uses pre-generated in/out C model value tables. The verification environment is built around a simple

CRC calculator module generated using open-source CRC generation tool [5]. Definition of the module interface

is given in the table 1

Table 1 - CRC module interface signals

Siganl name Signal width[b] Signal direction Description

crcIn 32 Input Generator Polynomial CRC module input

data 32 Input Data input of CRC module

crcOut 32 Output CRC module output

4

CRC module used in this case study simply calculates CRC 32-bit function output based on a driven inputs of

data and crcIn.

In order to establish the best possible conditions for getting most accurate performance measurements,

development flow of the environments was slightly changed from usual. The method of generating stimuli differs

between two approaches where DPI-C option relies on SV randomization on transaction level and static, pre-

generated value tables are containing the stimuli got by executing the C code outside of the environment scope. To

ensure that both environments are tested using the same data, pre-generated value tables are created by dumping

data from input and output monitor components of the environment with integrated DPI-C function, into respective

files, during the simulation performed with randomized stimuli.

IV. PERFORMANCE RESULTS

For testing of performances of two approaches, simulations were run on 1000, 10000 and 100000 back-to-back,

data transactions. As mentioned, the same stimuli were used for both environments. During the simulation, CPU

usage, memory usage and simulation time were measured. These simulation performance results are acquired using

-perfstat feature of the Xcelium [6] simulator. All results presented as performance metrics are generated by

averaging values measured over multiple runs of simulation.

A. CPU usage

Results from measuring CPU usage show that the implementation with pre-generated value tables is using less

CPU resources than the implementation using DPI-C. Chart which displays comparative results of CPU usage is

shown in Figure 3.

Figure 3 – Chart showcasing CPU usage results

This conclusion stays consistent with the increase in the number of transactions driven during simulation.

B. Simulation time

Simulation time results show that implementation with pre-generated value tables is more time efficient than

implementation using DPI-C. Simulations running 1000 data transactions using pre-generated value tables are

around 9% faster on average, while a 12% increase in simulation speed on average was observed running 100000

data transactions. Chart which displays comparative results of simulation time is shown in Figure 4.

76%

78%

80%

82%

84%

86%

1 10 100

C
P

U
 u

sa
ge

[%
]

Number of Transactions [Thousands]

CPU usage

CPU USAGE DPIC CPU USAGE VALUE TABLES

5

Figure 4 - Chart showcasing Simulation time results

Implementation using DPI-C function shows inferior performance in terms of simulation duration and this

difference in performance could be significant. Assumption is that with increased complexity of design which is

being verified and therefore increased complexity of C function, which is being integrated into the environment,

difference in simulation time will only rise.

C. Memory usage

In terms of memory usage, results show that implementation using DPI-C is much more efficient. With the

increase of transactions driven during the simulation, this implementation does not use more system memory. On

the contrary, implementation using pre-generated value tables requires more system memory with an increase of

driven transactions during simulation. It’s important to say that the verification environment which uses value tables

used in this experiment performs all data checks during check phase of the simulation and therefore needs to store

all data collected during the simulation up to the end of simulation. In case there is a memory concern, this

implementation can be optimized to use less memory by adding a mechanism to check data on the fly, after each

driven transaction as described earlier in the paper. The chart which displays comparative results on memory usage

is shown in Figure 5.

Figure 5 - Chart showcasing Memory usage results

D. Profile performce analysis

As part of performance analysis of two environments tested in this case study, profile analysis was conducted

using a Xcelium profiling tool (-profile) which gave the insight in distribution of simulation time consumption in

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 10 100

Si
m

u
la

ti
o

n
 t

im
e

[s
]

Number of Transactions [Thousands]

Simulation time

SIMULATION TIME DPIC SIMULATION TIME VALUE TABLES

0.00

100.00

200.00

300.00

400.00

500.00

1 10 100

M
em

o
ry

 u
sa

ge
[M

]

Number of Transactions

Memory usage

MEMORY USAGE DPIC MEMORY USAGE VALUE TABLES

6

TB and design [7]. Results of the profile analysis are given in table 2. Profile analysis is conducted on a simulation

using 10000 transactions.

Table 2 – Profile analysis results

DPI-C Value Tables

TB/SV 65.8 TB/SV 79.3

Miscellaneous 18.3 Miscellaneous 17.9

RTL/Design 1.0 RTL/Design 2.3

Randomization 14.8 Randomization 0.5

Analysis shows implementation with DPI-C function spends around 15% of the simulation time on

randomization while in implementation with pre-generated value tables this number is negligible. When these

results are put into the context of comparative simulation time analysis from earlier, a conclusion can be drawn that

creating an item on the fly and randomizing it with each data being driven into DUT significantly slows the

simulation. If simulation time is of concern, and usually is, opting for implementation with pre-generated value

tables instead of implementation using DPI-C can save around 10% in simulation time per findings of this case

study and likely, significantly more for more complex designs.

V. DISCUSSION

A. Integration

When integration of C model using DPI-C System Verilog function and usage of static, pre-generated in/out C

model value tables implementations are compared, the latter usually comes out as a simpler solution which uses

less code. This simplicity and flexibility come from the fact that the verification engineer who is implementing a

checking mechanism based on pre-generated value tables is basically reading from pre-delivered files to drive the

stimuli and compare data. On some occasions, when value tables are not aligned to interface definition, data needs

to be manipulated or repacked, but this is often true for the implementations using DPI-C function as well. Although

solutions with DPI-C integration usually use a bit more code, DPI-C usage is well established in the industry and

very well documented, with numerous tutorials and guides available on the web. Therefore, the skill threshold for

mastering any of these two approaches is not high and both approaches are suitable to be used by less experienced

verification engineers.

B. Randomization and coverage collection

Contrary to the clear performance advantages that pre-generated value tables solution is giving, usage of C

model through DPI-C function has few practical advantages which could be very impactful. When the C model is

integrated through DPI-C function, stimulus is created using constrained random features of the System Verilog

language. [8] Verification engineers are generally accustomed to this approach and coverage is filled traditionally

with running a regression of tests with randomized data. In order to reach full coverage using pre-generated C

model results, verification engineer simply needs to run all configuration scenarios with any possible stimulus. For

interfaces which are handling large data this can be quite difficult and lengthy. If the generation of the value tables

is taking too much time or resources this can potentially nullify any performance gains in time simulation achieved

by opting for this approach.

C. Debug

During the verification process, debugging of the design usually consumes significant time. Usage of DPI-C

function gives important advantages in this aspect over use of static, pre-generated value tables. Any signal

manipulation implemented in design should in theory align to its counterpart inside C model. When working with

a C function integrated through DPI-C, a verification engineer can always access C source code. This opens the

possibility of printing any values of interest from C code. In case C model and DUT are containing multiple

subsequent operations done on input signal this can help the verification engineer to pinpoint erroneous behavior

7

in DUT much easier by printing multiple “mid results” in C code and comparing them to design values during

debug.

D. Reconfiguration

Approach with DPI-C also allows reconfiguration during the simulation which can be viewed as an advantage

over usage of static, pre-generated value tables. In case a module has any signals or registers which might influence

the results of mathematical manipulation implemented in the DUT, they can be changed dynamically during the

simulation by writing to C model and design in parallel. With static, pre-generated in/out value tables, this is not

possible. In cases where verification process of the module needs to cover scenarios with reconfiguration on the

fly, usage of C model through DPI-C integration gives easy solution to this challenge.

VI. CONCLUSION

As a result of a conducted case study and subsequent analysis of two described methods for C model utilization

in functional verification process, it can be said that C model integration of DPI-C System Verilog function is a

superior methodological solution in comparison to the use of static, pre-generated in/out C model value tables, but

its application comes at a cost of simulation performance.

Usage of C code through DPI-C simply offers more tools to verification engineers. The ability to run

reconfiguration during the simulation comes as a significant advantage. Also, the debug process is much more

efficient with this approach and can save a lot of time and effort when applied correctly. This advantage becomes

ever more significant with the increased complexity of the design when DUT can be divided into smaller units.

Coverage collection also seems easier with solution using DPI-C. If simulation time is not a major concern and the

number of modules which require C model use in verification process is limited, then integrating C model using

DPI-C is probably a better solution.

Although it can be said that use of static, pre-generated in/out C model value tables is an inferior solution in this

comparison, it can still be a more optimal choice for certain types of design. As comparative case study showed

simulation time using this approach is significantly shorter. This means that if very long test cases are planned

before verification is started and complexity of design under verification is high this solution is probably a better

option where time saved in simulation surpasses any gains that integration of model through DPI-C offers in debug,

coverage collection or ability to run reconfiguration scenarios.

Decision over which approach is more optimal to be applied will depend on specification of the design which

is being verified but that doesn’t mean that its optimal to switch between approaches over the course of a single

project as in that case, the C model specialists need to support two different integration methodologies for the C

model.

REFERENCES

[1] Universal Verification Methodology (UVM) 1.2 Class Reference, 2011 - 2014 Accellera Systems Initiative (Accellera)

[2] SystemVerilog 3.1a Language Reference Manual, 2004 by Accellera Organization, Inc.

[3] Parag Goel, Amiot Sharma, Hari Vinodh Belisetty, ““C” you on the faster side: Accelerating SV DPI based co-simulation”, DVCon US,

2014

[4] MathWorks Verifiication and validation page - https://ch.mathworks.com/solutions/verification-validation.html

[5] Generator for CRC HDL code web page - https://bues.ch/cms/hacking/crcgen.html

[6] Xcelium XRUN User Guide - Product Version 19.09, September 2019

[7] Cadence Community Verfication web page: Best Practices to Achieve the Highest Performance Using Cadence Xcelium Logic Simulator

– Part 1, 17 Jul 2023 - https://community.cadence.com/cadence_blogs_8/b/fv/posts/best-practices-to-achieve-the-highest-performance-

using-cadence-xcelium-logic-simulator-part1

[8] [2] Chris Spear, Kevork Dikramanjian, Abhisek Verma, and Senay Haile, “C through UVM: Effectively using C based models with

UVM based Verification IP”, DVCon US, 2013

