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    ABSTRACT:   Multiple Sclerosis (MS) is an autoimmune inflammatory disease that leads to lesions in 

the central nervous system. Magnetic Resonance Imaging (MRI) provide sufficient imaging contrast to visualize and 

detect MS lesions, particularly those in the white matter (WM). Medical image segmentation is an essential step for most 

consequent image analysis tasks. The proposed segmentation algorithm is composed of three stages: segmentation of the 

brain into regions using Fuzzy Particle Swarm Optimization (FPSO) in order to obtain the characterization of the 

different healthy tissues (White matter, grey matter and cerebrospinal fluid (CSF)). After the extraction of WM, atypical 

data (outliers) is eliminated using Fuzzy C-means algorithm, and finally, we introduce a Mamdani-type fuzzy model to 

extract MS lesions among all the absurd data. Although the FCM algorithm yields good results for segmenting noise free 

images, it fails to segment images corrupted by noise, atypical data (outliers) and other imaging artifact. The purpose of 

this study is to segment high dimensional data of WM lesions using Fuzzy Possibilistic C-means (FPCM). This approach 

is a generalized version of FCM algorithm.  The objective of the work presented in this paper is to obtain an improved 

accuracy in segmentation of WM. Comparison results to the method of FPSOFCM showed that the defuzzification of the 

atypical data of the segmentation was 56.79 showing that the proposed FPSOFPCM outperformed the other method 

(FPSOFCM). 

 

 

INTRODUCTION 

Multiple sclerosis (MS) is an inflammatory, demyelinating and 

neurodegenerative disease of the central nervous system 

involving immune-mediated destruction of myelin and axonal 

damage that affects both white matter (WM) and gray matter 

(GM). MS is characterized by the formation of focal 

inflammatory lesions, also called plaques1. It may cause various 

potential symptoms, including visual problems2, spasms3, 

numbness4, fatigue5, among others. MS is typically diagnosed 

by the presenting symptoms, together with supporting 

neuroimaging methods, such as magnetic resonance imaging 

(MRI) to detect the damaged WM6. 

Both MS lesions and brain atrophy, are usually measured 

in-vivo from MRI by means of automatic or semi-automatic 

segmentation algorithms. The most frequent modalities to 

segment WM lesions include proton density-weighted (PD-w), 

FLAIR and T2-weighted (T2-w), this is because lesions appear 

hyper-intense in these sequences which makes them easier to 

detect1. However, WM lesions in MS can be detected with 



standard MRI acquisition protocols without contrast injection. It 

has been shown that many features of lesions, such as volume 

T. Kalincik et al.8 and location P. Sati et al.9 are important 

biomarkers of MS, and can be used to detect disease on set or 

even track its progression. Therefore accurate segmentation of 

WM lesions is important in understanding the progression and 

prognosis of the disease. With T2-w  MR imaging sequences, 

most lesions appear as bright regions in MR images, which is 

useful for automatic segmentation. Although manual 

delineations are considered as the gold standard, manually 

segmenting lesions from 3D images is tedious, time consuming, 

and often not reproducible. Therefore automated lesion 

segmentation from MRI is an active area of development in MS 

research7. 

     In fact, robust and efficient segmentation of various 

tissues and structures in medical images  is of crucial 

significance in many applications, such as the identification of 

brain pathologies fromMR images10.  Actually, image 

segmentation is  regarded a crucial stage in the image 

processing system that straight for efficiently guiding the 

clinicians in the process of medical diagnosis. In Moreover, 

related tasks such as position detection, primitive extraction,  

or pattern recognition all strongly dependent on the quality of 

the segmentation. The accurate segmentation of lesions in MRI 

is important for the accurate diagnosis, adequate treatment 

development and patient follow-up of the MS disease.  

      This paper is an extension of a previous work where we 

proposed a new automated segmentation method that detects the 

lesions of MS11. The previously published MS segmentation 

algorithm follows three stages: We initially segment the brain 

into different tissues classes, namely: WM, Grey Matter (GM) 

and Cerebrospinal Fluid (CSF) using Fuzzy Particle Swarm 

Optimization (FPSO) algorithm. Secondly, we use Fuzzy 

C-Means (FCM) algorithm to eliminate the atypical data of the 

white matter. And finally, a decision-making system that uses 

Mamdani-type fuzzy model is employed in order to ascertain 

whether a given voxel is an MS lesion or not11. However, we 

found that our method failed in accurately for segmentation of 

white matter lesions in MR images because the FCM algorithm 

yields good results for segmenting noise free images, it fails to 

segment images corrupted by noise, atypical data (outliers) and 

other imaging artifact.  

  Lesion segmentation plays an important role in the diagnosis 

and follow-up of multiple sclerosis (MS). This task is very 

time-consuming and subject to intra- and inter-rater variability. 

In this paper, we present an improved tool for automated MS 

lesion segmentation. Our approach is based on three main steps, 

initial brain tissue segmentation according to the gray matter 

(GM), WM, and cerebrospinal fluid (CSF) performed using the 

algorithm Fuzzy Particle Swarm Optimization (FPSO). This is 

followed by a second step where the lesions are segmented as 

outliers to the normal apparent WM brain tissue  using a Fuzzy 

Possibilistic C-means (FPCM) algorithm and decision-making 

system that uses Mamdani-type fuzzy model. 

     The remaining of this paper is organized as, follows; 

related works are presented in Section 2. The proposed 

algorithm of automatic MS lesion detection and its various steps 

are highlighted in is described I and Section 3. Section 4 reports 

the experimental results. Finally, conclusion and future work are 

summarized in section 6. 

 

RELATED WORK 

There are several methodologies available to detect MS from 

MR images. The degree to which the disease has affected can be 

known by estimating the volume of MS lesion through MR 

imaging and this helps in planning the treatment. Udupa, J.K. et 

al12 have proposed a new system with which MS lesions can be 

segmented from dual-echo fast spin echo MRI and the 

computation of MS lesion volume can be eventually performed.   

   Many automated lesion segmentation methods have been 

proposed in the past decade18. There are usually two broad 

categories of segmentations, supervised and unsupervised. 

Unsupervised lesion segmentation methods rely on intensity 

models of brain tissue, where image voxels containing high 

intensities in FLAIR images are modeled as outliers19-20 based 

on the intensity distributions. The outlier voxels then become 

potential candidates for lesions. Eventually the segmentation 

can be refined by a simple thresholding technique21-23. 

Alternatively, Bayesian models such as mixtures of 

Gaussians24-26 or Student's t mixture models27 can be applied on 

the intensity distributions of potential lesions and normal tissues. 

Optimal segmentation is then achieved via an 

expectation-maximization algorithm. Additional information 

about intensity distributions and expected locations of normal 



tissues via a collection of healthy subjects28 can be included to 

determine the lesions more accurately. Local intensity 

information can alsobe included via Markov random field to 

obtain a smooth segmentation29. Ying Wu et al13 have dealt with 

an automatic segmentation scheme that segments and classifies 

MS lesions into three sub-kinds from T2-w and contrast- 

enhanced T1-w brain images of 12 MR scans. On the other hand, 

S. Sivagowri, et al14 have presented an automatic method for 

segmenting MS lesions from MR images. It uses a governed- 

classifier, namely, support vector machine (SVM) for 

differentiating the blocks that lie in MS lesion regions and 

non-MS lesion regions using textural features.  

Supervised lesion segmentation methods make use of 

atlases or templates, which typically consist of multi-contrast 

MR images and their manually delineated lesions. As seen in 

the ISBI-2015 lesion segmentation challenge30, supervised 

methods have become more popular and are usually superior to 

unsupervised ones, with four out of top five methods being 

supervised. These methods learn the transformation from the 

MR image intensities to lesion labels (or memberships) on 

atlases, and then the learnt transformation is applied onto a new 

unseen MR image to generate its lesion labels. For instance, 

logistic regression31-32 and SVM33 have been used in lesion 

classification, where features include voxel-wise intensities 

from multi-contrast images and the classification task requires 

to label an image voxel as lesion or non-lesion. Instead of using 

voxel-wise intensities, patches have been shown to be a robust 

and useful feature34. As such, random forests35-37 and k-nearest 

neighbors38 based algorithms have used patches and other 

features, computed at a particular voxel, to predict the label of 

that voxel. Dictionary based methods39-41, use image patches 

from atlases to learn a patch dictionary that can sufficiently 

describe potential lesion and non-lesion patches. For a new 

unseen patch, similar patches are found from the dictionary and 

combined with similarity-based weighting. In the proposed 

methodology by Colm Elliott et al16, mutual fragmentation is 

performed on the sequential scans for carrying out a temporarily 

reliable tissue segmentation that produces lesions.  

Class-based methods17-19, modeled the lesions as an 

independent class to be extracted. In36, a combination of 

intensity-based k-nearest neighbor classification (k-nn) and a 

template-driven segmentation (TDS) was designed to segment 

different types of brain tissue. Lesions were modeled as one of 

the expected tissue types, and the class parameters were 

obtained through a supervised voxel sampling scheme on two 

randomly selected scans. Since the manual training step is 

highly data-dependent, it is expected to be conducted for each 

study or data set. A summary of the aforementioned techniques 

is given in Table 1. 

 

Table 1: Comparison of MS lesion segmentation methods 

Author Method Sequences Evaluation 

Udupa et 

al.12 

Fuzzy 

Connectedness 

Principles 

T1-w, T2-w 

and PD-w 

NA 

Wu et al.13 KNN T1-w, 

T2-w and 

PD-w 

Spe=0.53 

Sen=0.80 

 

Prastwa et 

al.17 

Bayesian 

classification 

T1-w, T2-w 

and 

FLAIR 

Spe=0.99 

Sen=0.03 

Zhang et 

al.19 

SWE+KNN MS image Spe=0.99 

Sen=0.96 

Souplet et 

al.21 

EM T1-w, T2-w 

and FLAIR 

Spe=0.99 

Sen=0.26 

Jain et al.23 MSmetrix 3D T1-w 3D 

FLAIR 

Sen=0.57 

Pre=0.83 

Strumia et 

al.25 

Geometric Brain 

Model 

T1-w, T2- w 

and FLAIR 

Spe=0.56 

Sen=0.70 

Dworkin et 

al.32 

CV T1-w, T2-w, 

PD-w and 

FLAIR 

NA 

Maier et al.35 ET T1-w, T2- w 

and FLAIR 

NA 

Deshpande 

et al.41 

Sparse 

Representations 

and Adaptive 

Dictionary 

Learning, 

T1-w 

MPRAGE, 

T2-w, PD and 

FLAIR 

Sen=0.60 

 

PROPOSED APPROACH  

In this study, we use information from T1- w, T2-w and proton 

density-weighted (PD) images. This is motivated by the fact that 

T1-w, T2-w and PD images contain information about WM 



lesions42.  The proposed approach makes use of both 

unsupervised reasoning offered by a-two step segmentation 

method as well as an approach that mimics expert reasoning in 

order to identify whether a potential voxel is a lesion or not. An 

optimization based approach involves initial identification of 

the WM class from each of the MR modality using a Fuzzy 

Particle Swarm Optimization (FPSO) algorithm assuming that 

the voxels can be WM, GM or CSF as hypothesized in42. The 

focus on WM is also rooted to related clinical studies43-44,  

which indicated that the infringement predominantly 

inflammatory present in the WM is likely in relate with the 

mechanisms of degeneration and achievement where the 

measurement of the load lesional provides insights about the 

degree of progress  of the WM in the course of the disease11. 

Second, following the argumentation highlighted by Ait-Ali et 

al.45, WM tissue is often pervaded by atypical data, which often 

weakens the detection of lesions. Therefore, discarding the 

negative effect of atypical data becomes necessary. Lesion or 

not, a fuzzy like reasoning that imitates expert reasoning which 

gathers global information regarding image contrast as well as 

the signal type before making such decision11. Figure 1 shows 

the proposed workflow for the segmentation of MS lesions. The 

initial images are noisy, the inhomogeneities are corrected and 

all images are registered in the same space. Details of the 

different phases are provided in the subsequent subsections. 

 

Segmentation of the brain by Fuzzy particle swarm 

optimization algorithm  

 

Brain MRI segmentation is an essential task in many clinical 

applications because it influences the outcome of the entire 

medical analysis pipeline. This is because subsequent 

processing steps rely on accurate segmentation of anatomical 

regions. For instance, MRI segmentation is commonly used for 

measuring and visualizing different brain structures, for 

delineating lesions, for analyzing brain development, and for 

image-guided interventions and surgical planning. This diversity 

of image processing applications has led to development of 

various segmentation techniques with variable accuracies and 

degrees of complexity. In this study, the segmentation of the 

brain tissues into different segments, namely: WM, GM and 

CSF is a key step in our approach. For this purpose, an 

optimization-based approach using Fuzzy Particle Swarm 

Optimization algorithm has been adopted in our approach. This 

is motivated by its simplicity, ability to deal with high 

dimensional datasets, as well as its proven efficiency in similar 

other segmentation tasks as pointed out in 46-47. The application 

of Fuzzy Particle Swarm Optimization (FPSO) approach for 

clustering in our case yields three distinct classes corresponding 

to WM, GM and CSF. The outcome of this segmentation serves 

as the basis for implementing lesion-handling based strategies. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Block diagram of the proposed approach for automatic  

segmentation of  MS lesions. 

 

Particle swarm optimization (PSO) 

 

Particle swarm optimization (PSO) is a population-based 

stochastic optimization technique inspired by bird flocking and 

fish schooling originally designed and introduced by Kennedy 

and Eberhart48 in 1995 and is based on iterations/generations. 

The algorithmic flow in PSO starts with a population of 

particles whose positions represent the potential solutions for 

the studied problem, and velocities are randomly initialized in 
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the search space. In each iteration, the search for optimal 

position is performed by updating the particle velocities and 

positions. Also in each iteration, the fitness value of each 

particle’s position is determined using a fitness function. The 

velocity of each particle is updated using two best positions, 

personal best position and global best position. The personal 

best position, pbest, is the best position the particle has visited 

and gbest is the best position the swarm has visited since the 

first time step. A particle’s velocity and position are updated as 

follows. 

 

 

 )()(

)()()()1(

.2.2

.1.1.

tt

tttt

XGbestrandc

XPbestrandcVwV




    (1) 

)1()()1(  tVtXtX                       (2) 

Where: 

X and V are position and velocity of particle respectively. w is 

inertia weight, c1 and c2 are positive constants, called 

acceleration coefficients which control the influence of pbest 

and gbest on the search process, P is the number of particles in 

the swarm, r1 and r2 are random values in range [0, 1]. 

PSO can be implemented and applied easily to solve various 

function optimization problems, or the problems that can be 

transformed to function optimization problems50. However, the 

PSO algorithm suffers a serious problem that all particles are 

prone to be trapped into the local minimum in the later phase of 

convergence. The optimal value found is often a local minimum 

instead of a global minimum51. Pang et al.52 proposed a version 

of particle swarm optimization for TSP called fuzzy particle 

swarm optimization (FPSO). 

 

Fuzzy particle swarm optimization for fuzzy 

clustering 

 

Peng et al.49 proposed a modified particle swarm optimization 

for TSP called fuzzy particle swarm optimization (FPSO). In 

their proposed method the position and velocity of particles 

redefined to represent the fuzzy relation between variables. In 

this sub-section we describe this method for fuzzy clustering 

problem. 

  In FPSO algorithm X , the position of particle, shows the 

fuzzy relation from a set of data objects, 

1 2{o , ,...,o }no o , to set of cluster centers, 

1 2{z ,z ,..., z }nZ  .  X  Can be expressed as follows: 

          

11 1

1

c

n nc

X

 

 

 
 


 
  

             (3) 

In which μij is the membership function of the ith 

object with the jth cluster with constraints stated in (1) and (2). 

Therefore, we can see that the position matrix of each particle is 

the same as fuzzy matrix μ in FCM algorithm. In addition, the 

velocity of each particle is stated using a matrix with the size n 

rows and c columns the elements of which are in range [-1, 1]. 

We get the equations (4) and (5) for updating the positions and 

velocities of the particles based on matrix operations53. 

 

𝑉 (𝑡 +  1) =  𝑤 ⊗  𝑉 (𝑡)  ⊕ (𝑐1 𝑟1) ⊗  𝑝𝑏𝑒𝑠𝑡(𝑡)  ⊖

𝑋(𝑡))  ⊕  (𝑐2𝑟2 )  ⊗  (𝑔𝑏𝑒𝑠𝑡(𝑡) ⊖  𝑋(𝑡))           (4) 

 

 𝑋(𝑡 + 1) = 𝑋(𝑡) ⊕ X(t + 1)                             (5)                                        

 

After updating the position matrix, it may violate the 

constraints given in (1) and (2). So it is necessary to normalize 

the position matrix. First we set all the negative elements in 

matrix to zero. If all elements in a row of the matrix are zero, 

they need to be re-evaluated using series of random numbers 

within the interval [0, 1] and then the matrix undergoes the 

following transformation without violating the constraints: 

111
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c
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ncn
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 



 

 

 
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 
 
 
 
 
 
 

 

 

       (6) 

 

     In FPSO algorithm the same as other evolutionary 

algorithms, a function is needed to evaluate the generalized 

solutions called fitness function. In this paper Eq. (7) is used for 

evaluating the solutions: 



       ( X )
m

K
f

J
                              (7) 

There in K is a constant and Jm is the objective function of FCM 

algorithm. The smaller is Jm, the better is the clustering effect 

and the higher is the individual fitness f (X). The FPSO 

algorithm for fuzzy clustering problem can be stated as follows: 

Algorithm 1 

Input original image. 

1. Initialize the parameters including population size P, c1, 

c2, w, and the maximum iterative count. 

2. Create a swarm with P particles (X, pbest, gbest and V are 

n*c matrices). 

3.  Initialize X, V, pbest for each particle and gbest for the 

swarm. 

4. Calculate the cluster centers for each particle using Eq. 

(11). 

5.  Calculate the fitness value of each particle using Eq. (7). 

6.  Calculate pbest for each particle. 

7.  Calculate gbest for the swarm. 

8.  Update the velocity matrix for each particle using Eq. 

(4). 

9.  Update the position matrix for each particle using Eq. 

(5). 

10.  If terminating condition is not met, go to step 4.  

Output segmented image 

The termination condition in the proposed method is 

the maximum number of iterations or no improvement in gbest 

after a number of iterations. 

Segmentation of the white matter using Fuzzy 

Possibilistic C-Means algorithm 

 

The next stage in our methodology consists in removing the 

clearly hyper-intense voxels in the previously identified WM 

voxels in order to highlight the different MS lesions. This is 

because the lesions of the MS are not well contrasted due to the 

partial volume in the surrounding tissues, which renders their 

segmentation rather a difficult task. Motivated by the lack of a 

fully comprehensive labeled database as reported in55 a 

non-supervised like strategy based on Fuzzy Possibilistic 

C-Means algorithm has been advocated. The FPCM algorithm 

solves the noise sensitivity defect of Fuzzy C-Means algorithm 

and overcomes the problem of coincident clusters of 

Possibilistic C-means algorithm54. This is backed by its reported 

success in image analysis and medical diagnosis including 

magnetic imaging regardless of the modality and the type of 

acquisition (mono or multimodal)56-58 its reduced complexity, 

easy implementation (especially for large and high dimension 

dataset). 

 

Formulating of FPCM algorithm clustering 

 

Clustering is a process of finding groups in unlabelled dataset 

based on a similarity measure between the data patterns 

(elements)54. A cluster contains similar patterns placed together. 

One of the most widely used clustering methods is the FPCM 

algorithm. The FPCM algorithm solves the noise sensitivity 

defect of Fuzzy C-Means algorithm and overcomes the problem 

of coincident clusters of Possibilistic C-Means algorithm. the 

FPCM algorithm allows to partition the pixels of X into C 

classes (here C=3) pertaining to WM, GM and CSF by 

calculating the centres bj (j=1, C) of j-th class and the 

membership matrix (U), Given a set of N total number of pixels 

of the image   x,..., x,x=X N21
 the Fuzzy Possibilistic 

C-Means (FPCM) clustering algorithm minimizes the objective 

function given bellow32- 33: 

   
ij

C

i

N

j

ij

m

ij bxdtuXTUBJ ,),,,( 2

1 1


 

                                                        

Where jx   is the j-th P-dimensional data vector, 
ib  is 

the centre of cluster i, m >1 is the weighting exponent,   

[3,5] is the typicality exponent,  
ij bxd ,2

 is the Euclidean 

distance between data xj  and cluster centre
ib ,  CxNU   is 

the fuzzy matrix and  CxNT   is the typicality matrix.      

 

The minimization of objective function 

),,,( XTUBJ  can be guided by an iterative process in 

which updating of membership degrees
iju , typicality degrees

ijt  and the cluster centers are done for each iteration by : 
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Where :  

      













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ijuNj
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   FPCM algorithm consists then of iteratively applying 

equations (9), (10) and (11) until stability of the solutions. The 

above equations show that membership iku  is affected by all c 

cluster centres, while possibility 
ikt is affected only by the i-th 

cluster centre ic . The possibilistic term distributes the 
ikt  

with respect to all n data points, but not with respect to all c 

clusters. Thus, membership can be called relative typicality, it 

measures the degree to which a point belongs to one cluster 

relative to other clusters and is used to crisply label a data point. 

And possibility can be viewed as absolute typicality, it measures 

the degree to which a point belongs to one cluster relative to all 

other data points, it can reduce the effect of outliers. Combining 

both membership and possibility can lead to a better clustering 

result59. 

Overall, the FPCM algorithm consists of the following steps15: 

 

 

Algorithm 2 

Input WM image. 

S1: Given a preselected number of clusters 𝑐 and a chosen 

value for 𝑚, initialize the fuzzy partition matrix and typically 

the partition matrix with constraint in (13) and (14), 

respectively. 

S2: Calculate the center of the fuzzy cluster, for 𝑖 = 1,2, 

… , 𝑐 using Eq. (11).  

S3: Use Eq. (9) to update the fuzzy membership .  

S4: Use Eq. (10) to update the typically membership  .  

S5: If the improvement in is less than a 

certain threshold (є), then stop; otherwise, go to S1 

 Output The images of extracted MS 

 

Decision-making  

The last step determines whether a given WM voxel is an MS 

lesion or not. For this purpose, a Mamdani-type fuzzy inference 

system has been adopted. In the latter, (global) information 

about the image contrast and signal’s type are used as global 

variables. The outcome corresponds to the extent to which the 

MS attribute is persistent in the underlying WM voxel. 

Especially, the weighted images in T2 and PD underline the 

myelin component in the lesions characterized by the edemas 

with hyper-intense appearance in comparison to the WM.  

Furthermore, T1-w underlines the irreversible destruction of the 

tissues with the appearance in the white matter of persistent 

"black holes" (Hypo-signal)50. 

 

 

 

 

 

 

 

 

 

Fig. 2 Diagram of fuzzy system of the MS disease. 
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An instance of fuzzy rules is described below:  

1. If [(the image contrast is T1-w active) AND (the signal is 

hyperintense)] then (MS is low). 

2. If [(the image contrast is T1-w active) AND (the signal is 

hyperintense)] then (MS is       normal). 

3. If [(the image contrast is T2-w active) AND (the signal is 

hyperintense)] then (MS is high). 

4. If [(the image contrast is PD -w active) AND (the signal is 

hyperintense)] then (MS is high). 

5. If [(the image contrast is T1-w active) AND (the signal is 

hypointense)] then (MS is low). 

6. If [(the image contrast is T2-w active) AND (the signal is 

hypointense)] then (MS is high). 

7. If [(the image contrast is PD-w active) AND (the signal is 

hypointense)] then (MS is high). 

8. If [(the image contrast is T1-w active) AND (the signal is 

hyperintense after injection of gadolinium)] then (MS is 

normal). 

9. If [(the image contrast is T2-w active) AND (the signal is 

hyperintense after injection of gadolinium)] then (MS is 

high). 

10.   If [(the image contrast is PD-w active) AND (the signal 

is hyperintense after injection of gadolinium)] Then (MS 

is high). 

 

The quantification of image contrast, signal type and the 

MS disease is described in the as follows : 

For the fuzzification of the signal's type, we choose two 

fuzzy intervals and belonging functions of Gaussian types. 

Figure 3 shows the fuzzy repartition of the input 

variable of signal's type. 

 

Fig. 3 Fuzzy repartition of input variable of signal's type11. 

 

For the output variable, we choose three fuzzy intervals 

and Gaussian membership functions, which define predicates: 

low, normal and high of the MS disease in comparison to the 

white matter. Figure 4 shows the fuzzy repartition of the output 

variable of the decision of the MS disease. 

 
Fig. 4 Fuzzy repartition of the output variable giving the decision 

of the MS disease11. 

 

The selected inference method is Mamdani's method. 

Consequently, the operator is realized by the calculation of the 

minimum, whiles the operator OR is realized by the calculation 

of the maximum. The defuzzification step is done using the 

method of calculating the centre of attraction.  

 

RESULTS AND DISCUSSION  

Dataset 

The dataset was provided as part of a collaboration agreement 

between LSI laboratory (Laboratory Intelligent Systems: image 

and signal team) Ferhat Abbas University of Sétif and LAMIH 

UMR CNRS 8201 (Laboratory of Industrial and Human 

Automation control, Mechanical engineering and Computer 

Science) University of Valenciennes. The various T1-w, T2-w 

and PD images corresponding to relatively older patients. These 

images are in the form of DICOM (Digital Imaging and 

Table 2. Rules' base in the form of a matrix. 

 T1-w T2-w DP-w 

Hyper signal Low/Normal High High 

Hoper signal Low High High 

Hyper signal after 

injection of gadolinium 

Normal High High 

 



Communications in Medecine) and were already pre-processed 

and spatially normalized. 

 

Computational requirement 

 

The proposed algorithm was implemented in Net-Beans IDE 8.2 

and run on a laptop with 2.40 GHz Intel(R) Core (TM) 

i5-4210U CPU and 4 GB RAM. The operating system was 

64-bit Windows 8.1. To compare the performance of these 

images, we compute different coefficients reflecting how well 

two segmented volumes match. Four measures are used as 

follows43: 

              

( )
TP

Overlap ovrl
TP FN FP


 

    (15) 

                  

2.
( )

2.

TP
Similarity Si

TP FN FP


 
  (16) 

                         

( )
TP

Sensitivity Sen
TP FN




      (17)

 

 

(Spc)
TN

TN FP
Specificity 


       (18) 

 

Where, TP (True Positive) means an MS patient is correctly 

identified as MS, FP (False Positive) means healthy people were 

incorrectly identified as MS, TN (True Negative) means healthy 

people were correctly identified as healthy, and FN (False 

Negative) means MS patients incorrectly identified as healthy. 

 

Analysis of the results 

 

The brain segmentation was successfully applied on some real 

images and results are shown in Figure 5. 

 

Automatic tissues and white matter lesion 

segmentation by FPSO and FPCM algorithms 

 

The following figure 5 illustrates axial slices of the 

segmentation results by the FPSO algorithm for the T2-w, PD-w 

and T1-w MR images in order to obtain a characterization of the 

different healthy tissues WM, GM and CSF. After the 

segmentation by FPSO algorithm we extracted the WM. Then, 

the use of FPCM allowed us to eliminate the atypical data of the 

WM for each image (T2-w, PD-w, T1-w) as exhibited in figure 

5. 

Fig. 5 Scheme of the full MS lesion segmentation process. The left 

column shows the the used strategy for of tissues (WM, GM, and CSF) 

segmentation steps, while the right column depicts the used strategy for 

MS lesion segmentation. 

   Comparative results are presented in Table 3 below: 

Table 3: Comparison of the results obtained by FPSO and FPCM 

algorithms 

  GSF WM GM MS lesions 

 

T1-w 

 

Si 0.81 0.91 0.85 0.93 

Ovrl 0.63 0.88 0.84 0.94 

Sen 0.70 0.95 0.91 0.91 

Spc 0.75 0.96 0.90 0.93 

 

T2-w 

 

Si 0.92 0.94 0.92 0.99 

Ovrl 0.89 0.93 0.90 0.95 

Sen 0.90 0.93 0.92 0.94 

Spc 0.92 0.96 0.93 0.96 

 

PD-w 

Si 0.77 0.81 0.81 0.96 

Ovrl 0.58 0.77 0.70 0.95 

Sen 0.66 0.83 0.72 0.85 

Spc 0.88 0.86 0.85 0.93 

 



The results obtained by FPSO and FPCM algorithms are 

very satisfactory and confirm the validity of the algorithms, its 

ease of implementation gives us a substantial advantage. We 

have made an improvement in optimizing the white matter and 

atypical localization data for all tissues using T1-w, T2-w and 

PD-w. 

 

Decision-making 

 

    The implementation of the Mamdani fuzzy inference 

system makes use of min operator for AND connective and max 

for OR connectives. The result of the implementation is shown 

in Table 4. 

 

Table 4:  Results of MS lesions of the defuzzification values for the 

different sequences 

 T1-w(%) T2-w(%) PD-w(%) 

MS 49.64 59.51 51.71 

 

Involving people with MS proactively in decision-making 

and in managing their disease is also key to the successful 

management of MS. The decision-making depends always on 

the expertise, it is evident from the Table 4 that the patient 

suffers from the multiple sclerosis and the MS lesions are 

detected in all the sequences by a normal or a high 

characterization. 

 

Experimental Results 

 

In this section, we compare the proposed algorithm with the 

FPSO, FPCM, FPSOFCM algorithms and the segmentation 

realized by the expert on a set of MRI brain images. In order to 

study the robustness of the proposed algorithm for MRI brain 

segmentation, test images (256x256 pixels) are from three MRI 

modalities (T1-w, T2-w and PD-w), corrupted by different 

levels of white Gaussian noise (0%, 3%, 4%) and intensity 

non-uniformity (RF)(0%, 20%, 40%). Segmentation results are 

shown in Figure 6. 

 

 

Fig. 6 Comparison of segmentation results on T1-w, T2-w and PD-w 

images. 

 

The interpretation of our results is done by an expert (hospital 

center of Ain Naadja Algiers) on simulated and real images. By 

analyzing the images of figure 10, the expert has established the 

following statement: 

 

_ Image (d): The interpretation of the classes is totally 

improved in relation to (FPSO, FPCM), we notice the 

distinction between the three classes of the brain and the class 

of the pathology SEP. 

_ Image (g): FPSO is unsuitable in this segmentation in relation 

to the image (FPSOFCM). 

_ Image (j) : The FPCM does not bring much compared to the 

FPSO. 

Table 5. Comparison of the results gotten by different algorithms. 

  GM (%) CSF (%) WM (%) MS (%) 

FPSO 83.7 69 87 77 

FPCM 70.2 55.9 81.5 76 

FPSOFCM 85.2 64.1 88.4 90.6 

Proposed approach 89.9 69 95 97.9 

 



_ Image (m): The class CSF does not conform to the class of 

the original image. The lack of information about the small 

grooves (image (a)) and the poor discrimination CSF/GM make 

that the segmented CSF class does not well represent the fluid 

distribution. The distributions of the WM and GM get closer to 

those given by the original image. The detection of the 

pathology is indicated according to the expert but the details are 

not well expressed. 

_ Image (p): the proposed approach brings a great performance 

to the segmentation for the three classes and especially for the 

fourth one which is the pathology that specifies well the size 

and the details about this later. 

Next, we compare in Table 5 the segmentation of T2-w MRI 

between segmentation made by the expert, FPSO, FPCM, 

FPSOFCM for a given time of acquisition and the segmentation 

by the proposed approach.  

       

 

Fig. 7 Performance measures of the results gotten by different 

algorithms 

 

Table 5 summarizes the results of the lesion detection 

algorithms reviewed in terms of reproducibility and agreement 

with the experts. The results highlighted in this Table and Fig.7 

underline the advantages of the proposed approach in 

comparison to the segmentation by FPSO, FPCM and 

FPSOFCM for all tissues CSF, WM, GM and MS lesions. From 

these outcomes, it is evident that our extension of a previous 

work provides a very good performance method for the 

segmentation of abnormal anatomy in MRI data, such as MS 

lesions. 

 

CONCLUSION 

The goal of the research presented in this article was to propose 

an automatic approach of segmentation of the MS lesions 

images based on FPSOFPCM algorithm.  Comparison results 

to other similar approaches shows that the proposed method 

outperforms is better than the other previous ones in extracting 

MS lesions. The prospects of improvement and development of 

this work are multiple: we can consider improving the 

post-treatments done after the detection of outliers in order to 

keep only the SEP lesions. At present, only the outliers for 

which the segmentation of the WM given by the FPCM 

algorithm will be kept. The main limitation of this method is 

that it depends on the employed method of registration. Another 

solution may consist of using the obtained segmentation of 

tissues. Thus, we can keep the outliers situated in the mask of 

the obtained segmentation of the WM. 
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