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Abstract—Recently, several privacy-preserving algorithms for
NLP have emerged. These algorithms can be suitable for LLMs
as they can protect both training and query data. However, there
is no benchmark exists to guide the evaluation of these algorithms
when applied to LLMs. This paper presents a benchmark
framework for evaluating the effectiveness of privacy-preserving
algorithms applied to training and query data for fine-tuning
LLMs under various scenarios. The proposed benchmark is
designed to be transferable, enabling researchers to assess other
privacy-preserving algorithms and LLMs. The benchmark fo-
cuses on assessing the privacy-preserving algorithms on training
and query data when fine-tuning LLMs in various scenarios. We
evaluated the SANTEXT+ algorithm on the open-source Llama2-
7b LLM using a sensitive medical transcription dataset. Results
demonstrate the algorithm’s effectiveness while highlighting the
importance of considering specific situations when determining
algorithm parameters. This work aims to facilitate the develop-
ment and evaluation of effective privacy-preserving algorithms
for LLMs, contributing to the creation of trusted LLMs that
mitigate concerns regarding the misuse of sensitive information.

Index Terms—large language models, privacy-preserving algo-
rithms, differential privacy, benchmarks

I. INTRODUCTION

As large language models (LLMs) become increasingly in-
tegrated into various industries, concerns over privacy and data
security have grown. The research community has thoroughly
investigated the privacy concerns related to LLMs. Numerous
studies have demonstrated that LLMs can memorize certain
portions of their training data [1] [2] [3] [4]. Furthermore, mul-
tiple works have proposed and demonstrated various attacks
designed to extract the training data from trained LLMs [5]
[6]. The successful execution of these attacks has emphasised
the urgent requirement to tackle the privacy issues linked to
LLMs.

An increasing number of papers have proposed word-level
privacy-preserving algorithms for NLP tasks [7] [8] [9] [10]
[11] [12]. These algorithms are also well-suited for LLMs
as they can protect both training and query data, thereby
addressing the privacy leakage problem of LLMs. However,
researchers have not yet applied these algorithms to LLMs or
provided a systematic benchmark to guide the evaluation pro-
cess of different privacy-preserving algorithms. Meisenbacher
et al. [13] proposed a benchmark for evaluating word-level
algorithms on LSTM models, but not on LL.Ms.To address this
need, we propose a comprehensive benchmark for evaluating
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privacy-preserving algorithms for LLMs, focusing on those
with robust protection mechanisms, such as differential privacy
and its variants, which have been recognized for their effective-
ness. We exclude techniques such as anonymization [14] or de-
identification [15] because LLMs have demonstrated that they
have powerful inferential capabilities that could make these
methods insufficient for safeguarding private information.

During the benchmark procedure, after selecting the Large
Language Model (LLM) and privacy-preserving methods, we
implement a parameter tuning stage to identify the best-
optimised settings. After applying the algorithms to the data,
we evaluate the utility of the algorithms by measuring the
performance of the LLM on downstream tasks. Moreover,
in order to measure the level of privacy protection provided
by the privacy-preserving algorithm, we employ the canary
insertion attack, a widely acknowledged method for evaluating
the exposure of sensitive information.

Our benchmark encompasses three distinct scenarios: (1)
training with privacy-preserving algorithms, (2) testing with
privacy-preserving algorithms, and (3) both training and test-
ing with privacy-preserving algorithms. We evaluate the per-
formance of one privacy-preserving algorithm, namely SAN-
TEXT+ [7], which is a variant of differential privacy, on the
widely-used open-source Llama2-7b model using one sensitive
medical transcription dataset.

The main contributions of this paper are as follows:

1. Introducing a comprehensive benchmark for assessing
the privacy-preserving algorithms when applied to training and
test data for fine-tuning LLMs under various scenarios, includ-
ing model selection, algorithm selection, parameter tuning and
final evaluation.

2. Constructing a set of quantitative metrics to measure
the level of privacy protection and the utility of different
algorithms, providing a standardized approach for evaluation.

3. Fine-tuning the Llama2-7b on the medical transcription
dataset, which we carefully pre-processed using our innovative
data cleaning approach. We also customised prompts for this
dataset to fine-tune and test the model.

4. Conducting a detailed evaluation using the proposed
benchmark to evaluate the performance of SANTEXT+.

Section II reviews prior work, contextualizing and critiquing
relevant studies. Section III details our methodology, including
the proposed benchmark and its use. Section IV presents



the experimental setup and results. Section V will offer a
discussion of our findings, and Section VI will conclude the
article, summarizing our contributions and exploring potential
future directions for our research.

II. RELATED WORK

Large language models (LLMs), such as the Generative
Pre-trained Transformers (GPTs) [16], are becoming increas-
ingly prevalent, with current LLMs capable of producing text
with little or no specific fine-tuning, known as ’few-shot’ or
’zero-shot” performance [17]. This enables the fine-tuning of
LLMs with small and less complex datasets for specific tasks.
Llama2, developed by Touvron et al. [18] at Meta Al is a
collection of open-source pre-trained and fine-tuned LLMs.
The pre-trained Llama2(70 B) model outperforms all other
open-source models and is comparable to or better than the
PaLM(540B) model [19] across all benchmarks, despite a
significant performance gap between Llama2(70 B) and GPT-
4 [20]. Llama2 is the best choice for this work, as it is the
best open-source pre-trained LLM that challenges even some
closed-source LLMs.

Differential privacy (DP) [21] is a rigorous mathemat-
ical definition of privacy that guarantees the behaviour of
an algorithm hardly changes when a single individual is
added to or removed from the dataset, providing protection
against the disclosure of individual-level information [22].
Abadi et al. [23] proposed DP-SGD, integrating state-of-the-
art machine learning methods with differential privacy to train
neural networks within a modest privacy budget. Their work
inspired researchers to enhance the algorithm and apply it
to Natural Language Processing (NLP) and large language
models (LLMs) [24] [25] [26] [27]. However, searching for
parameters in DP learning is difficult due to the lengthy
training period and high sensitivity to various parameters
[25]. Consequently, our research focuses on implementing
privacy-preserving algorithms directly on the text data prior
to incorporating it into the fine-tuning and testing stages of
LLMs.

Implementing privacy-preserving algorithms on unstruc-
tured textual data is a challenging task in data security. Yue et
al. [7] introduced a novel local DP notion called UMLDP,
considering both privacy and utility for text sanitization.
The proposed token-wise sanitization methods with UMLDP,
SANTEXT+, is constructed based on a variant of the expo-
nential mechanism (EM), using “native” text tokens as both
input and output spaces to avoid the “curse of dimensionality.”
However, the efficacy of SANTEXT+ on LLMs remains
uncertain, which our research aims to explore.

Carlini et al. [28] introduce a quantitative metric called
”exposure” to assess a model’s tendency to reveal sensi-
tive information from private training data. This metric can
empirically evaluate the model’s potential for unintentionally
memorizing unique in the training data. The exposure formula
is calculated as follows:

Exposure = log, (Total number of guesses)

1
—log,(Rank of canary) W

The exposure of a canary is determined by its rank,
which is based on the empirical model perplexity of all
possible canary sequences. Exposure values range from 0 to
log, (Total number of guesses), with the most likely canary
achieving the maximum and the least likely canary receiving
the minimum. In this article, we employ the exposure metric
to evaluate the effectiveness of privacy-preserving algorithms
in protecting sensitive information.

III. METHODOLOGY

A. Benchmark Process

(o

Fig. 1: Benchmark Process Overview

In this section, we present our benchmark process for
evaluating privacy-preserving algorithms for Large Language
Models (LLMs), as illustrated in Figure 1. The process com-
mences with a dataset intended for fine-tuning and testing
LLMs for a specific task, followed by data cleaning and
pre-processing. Subsequently, an appropriate LLM is selected
based on predefined criteria. This selection process considers
three key factors:

o Accessibility: We assess whether the LLM is open-
source, allowing for code review and modification. For
proprietary models, we evaluate API access and support
for deployment and fine-tuning.

o Performance and Benchmarking: We examine the
LLM’s performance on established benchmarks designed
for LLM evaluation, its comparison with state-of-the-art
models, and its efficacy in the relevant domain of the
organization.

¢ Resource Requirements: We consider whether the ex-
isting infrastructure can support efficient fine-tuning and
deployment of the LLLM, and whether the computational
costs fall within budget limitations.

LLMs that satisfy these criteria proceed to the subsequent
steps in the benchmark process. The next stage involves se-
lecting a suitable privacy-preserving algorithm for the specific
task. Five key considerations guide this selection:

o Empirical validation of the algorithm’s effectiveness for
NLP tasks

« Public accessibility of the algorithm’s source code

o Alignment of the algorithm with the specific characteris-
tics and structure of the selected data



o Robustness of the algorithm in protecting sensitive infor-
mation while maintaining acceptable utility for intended
NLP tasks

o Provision of verifiable privacy assurances by the algo-
rithm

Algorithms meeting these criteria undergo parameter tuning
(Section III-C) to identify optimal parameters for application
to textual data. The selected algorithm, with its optimized
parameters, is then applied to the prepared dataset under three
scenarios: training data, test data, and both. The resulting
protected data enters the LLM interaction phase, where the
LLM is fine-tuned and tested according to these scenarios. The
test stage comprises both utility and privacy evaluation, which
will be discussed further in Section III-D. The completion of
this stage marks the end of one iteration, evaluating a single
algorithm with the selected LLM.

The privacy mechanism and LLM interaction stages can
be iterated to evaluate different algorithms on the selected
LLM. Upon testing all algorithms, a comparative analysis is
conducted to identify the optimal algorithm for the chosen
LLM. Due to resource and time constraints, our current study
is limited to the use of a single LLM (Llama2-7b) for the
experiments. However, in real-world scenarios, the selection of
different LLMs could be incorporated into the iterative process
to identify the optimal combination of LLM and privacy-
preserving algorithm tailored to an organization’s specific
needs.

B. Real-World Scenario Simulation

As previously mentioned, three distinct scenarios require
our consideration. Figure 2 illustrates this process. This figure
describes the experimental setup in our work, but in real-
world applications, the process of fine-tuning may not always
take place on the cloud. If the organization has sufficient
resources and the target LLM is open-source, fine-tuning can
be conducted locally.

o Scenario One: Privacy-Enhanced Training Data
with Unprotected User Queries
In this scenario, organizations possess sensitive training
data that needs protection during the fine-tuning of large
language models. The data may encompass personal in-
formation or proprietary knowledge. To mitigate privacy
risks, organizations employ privacy-preserving algorithms
to the training data before model fine-tuning. However,
user queries, which serve as test data, are considered
non-sensitive and do not need additional privacy enhance-
ments.

o Scenario Two: Unprotected Training Data with
Privacy-Enhanced User Queries
In this scenario, the training data utilized for fine-tuning
large language models is non-sensitive, comprising public
datasets or general knowledge that does not require
privacy protection. Organizations can fine-tune the model
without applying privacy-preserving techniques to the
training data. However, user queries, which constitute the
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Fig. 2: Three real-world Scenarios

test data, are considered sensitive as they may contain per-
sonal information. To safeguard user privacy, these inputs
undergo privacy protection algorithms before querying
the fine-tuned model.

Scenario Three: Privacy-Protected Framework

for Both Training Data and User Queries

In this scenario, both the training data and user queries
are considered sensitive, necessitating a comprehensive



approach to privacy protection. Organizations handling
such sensitive data must ensure that privacy is maintained
throughout the entire pipeline, from model fine-tuning
to user interaction. To achieve this, privacy-preserving
algorithms are applied to the training data and user
queries before interacting with the large language model.

These scenarios demonstrate the diverse privacy require-
ments encountered in real-world applications of large language
models. Organisations need to evaluate the sensitivity of
training and query data in order to determine the necessary
privacy protection.

C. Parameter Tuning for Privacy-preserving algorithms

Performing parameter tuning is essential to identify the
optimized parameters for an individual algorithm when applied
to Large Language Models (LLMs). This process is universal
and can be extended to any privacy-preserving algorithm when
employing our proposed benchmark. Researchers testing other
types of algorithms should modify the details accordingly, such
as changing the € value to the parameter that controls the
privacy level of their specific algorithms.

The process begins by selecting a privacy-preserving al-
gorithm and exploring its parameters to identify parameter
‘P, which affects the utility and degree of privacy protection,
except e. Parameter P is modified within a reasonable range
and the algorithm is applied with different values of P to the
training and testing data while keeping € fixed. The algorithm
is subsequently trained and assessed using different p values
to ascertain the utility under various P settings.

Next, canary data (a piece of privacy information) is in-
serted into the training data, with an insertion frequency of
approximately 10% of the total training data. The LLM is
trained using this modified training data with different values
of parameter P while keeping e fixed for the algorithm.
The exposure calculation formula [28] is employed to assess
whether the algorithm effectively protects privacy information
by determining if the calculated exposure is sufficiently large
to expose the canary data.

Finally, the values of parameter P that prevent the exposure
of canary data when the algorithm is applied to the LLM are
identified. Among these ”safe” parameters that do not compro-
mise privacy, the value of P that achieves the highest utility
is selected. This approach ensures that the selected parameter
‘P strikes an optimal balance between privacy protection and
model performance.

D. Evaluation Process

The evaluation process is conducted following parameter
tuning and is applicable to all variants of differential privacy
algorithms. Researchers evaluating other types of algorithms
may need to modify the process to better suit their specific
algorithms by replacing the e with their own privacy budget
or privacy control values.

During the evaluation phase, the algorithm with the opti-
mized parameter P and varying € is applied to the training
and testing datasets. The LLM is then trained and tested on

different datasets according to the three scenarios, assessing
the algorithm’s utility.

To evaluate the algorithm’s ability to protect privacy infor-
mation, canary data is inserted into the training dataset, with an
insertion frequency of approximately 10% of the total training
data. The algorithm with a fixed parameter P but varying e is
applied to this modified training data, which is then used to
train the LLM. The exposure of the canary data is calculated
to determine whether the algorithm, with increasing €, can
still effectively protect privacy information. This analysis helps
understand which algorithms can be applied under different e
budgets while maintaining privacy protection.

If the exposure exceeds the threshold at a certain e, it
indicates that the algorithm cannot protect privacy information
at that € level. In such cases, we will modify the optimized
parameter P previously identified and try to find a parameter
value P that prevents exposure. We will then re-calculate the
algorithm’s utility with the new parameter at that specific e.
This approach ensures that we can determine the correct utility
of an algorithm without compromising privacy.

IV. EXPERIMENTS AND RESULTS

A. Medical Transcription Dataset

For this study, we selected the Medical Transcription
Dataset [29], which is scrapped from MTSamples, a repository
of sample medical transcriptions across various specialties.
This dataset was chosen to simulate real-world scenarios
in fine-tuning large language models on sensitive data. The
primary objective of our task is to infer medical specialties
from given transcription keywords.

Initial examination revealed significant noise in the dataset.
To address this and ensure data quality, we implemented the
following pre-processing steps:

o Step 1: Medical specialties with fewer than 50 samples
were removed.

o Step 2: Overlapped specialties were carefully identified
and removed.

e Step 3: The 20 most common keywords within each
specialty were identified. For samples containing more
than 20 keywords, the most common keywords were
retained, and other keywords were randomly added until
the sample reached 20 keywords. Samples lacking any
of the most common keywords and having more than
20 keywords were removed. This step effectively reduces
noise.

Following the pre-processing stage, the medical transcrip-
tion dataset was reduced to 1,532 rows with 9 medical special-
ties. Figure 3 displays the distribution of medical specialities
in this improved dataset. To address the imbalanced data,
we applied over-sampling and under-sampling techniques.
However, resampling yielded even lower accuracy than the
original dataset. Thus, we will use the unbalanced dataset for
our experiments in this work.
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B. Experimental Setup

All experiments were conducted using Google Colab with
an A100 GPU. We employed the Llama2-7b model from Meta
Al, a 7-billion-parameter open-source large language model
directly loadable from the Hugging Face. For the experiments,
we set the batch size to 4, the learning rate to 4e — 4, the
weight decay to 0.1, and the warm-up rate to 0.03 during
fine-tuning. For the inference stage, we set Top_k to 10 and
Max_new_token to 15. To efficiently fine-tune Llama2-7b,
we used Low-Rank Adaptation (LoRA) [30], a lightweight
training technique that reduces trainable parameters.

LoRA freezes pre-trained model weights and injects train-
able rank decomposition matrices into each Transformer layer.
This significantly decreases the number of trainable parame-
ters for downstream tasks, enabling faster training, improved
memory efficiency, and smaller model weights (typically a few
hundred MBs), making it easier to store and share.

C. Parameter Tuning Practice

To select the optimized parameter for SANTEXT+, we con-
ducted experiments using the Medical Transcription dataset,
with e fixed at 3 and GloVe-300d used for the SANTEXT+
algorithm.

Utility evaluation followed these steps:

1) The Medical Transcription dataset was divided into 80%
for training and 20% for testing.

2) Privacy-preserving algorithms with different parameter
values were applied to both training and testing data.

3) The Llama2-7b model was trained on the 80% training
data and evaluated on the 20% testing data, following
the three outlined situations.

To assess the algorithms’ ability to protect sensitive infor-
mation, we employed the canary insertion attack:

1) The sensitive information patient name: elsa” was in-
serted as canary data into 10% of the Medical Transcrip-
tion dataset records.

2) The Llama2-7b model was trained on the modified
dataset using privacy-preserving algorithms with differ-
ent parameter values.

3) Canary data exposure was calculated to determine the
algorithm’s effectiveness in preserving privacy:

Exposure = log,(26%) — log, (Rank of canary)

4) The exposure threshold was set as log, (26*) —log,(10),
based on the topk value of 10 for Llama2 inferencing
phase.

To begin, we aim to identify the parameter that influences
both the utility and the degree of privacy protection of SAN-
TEXT+. Yue et al. [7] discussed the impact of the parameter p,
which modifies the probability of non-sensitive words being
sanitized, on the utility of the SANTEXT+ algorithm. They
observed that as p increases, the accuracy decreases.

Based on the assumption that the algorithm considers fre-
quently appearing words as non-sensitive, we hypothesize that
in contexts with a high frequency of canary insertions, the
value of p will significantly impact the exposure of sensitive
information. When p is small, fewer non-sensitive words will
be sanitized, leading to greater exposure. Conversely, when p
is large, more non-sensitive words will be sanitized, resulting
in reduced exposure.

To test our hypothesis and validate the findings of Yue et
al. [7], we conducted experiments following the previously
discussed steps. We adjusted the p value from 0.1 to 1.0
under a fixed e value of 3. Our experimental results, shown in
Figure 4, indicate that the lines for “test” and “all” generally
trend downward as p increases, despite some fluctuations.
These fluctuations (e.g., at p = 0.1, the accuracy is not
particularly high, but at p = 0.2, the accuracy increases
significantly, and at p = 0.3, the accuracy drops again)
might be attributed to the instability of the Llama2-7b model,
which may not generate consistent answers when given the
same input. Additionally, the “training” line only fluctuates
without showing a clear decreasing trend. To summarize, our
results corroborate the observations made by Yue et al. [7],
demonstrating that as the p value increases, the overall utility
decreases, with the exception of the training”, which remains
unchanged.

Moreover, we have verified our hypothesis, showing that
as the p value increases, the exposure decreases. Notably,
we discovered that when p is lower than 0.4, the exposure
exceeds the acceptable threshold, indicating a risk of sensitive
information being exposed. Consequently, we selected 0.4 as
the optimal parameter value for SANTEXT+.
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Fig. 4: Optimized Parameter Selection for SANTEXT+



D. Evaluation Experiments

Having determined the optimized parameters for SAN-
TEXT+, we evaluate its performance using its best parame-
ter. Experiments are conducted on the Medical Transcription
dataset, following the steps outlined in Section III-D. The
training and testing situations are shown in Figure 5. We vary
the privacy budget e from 1 to 10 to observe how the algorithm
behaves under different privacy constraints. This range of ¢
values provides insights into the algorithm’s ability to maintain
performance as privacy requirements become more stringent.

First Scenario

Test data Training data
Second Scenario ()
Original data
Test data Training data O
Privacy-preserving
protected data

Third Scenario

Test data Training data

Fig. 5: Three Processes of Experiments

1) Utility Results: As shown in Figure 6 and Table I, the
SANTEXT+ algorithm performs quite well when applied only
to the training data. However, it exhibits poor utility when
applied to both training and test data with € equal to 1. The test
data’s utility is the worst, with an accuracy of only 0.4728 and
an Fl-score of 0.4065. These results suggest that SANTEXT+
may not be a suitable choice for protecting query data when
strict privacy requirements, such as ¢ = 1, are in place.
Moreover, when epsilon = 1, the Fl-score is significantly
lower than the accuracy. This is because the precision and
recall values for the Hematology-Oncology specialty are very
low, even equal to O when applied to test data. As other
medical specialties perform much better than this specialty, the
accuracy is higher than the F1-score. However, when epsilon
> 2, the precision increases significantly while recall increases
slightly. This increases the F1-score, making it comparable to
the accuracy.

TABLE I: SANTEXT+ in Different Situations(Medical Transcription Dataset)

Epsilon

Data Metrics 1 2 3 4 5 6 7 8 9 10

Training Accuracy 082 083 08 08 08 08 087 08 084 0.83
Fl-score 072 083 084 085 084 08 08 08 083 083
Testing Accuracy 0.47 0.78 0.81 0.83 0.85 0.85 0.86 0.82 0.81 0.82
Fl-score 0.41 0.79 0.80 0.82 0.83 0.81 0.84 0.80 0.80 0.81
All Accuracy 061 079 082 086 084 08 084 08 082 0.83
Fl-score 057 078 08 083 08 08 081 08 081 074
Original Accuracy 0.88
Fl-score 0.86
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Fig. 6: Utility for SANTEXT+

2) Exposure Results: The exposure of SANTEXT+ with
different € values is shown in Figure 7. It could be seen that
the SANTEXT+ becomes vulnerable to exposure when the €
value equals or exceeds 9. Consequently, SANTEXT+. is not
a recommended choice when the privacy budget is substantial.

20

SanText+
Exposure Threshold
No-Protected

Exposure
3

Fig. 7: Exposure with different e

Furthermore, our analysis reveals that SANTEXT+ exhibits
significant vulnerability, demonstrating a propensity to expose
sensitive information when the p value is low or when e is
high. To further explore its vulnerability, we investigate the
potential impact of canary data insertion frequency on the
exposure risk when p is low (p = 0.1 and € = 3). Figure 8
indicates that exposure increases with the increase in insertion
frequency. Although SANTEXT+ reaches the highest level of
exposure(log,(261)) later than the unprotected baseline and
effectively protects sensitive information when the insertion
frequency is low, its protective capabilities decrease when
faced with high insertion frequencies. This observation high-
lights that careful consideration is important when employing
the SANTEXT+. Firstly, conducting a comprehensive analysis
of the target dataset is crucial to estimating the expected
frequency of occurrence of sensitive information. Armed
with the knowledge of the anticipated repetition of sensitive
data, practitioners and researchers must carefully consider the
choice of the p value and the € for the SANTEXT+ algorithm.
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Fig. 8: Exposure with Different Insertion Frequency: SANTEXT+ is set with
p=0.1,¢e=3.



To prevent privacy leakage at e values of 9 and 10, we
adjusted the parameter p from 0.4 to 0.5 of the SANTEXT+. As
shown in Figure 9, this modification ensures that the exposure
of the "modified SANTEXT+ ” remains below the established
threshold at these € levels.

Exposure
3

5 Original SanText+
Modified SanText+
Exposure Threshold

Fig. 9: Exposure of Modified SANTEXT+

We further assessed the utility of the “modified SAN-
TEXT+” on the Medical Transcription Dataset. The findings
shown in Figure 10 suggest that the accuracy remains rela-
tively unchanged for the medical transcription dataset. Conse-
quently, adjusting the parameter p to 0.5 is appropriate, as it
ensures that data privacy is maintained without compromising
utility.
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Fig. 10: Utility of Modified SANTEXT+ on Medical Tran-
scription Dataset

V. DISCUSSION

The results demonstrate that SANTEXT+ can be an effective
algorithm when applied to LLMs. However, researchers must

carefully calibrate parameters to achieve an optimal balance
between utility and privacy for various real-world scenarios. In
comparison to similar work by Meisenbacher et al. [13], our
benchmark incorporates parameter tuning, addressing a limita-
tion in their approach that potentially led to unfair comparisons
of algorithms without optimized settings. Furthermore, while
their study relied solely on data-level privacy metrics without
model linkage, we employ the exposure test to assess whether
models retain the ability to memorize protected fine-tuning
data.

Our findings indicate that the performance of the evaluated
algorithms tends to decline when applied to test data (query
data) or both test and training data. This observation may be
attributed to the fact that existing algorithms are predominantly
designed for training datasets. Consequently, the development
of privacy-preserving algorithms adapted to query data is
crucial for achieving a more favourable utility-privacy trade-
off in real-world applications.

It is important to note that SANTEXT+ was originally
designed for BERT (Bidirectional Encoder Representations
from Transformers). BERT [31] considers both preceding
and subsequent context for each word, utilizing a “masked
language model” (MLM) pre-training objective, where some
tokens are randomly masked, and the model predicts the orig-
inal vocabulary based on the context. In contrast, LLMs typ-
ically employ Transformer-based decoder architectures with
unidirectional architectures and are primarily used for text
generation tasks. Given these architectural differences, existing
privacy-preserving algorithms may require customization to
optimize their performance with LLMs. While our experiments
focused on classification tasks, users generally expect LLMs
to comprehend natural language queries and instructions,
enabling diverse functionalities. Therefore, developing or en-
hancing algorithms to enable LLMs to better “understand”
protected data is essential to meet user expectations.

However, our benchmark has several limitations. Although
we test for the exposure of canary data, low exposure does
not guarantee protection against all potential attacks. Devel-
oping a broader range of attack scenarios would enhance the
credibility of the privacy guarantee evaluation. Additionally, a
quantitative metric for assessing the protection of query data
by privacy-preserving algorithms is needed.

Furthermore, our benchmark currently encompasses only
one dataset, limiting its ability to evaluate algorithms across
diverse tasks and data structures comprehensively. Expand-
ing the benchmark to include a wider array of datasets,
tasks, and privacy-preserving algorithms would enhance its
comprehensiveness and persuasiveness. Finally, evaluating the
benchmark’s effectiveness across multiple LLMs would further
demonstrate its applicability and robustness.

VI. CONCLUSION

This paper presents a comprehensive benchmark for eval-
uating privacy-preserving algorithms for LLMs in various
scenarios, considering three distinct privacy leakage scenarios



that organizations or individuals may encounter during fine-
tuning and querying. We evaluate the SANTEXT+ privacy-
preserving algorithm on the Llama2-7b model using a sensitive
medical transcription dataset, presenting the utility and privacy
levels achieved.

In our further work, we will extend our benchmark by
evaluating a broader range of privacy-preserving algorithms
and diverse datasets with varying sizes, data structures, and
characteristics. This will provide a more comprehensive as-
sessment of the algorithms’ performance and applicability
across different scenarios.

For future research in this field, we suggest the follow-
ing areas of focus: incorporating additional LLMs into the
benchmark to evaluate the algorithms’ effectiveness when
applied to different models; developing privacy-preserving
algorithms specifically adapted to query data; designing more
sophisticated attack scenarios to enhance the credibility of
privacy guarantee evaluations; and establishing quantitative
metrics for assessing the protection of query data by privacy-
preserving.
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