
EasyChair Preprint
№ 2336

Special subclass of Generalized Semi-Markov
Decision Processes with discrete time

Alexander Frank

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 30, 2020

Special subclass of Generalized Semi-Markov
Decision Processes with discrete time

Alexander Frank

Abstract The class of Generalized Semi-Markov Decision Processes (GSMDPs)
covers a large area of stochastic modelling. For continuous time steps modelled
problems are discussed in some articles, but not for the discrete case. Several events
can be triggered in the same time step and the evaluation of them is more complex
than for continuous time with an agreement, that two events can not be triggered at
the same time point.
In this paper a specification for discrete GSMDPs is defined and analysed. The ex-
ponential cost, solving these problems exactly, are reduced to a polynomial number
by two randomized approaches. Runtimes and relative results, compared to almost
exact solutions, are shown and some extensions for the common class of discrete
GSMDPs are mentioned.

1 Introduction

Many planning problems with stochastic uncertainty can be modelled as Markovian
Decision Processes. The resulting agent assigns an optimal action in a given state
and released time by paying attention to the gaining rewards and the future states,
because of their condition to be memoryless. Those processes are used in stochastic
games, network planning, robotics and further more. Discrete- and continuous-time
Markov Decision Processes (MDPs and CTMDPs) can be solved efficiently with
policy iteration or linear programming, [7].
One more universal class of decision problems is given by Generalized Semi-
Markov Decision Processes (GSMDPs). The formalism in this article is similar to
the definition by [8], based on previous definitions of GSMPs by [4]. In this class of
problems we have several events, which can be triggered. Those events cause tran-
sitions from state to state and achieve some rewards. It is possible that for a period

Alexander Frank
TU Dortmund, 44227 Dortmund, e-mail: alexander.frank@tu-dortmund.de

1

2 Alexander Frank

of time no event is triggered and the agent only knows the progressing clocks, so
there are different sojourn times. By adding a choice of actions affecting the active
set of clocks the agent has to make a decision for the underlying problem.
Another approach with events called alarms is discussed in [1] for continuous-time
Markov chains (CTMC) with alarms.
There are only a few articles about continuous time GSMDPs. [3] examine a gen-
eralized model of Stochastic Automate (SA) with clocks, which are triggered asyn-
chronously, activating transitions in the SA. By the Kronecker product clock states
are combined to handle their interaction. Similarly [8], defined asynchronous events
by continuous phase-type distributions (PHDs). Events are triggered and affect the
underlying Markovian problem. They bring all active events in relationship and cal-
culate their coherent probabilities to trigger one of them without losing the current
progress of the others. Based on that article and a previous of [6], an approxima-
tive planner for solving deliberation scheduling problems was build using results
for GSMDPs in [5].
To the best of my knowledge, there are no research articles written up to now about
discrete time GSMDPs. The fact that there are discrete time steps, in which sev-
eral events can be released, leads to a high dimensional problem. Even if the events
have a certain order to be worked off, the agent has to consider over an exponential
number of possible event combinations. This paper is focused on a special subclass
of discrete time GSMDPs. The first limitation is that once an action is chosen in a
state it is fixed until at least one event is triggered. The second limitation is that all
progress for all events is lost if at least one single event is triggered.
The complexity is still PSPACE hard, but in this paper two randomized algorithms
in polynomial runtime are introduced and analysed. Some backgrounds and a com-
pleted formulation for discrete time GSMDPs are given. After that, the two random-
ized algorithms are explained and in the last section the results are discussed.

2 Definitions

In this section, basic definitions and problem formulations are introduced. In general
P(X) is the probability of X and E(X) is the expected reward. Bold letters are for
linear functions (like P) and calligraphic letters (like S) are used for sets. 1 and 0
are vectors only consisting of 0 or rather 1 (where i have to say that the dimension
is always logically conceivable).

2.1 Markov Decision Process

A tuple of (S ,A ,P,R,p0) defines a discrete Markov Decision Process (MDP)
where S is a finite set of states, A is a finite set of actions, P : S ×A ×S → [0,1]
is the transition function for moving from s to s′ choosing action a and is used as a set

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 3

of stochastic matrices P(s,a,s′)≡ Pa(s,s′), so that the condition ∑s′∈S Pa(s,s′) = 1
is fulfilled for all s ∈S . Furthermore R : S ×A ×S → R is the reward function
and is also used as a set of matrices R(s,a,s′) ≡ Ra(s,s′). At least p0 ∈ R1×|S | is
the initial distribution over all states.
By mapping actions to states the agent produces a policy π(s, t) = a, depending also
on the past time t ∈ [0,T]. It is called a pure policy if time has no relevance.
An optimal policy maximizes the gained (discounted) rewards in the time horizon
[0,T]. There are some options to solve MDPs like policy iteration and linear pro-
gramming. These methods are exact and solve MDPs in a polynomial time. Much
more information about MDPs can be found in [7].

2.2 Generally Semi-Markov Decision Process

GSMDPs are defined as a tuple of (S ,A ,E ,C,P,R,F). As in section 2.1 , S
and A are sets of states and actions. E is an extension and a set of independent
events which are triggered with a probability given by F(t,e) for a discrete passed
time t ∈N since activation of the event. E0 includes the trivial event e0, that nothing
happens. The function C : S ×A ×E →{0,1} specifies if an event e ∈ E is active
C(s,a,e) = 1 or inactive C(s,a,e) = 0 in a given state and a chosen action. The
transition function P : S ×E → S declares the full known following state, if an
event e ∈ E is triggered in s ∈S . Also the rewards depend on the occurred events
R : S ×E0×S → R, however it is sufficient to know the current state and event.
The agent has to make decisions identifying the active events. Then discrete time
steps are made until the first event is triggered. Furthermore, all other active events
can be triggered in the same time step. For a given order (or rather with decreasing
priority) the system is affected by the events so that the status of events can be
changed, transitions switch the state and rewards are gained. This happens in a so
called zero-step-phase, where a path γ =< s0,x1,s1,x2, . . . ,x|E |,s|E | >, consisting of
triggering events xi = ei and running or disabled events xi = ei, makes uninterrupted
state transitions. All possible paths γ during the zero-step-phase are parts of the set
of regular zero-steps Γ ∗. Every path γ ∈ Γ is also well defined for a given initial
state s0 by the formula γ =< x1,x2, ...,x|E | >. The reward for a zero-step path γ is
computed additively

R(γ) = ∑
i: xi=ei

R(si,ei,si+1) or R(γ) = R(s0,e0,s0). (1)

An optimal decision earns optimal rewards heeding to the next status of the system.
So the policy π : S ×N|E | maps an action to the given state and the passed event
times since an event gets active and has not been triggered before.

Therefore Γ ∗(s,a,s′) is defined as the set of all regular zero-step paths starting in
s and ending in s′ by choosing action a. Also t means the actual progress in the
current time step i. The set of all system paths is then defined by

4 Alexander Frank

Σ := {< s0,a1,γ1,s2, . . . ,sT−1,aT ,γT ,sT > |si ∈S ,ai ∈A ,γi ∈ Γ
∗(si−1,ai,si)}.

Now the mathematical formula for the optimization criteria can be written as

max
π∈Π

∑
σ∈Σ

P(σ |π)
T

∑
i=0

β
i

∑
γ∈Γ ∗(si,π(si,t),si+1)

P(γ|π(si, t), t) ·R(γ) (2)

Figure 1 shows a small example for the transition graph with four states and three
events without decision making by given a single action a. C(·,a, ·) is visual-
ized by the set of edges, so all events not belonging to an edge are blocked (like
C(s2,a,e1) = 0). As an illustration let s4 be a semi-self-regulating state, s2 a critical,
working state and the rest (s1,s3) failure states. The event e3 stands for a hardware
crush, e2 for a autonomous software update (with possible system errors) and e1 is
a finished repair of a mechanic. If a maintenance is made every day for a machine
with this behaviour, several events can be triggered per day.
Starting in failure state s1 with a successful mechanic the system switches in the
critical, working state s2. After that a software update is also made autonomously
and crushes the system in a failure state s3. So in the next decision period (next day)
the machine is also in a failure state s1 or s3 corresponding to an additional hardware
error.
All reachable states starting in s1 are {s1,s2,s3} with a different number of paths
leading to the states:

|Γ ∗(s1,a,s1)|= 5, |Γ ∗(s1,a,s2)|= 1, |Γ ∗(s1,a,s3)|= 2

s1

s2

s3

s4

e1

e3

e2

e3

e2

e3

e1

e3

e2

Fig. 1 Example: Transition graph for a fixed action a, 4 states and 3 events

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 5

2.3 Resetting discrete GSMDPs

Discrete GSMDPs are very difficult to solve, due to an exponential huge definition
amount the agent has to handle. Even if the passed time has an upper bound for each
event forcing it to be triggered, the system is too huge to be solved in polynomial
time.
A resetting discrete GSMDP (GSMDP0) has the same definition as a GSMDP with
two more restrictions:

a. If one or more events are triggered, before they are inactivated (per action or
in transitions of zero-steps), all progress of each event is set to 0 after the zero-
step-phase.

b. When entering a state after one or more events are released the agent has to
make a decision for an action. This action is not able to be changed until the
next regular event is triggered.

Due to these two restrictions the agent only has to find a policy π : S → A . The
vector for the progress time in GSMDPs can be seen as t := t ·C(s,a, ·). Nevertheless
the problem is further hard to solve, due to the evaluation of zero-steps.
At least every time the agent has to make a decision the progress vector t ∈ N1×|E |

is 0. This criteria makes it possible to create an approximating model in polynomial
time. In the conclusion some approaches for future algorithms are presented, solving
discrete GSMDPs without specifications.

3 Randomized Approaches

Now the basic definitions are explained and a closer look at the analysis of GSMDP0s
is possible. The first question is: What happens in a discrete time step of our model?
The behaviour of the model in a discrete time step is defined as zero-step-phase.
Nevertheless there is also the opportunity that no event is released in this time step.
The set of all regular zero-steps is Γ ∗ with |Γ ∗| ≤ 2|E |, on the other hand Γ is the
set of all paths, regular or not.
At least two randomized approaches to solve discrete GSMDP0s approximate in
polynomial time are given. Both solve every instance exact if their input value for
the bounding capacity is unlimited.

3.1 Zero-Step-Phase

This phase is the main focus of this paper, because the zero-step-phases make GSM-
PDs so difficult. For the analysis of the zero-step-phases the current state s ∈ S ,
only a single available action a ∈A is considered and the past time since no event
has been triggered t ∈ N is known. Also for every event e ∈ E a distribution func-

6 Alexander Frank

tion is known, given by an acyclic discrete Phase-Type distribution (ADPH). These
functions can be defined with a tuple (qe,Q̃e) of an initial vector and a part of a
probability matrix (without absorbing transitions). The advantage of ADPHs is that
the probability of a triggering event can be easily computed with

P(e|t) = 1−||qeQ̃t
e||1 = 1−

n

∑
i=1

qe ·
(
Q̃t

e(·, i)
)
. (3)

More information and different formalisms for ADPHs are introduced in [2]. Inas-
much as the focus of this paper is on the randomized algorithms transforming
GSMDP0s to manageable MDPs no other distributions are analysed. Nevertheless
the results can be derived if computable distributions for the events are given.

Not all events are active for a fixed combination of (s,a). The set of active events in
s under a is defined as

Eact(s,a) := {e ∈ E | C(s,a,e) = 1.} (4)

The probability that no event is triggered for the progress time t is

P(e0|t) = ∏
e∈Eact

||qeQ̃t(e)
e ||1 (5)

In the other case one or more events are released. All in all there are 2|Eact | possible
combinations of events, which are triggered or stay in progress. For a given zero-
step path γ ∈ Γ the correctness, if γ is also in Γ ∗, has to be evaluated. Also the
probability P(γ|a, t) (7) and rewards R(γ) (1) of a path can be computed. The special
path γ0 :=< s0,e1,s0,s0, ...,e|E |,s0 > is defined for no triggering event.

Definition 1. A path γ ∈ Γ is regular for an action a ∈ A and a progress vector t
(for a decreasing priority), if and only if

∀i ∈ {1, ..., |E |} : (xi = ei) ⇒ (∀ j < i : C(s j,a,ei) = 1) . (6)

So it has to be verified that the event is not set inactive before the priority of this
event is high. As an example you want to buy several things online in one session,
but when you come to the fourth article, it is already sold out.

Definition 2. The probability of a regular zero-step path γ ∈ Γ ∗ depends on the
probability that e is triggered in γ and Equation 3, so it is P(ei|γ,a, t) = P(ei|t(ei)) ·
∏

i−1
j=0 C(s j,a,ei). The probability for the path now is given by

P(γ | a, t) = ∏
i:xi=ei

P(ei|γ,a, t) · ∏
i:xi=ei

(1−P(ei|γ,a, t)) (7)

The additionally gained rewards are already defined in (1). For the planing of the
agent it is important to calculate correctness, probabilities and rewards for all γ ∈Γ ∗.
If multiple paths end in a state s′ the probabilities can be summarized as

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 7

P(s′|s,a, t) = ∑
γ∈Γ ∗(s,a,s′)

P(γ|a, t). (8)

On the other hand the rewards are summarized with weights in relation to their
probabilities

R(s,a, t,s′) = P(s′|s,a, t)−1 · ∑
γ∈Γ ∗(s,a,s′)

P(γ|a, t) ·R(γ). (9)

Since all possibilities and rewards are computed, the agent has total knowledge
about the future status of the system. With these information an optimal decision
can be made to collect discounted rewards.

3.2 Randomized Γ -Method

The first approach to avoid an exponential number of zero-steps is to limit the set of
active unset events like in Algorithm 1. Generally there are |Eact | events which can
be triggered or not, leading to a set Γact with |Γact |= 2|Eact | different paths (also with
irregular paths).
The main idea of the Γ -method (1) is to fix so many events randomly in step ran-
domize of the algorithm depending on their probability, that the set of the other
events Erest fulfils 2|Erest | ≤ Ω . The more the probability of an event is near to 0 or
1, the more it is fixed randomly by the method. That means

P(e is fixed | Eact , s̃,a, t,Ω) =
|P(e | t(e))−0.5|

∑ẽ∈Eact |P(ẽ | t(ẽ))−0.5|
. (10)

In randomize a total number of d|Eact |− log2 Ωe events is selected to be fixed to 0
or 1 without double selection. Also the fixed value is randomly chosen equal to the
triggering probability (3). So with the randomize function Eact is split into Erest ,E0
and E1, where E0,E1 define sets of events specified to be triggered (e = 1) or not
(e = 0). Now the main loop of the following algorithm has an upper bound of Ω .
The update steps in Algorithm 1 are similar to the Equations 8 and 9. For that the
sum in the equations is only a combination between two elements: the saved entries
L(s′), representing a summary of all paths before, and the new incoming path γ . The
sequence of the update steps is crucial, cause the results of (8) are required in (9).
This method has a running time in Θ(Ω · |E |2 + |S |). Moreover Ω = 2|Eact | leads
to the exact solution and calculates all possible paths in the zero steps.

8 Alexander Frank

algorithm: zero steps Γ

input : (S ,Eact ,P,C,R,F), (s̃,a, t) ∈S ×A ×N|E |0 , Ω ∈ N
output: L list of states, probabilities and rewards

L(s, ·, ·)← [s,0,0]; // ∀s ∈S ;
(Erest ,E0,E1)← randomize(Eact , s̃,a, t,Ω) // explained in 3.2;
Γ ′←P(Erest)\{γ0};
for γ ∈ Γ ′ do

if γ is regular (6) then
L(s′)(2) is updated with (8) // γ has destination state s′;
L(s′)(3) is updated with (9);

end
end

Algorithm 1: zero-steps over randomized paths

3.3 Randomized E -Method

The other Algorithm 2 based on a totally different structure. This time all steps for
a single event are evaluated and saved in a sorted list. The higher prior sorting key
is the actual state and the lower one is for blockings from C.
So at the time point when event e∈ Eact is evaluated all list entries become an update
on the one hand for triggering and on the other for staying in progress. The list size
will grow by factor up to 2 in every iteration, so again we limit the size to Ω .
In general two entries which are at the same state after an iteration step are not able
to be combined, because they walked different paths and passed different C(·,a, ·).
With an additional function combine entries, which searches for and combines same
acting entries for all future iterations, the list is kept small. Sufficient is the same
state in L{·}(1) and the same relevant blockings for future iterations in L{·}(2) This
guarantees that the list size will increase to a maximum of 2|Eact |/2 and after that it
shrinks in every iteration until there are not more than |S | entries. The combination
of the last entries in the list item is equal to the proceeding in 3.2 with Equation 8
and 9.
The method insert(L,new,Ω) is relevant for the sorted list L, because it searches
for the correct place in L for an item, while it verifies that the capacity of Ω is not
exceeded. Otherwise insert calls another method to delete a random item in L de-
pending on its current probability L{·}(3).
The last line in the algorithm is to correct the influence of γ0. On the one hand it is
possible to stay in the initial state s̃ on the other hand it is possible to join the state
per a chain of transitions (zero-steps). But in the first case the progress is increased
by 1 and otherwise t is reset to 0. Hence both cases has to be separated.

As well as the Γ -method the Algorithm 2 solves the zero-steps exactly if Ω is great
enough. The running time of the E -method 2 is defined in Θ(|E | ·Ω 3 + |S |).

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 9

algorithm: zero steps E

input : (S ,Eact ,P,C,R,F), (s̃,a, t) ∈S ×A ×N|E |0 , Ω ∈ N
output: L list of reachable s, blockings, probabilities and rewards

L{1}← [s̃,Eact ,0,0];;
for e ∈ Eact do

for l ∈ L and e unevaluated for l do
if e in l(2) inactive then

update l with e blocked;
else

snew← P(l(1),e);
new← [snew, l(2) ·C(snew,a, ·), l(3) ·P(e), l(4)+R(l(1),e,snew)];
l(3)← l(3) · (1−P(e));
L← insert(L,new,Ω) // explained in 3.3;

end
end
L← combine entries(L) // explained in 3.3;

end
Correct the entry of l{·}(1) == s̃ // explained in 3.3;

Algorithm 2: zero-steps over events

3.4 Transformation to a MDP

The chance that no event triggers in a state s by choosing action a in t ∈ N time
steps converges to 0, because of the ADPHs. For a negligible error of ε > P(e0|t)
the progress time t reaches an upper bound of θ(s,a) ∈ N for every tuple of state
and action. The new set of states S̃ consists of

S̃ =
⋃

s∈S
(s,0) ∪

⋃
s∈S ,a∈A ,t∈N≤θ(s,a)

(s,a, t).

Therefore the zero-step-phase has to be evaluated for every tuple (s,a, t) . With the
results of the zero-step-phases a MDP (S̃ ,A , P̃, R̃) can be built with the expected
transition probabilities and rewards. The entries in the list describe the probabilities
P(s′|s,a, t) = P̃((s,a, t),a,(s′,0)) and the collected rewards R̃((s,a, t),a,(s′,0)). By
adding expensive penalties for switching a chosen action a′ in a given tuple (s,a, t)
while no transition takes place the second restriction is guaranteed. At least transi-
tions from the states (s,0)→ (s,a,1) and (s,a, t−1)→ (s,a, t) have to be computed
with (t−1) and Equation 5.
By using one of the presented methods (3.2 or 3.3) a MDP is build in a time based
on the method and S̃ . ADPHs can be built so that S̃ is enormous, but in general
the reached upper bound θ is super exponentially.

10 Alexander Frank

4 Experiments

In this section the results for both randomized methods are shown. Their solutions
will be compared to each other and to the exact ones using the E -method with
Ω = 2|E |. The lack of literature causes no comparison to state of the art algorithms.
The test instances are randomized in transitions and transition probabilities, the or-
der of ADPHs is normally distributed with expectancy value equal to 5 and variance
equal to 1. The entries of ADPHs are randomized exponentially. The rewards are
equally distributed just about [−|E |, |E |] and also the entries C(s,a,e)∈ {0,1} have
the same probability.
The instances are build for |S | = {50,100}, different number of actions |A | =
{2,4,6,8} and various events |E | ∈ {15,20,25} (for greater E s the exact solution
can not be computed with the used computers).
Both randomized approaches run 10 times for a single instance and for 10 different
instances. Over all results for a fixed number of states, actions and events the aver-
age values are calculated and presented. Here the E -method is shorten with E and
the Γ -method is named G.

In Figure 2 the results for different actions and different Ωs are presented, with
a grid size (|S |) of 50 and 20 events. There is no obvious pattern for a specific
influence by the number of actions. Whereas the E -method has mostly a smaller
relative error to the exact solution, which is also cut with an error below ε , than the
Γ -method for an equal Ω . There are more unnoticed zero-step-paths with a higher
number of events. In general the quality of the solutions gets better for a greater Ω .
Thus it should be mentioned that for Ω = |S | · |E | always all relative errors are
lower than 10−5.
The next Figure 3 shows the average results for fixed sets of S and A . It under-
lines the statements that the goodness of the algorithms for a fixed Ω decreases and
the size of E influences the quality. Furthermore, several tests proof similar to the
runtime of the algorithms neither the size of S nor A is relevant for the quality of
both approaches.

Table 1 Relative run times for |S |= 100 and |A |= 4

method and |E | Ω = 20 Ω = 40 Ω = 60 Ω = 80 Ω = 100

E -method, |E |= 15 0.985 0.973 0.981 0.985 1.004
Γ -method, |E |= 15 0.791 1.379 1.385 2.543 2.531
E -method, |E |= 20 0.840 0.953 0.971 0.988 0.992
Γ -method, |E |= 20 0.368 0.689 0.689 1.364 1.365
E -method, |E |= 25 0.607 0.863 0.929 0.946 0.957
Γ -method, |E |= 25 0.204 0.303 0.305 0.613 0.610

The run times in Table 1 are relative to the time used by an exact model to be created
and solved. The missing force causes the polynomial approach to posses possibly

Special subclass of Generalized Semi-Markov Decision Processes with discrete time 11

longer time as presented in the last column. It is evaluated that the Γ -method is
faster than the E -method, if the upper bound Ω is considerably lower than 2|E |,
otherwise if both algorithms compute almost the exact zero-steps, Γ -method takes
much longer. Consequently, that the list for the E -method is naturally limited by√

2|E | and the Γ -method has no smaller natural bound than 2|E |.

Fig. 2 Average results for tests with |S |= 50

Fig. 3 Average results for tests with |S |= 100 and |A |= 4

12 Alexander Frank

5 Conclusion

The experiments indicate, that both approaches have distinct advantages. Generally
small run times are possible with the Γ -method causing a loss of quality compared
to the exact solution. On the other hand the results of the E -method for the same Ω

are closer to exact ones, but it takes more time. Both algorithms have a polynomial
time to evaluate the zero-steps and can be used to transform a GSMDP0 to an ap-
proximating MDP. By expanding the state space with copies in several time layers,
a computable MDP is created in polynomial time. Edges are exclusive in the copies
of the same basic state and to other basic states (not to their copies, so that ”one way
trees” are created).

Future work has to focus on the class of normal GSMDPs, which are more complex.
Hereby an exponential number of combinations of the states and different progress
times exists. Hence new approaches will be needed to decrease the decision space
by aggregating progress times or selecting representative states. If it will be success-
ful, a modified version of the algorithms can be used to evaluate the zero-step-phase
and transform the problem into a MDP.

Acknowledgements: I would like to thank my father, Harald Frank, my col-
leagues, Clara Scherbaum and Alexander Puzicha, and my close friend, Stephan
Blömker, for their assistance, proofreading and inspiration.

References

1. Baier, C., Dubslaff, C., Korenčiak, L., kučera, A., Řehák, V.: Mean-payoff optimization in
continuous-time markov chains with parametric alarms. ACM Trans. Model. Comput. Simul.
29(4) (2019). DOI 10.1145/3310225. URL https://doi.org/10.1145/3310225

2. Bobbio, A., Horvth, A., Scarpa, M., Telek, M.: Acyclic discrete phase type distributions: prop-
erties and a parameter estimation algorithm. Performance Evaluation 54(1), 1 – 32 (2003)

3. Buchholz, P., Kriege, J., Scheftelowitsch, D.: Model checking stochastic automata for depend-
ability and performance measures. In: 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 503–514. IEEE (2014)

4. Glynn, P.W.: A gsmp formalism for discrete event systems. Proceedings of the IEEE 77(1),
14–23 (1989)

5. Krebsbach, K.D.: Deliberation scheduling using gsmdps in stochastic asynchronous domains.
International Journal of Approximate Reasoning 50(9), 1347 – 1359 (2009). Special Track on
Uncertain Reasoning of the 19th International Florida Artificial Intelligence Research Sympo-
sium (FLAIRS 2006)

6. Musliner, D.J., Goldman, R.P., Krebsbach, K.D.: Deliberation scheduling strategies for adaptive
mission planning in real-time environments. In: AAAI Spring Symposium: Metacognition in
Computation (2005)

7. Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic programming (1994)
8. Younes, H.L., Simmons, R.G.: Solving generalized semi-markov decision processes using con-

tinuous phase-type distributions. In: AAAI, vol. 4, p. 742 (2004)

