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Glioblastoma (GBM) is the most frequent malignant brain tumour in adults [1]. Its growth is charac-
terized by infiltration of surrounding healthy tissue, and the formation of a necrotic core. GBM presents
with varying degree of mass-effect which results in healthy-tissue deformation, midline shift or hernia-
tion. Biomechanical forces, such as those resulting from displacive tumour growth, shape the tumour
environment, contribute to tumour progression [2] and may affect treatment response and outcome.

To investigate the role of tumour mass-effect for tumour evolution, we have previously developed a
mechanically-coupled reaction-diffusion model [3] that captures three dominant aspects of macroscopic
GBM growth: (a) tumour cell proliferation, (b) the diffuse invasion of the growing tumour into surround-
ing healthy tissue, and (c) the resulting mass effect.

Here we present an implementation of this model in FENICS and first steps towards an image-based
optimization approach, based on dolphin-adjoint [4], to estimate patient-specific parameters from clinical
magnetic-resonance imaging (MRI).

Forward Problem We model the invasive growth of glioma phenomenologically as as a reaction-
diffusion process:

∂c

∂t
= ∇ ·

(
D̂ ∇c

)
+ ρ c (1− c ) , (1)

with normalized cancer cell concentration c (r, t) and diffusion tensor D̂ = D̂ (r). Tumour cell prolifer-
ation is assumed to follow logistic growth with proliferation rate ρ .

The tissue-displacing mass-effect of the growing tumour is introduced by linking the local concen-
tration of tumour cells to a volumetric increase of the affected brain tissue. This volumetric increase is
modeled by a growth-induced strain component ε̂ growth(c ), so that

ε̂ total(u , c ) = ε̂ elastic(u ) + ε̂ growth(c ) , (2)

where displacements u are obtained from solving the linear-momentum equilibrium equation.
Our current implementation assumes a linear constitutive relation between stress σ̂ (u ) and strain

ε̂ total(u ) and is limited to isotropic growth and tissue characteristics. The mechanical model is therefore
fully characterised by Young’s modulus E and Poisson ratio ν, and D̂ ≡ D 1. Additionally, we assume
a linear coupling between tumour cell concentration and growth-induced strain with isotropic coupling
strength λ:

ε̂ growth(c ) = λ̂ c = λ1 c . (3)

The simulation domain is composed of different components with distinct parameters Di, Ei, νi
for i ∈ {white matter (WM), grey matter (GM), CSF, ventricles, tumour}. Proliferation rate ρ takes a
global value.

Tumour cells are prevented from crossing the interface between brain tissue (WM, GM, tumour) and
cerebro-spinal fluid (CSF, ventricles) by imposing zero-flux von-Neuman boundary conditions. The dis-
placement constraint imposed by the rigid skull is approximated by zero-displacement Dirichlet boundary
conditions at the interface between skull and CSF.

We solved the fully coupled model in 2D using FENICS’ MixedElement formulation. The simulation
domain was defined by an atlas of healthy brain anatomy or patient-specific tumour segmentations derived
from magnetic-resonance imaging (MRI), fig. 1 Tumour growth was initiated from a Gaussian initial
tumour cell distribution c (r, t = 0).



Figure 1: Solution of forward and inverse model over 2D brain atlas. (A) Tumour growth was initiated
from Gaussian tumour cell distribution c (r, t = 0) (TP 0) and simulated until later time point (TP 2) for
a set of patient-specific growth parameters (D, ρ, λ). The resulting synthetic data was used to estimate
two (of three) growth parameters {(D, ρ), (D,λ), (ρ, λ)} by solving the inverse problem. (B) shows the
mismatch between solutions of the forward model using the original and the estimated parameter set,
respectively.

Inverse Problem The inverse problem is formulated as a PDE constrained optimization problem that
aims at minimizing the difference between observed and predicted tumour cell distribution and induced
displacements. Solution of the inverse problem relies on the adjoint method and FENICS dolphin-
adjoint [4].

We tested the parameter estimation approach on synthetic data generated by solving the forward
problem on a brain atlas, fig. 1. We obtained satisfying results for simultaneous estimation of two
parameters {(D, ρ), (D,λ), (ρ, λ)} and predefined initial conditions.

Future Work We will focus on refining the parameter estimation approach to find optimal solutions of
the inverse problem based on partial observations from MRI data, such as displacement fields estimated
from healthy tissue deformation or threshold-based approximations of tumour cell distribution. We also
plan to extend the code to support simulations in 3D.
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