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Abstract: One of the essential aspects of power system planning is generation expansion planning 

(GEP). The purpose of GEP is to enhance construction planning and reduce the costs of installing 

different types of power plants. This paper proposes a method based on Genetic Algorithm (GA) 

for GEP in the presence of wind power plants. Since it is desired to integrate the maximum possible 

wind power production in GEP, the constraints for incorporating different levels of wind energy in 

power generation are investigated comprehensively. This will allow obtaining the maximum 

reasonable amount of wind penetration in the network. Besides, due to the existence of different 

wind regimes, the penetration of strong and weak wind on GEP is assessed. The results show that 

the maximum utilization of wind power generation capacity could increase the exploitation of 

more robust wind regimes. Considering the growth of the wind farm industry and the cost 

reduction for building wind power plants, the sensitivity of GEP to the variations of this cost is 

investigated. The results further indicate that for a 10% reduction in the initial investment cost of 

wind power plants, the proposed model estimates that the overall cost will be minimized.   

Keywords: Generation expansion planning; wind power generation; genetic algorithm; least-cost 

generation expansion planning; stochastic crossover technique; artificial initial population scheme; 

mathematical programming  

1. Introduction 

Generation expansion planning (GEP) aims to find the most economically feasible solution to 

install a combination of multiple power generation in the long-term planning process of the power 

system. GEP determines the capacity, timing, and technology of new generation plants to provide 

the required energy for a 10- to 30-year time horizon. The increasing power consumption of 

industrial development, especially in developing countries, significantly highlights the need for GEP 

[1]. In one hand, considering the diverse and growing sources of renewable energy, wind power has 

valuable advantages, such as the capability to generate large quantities of cheap electricity, 

availability over a wide geographical area, and the possibility to create integrated wind-solar hybrid 

units. These factors have increased the importance of using this type of power plant. On the other 

hand, the use of wind power with intermittent behavior in production would significantly increase 

the complexities of the conventional GEP in which only thermal power plants are considered. GEP 

provides a mathematical model for an integer and constrained nonlinear optimization problem in 

which the objective function is satisfied if the constraints are met. To solve this optimization 

problem, two general mathematical and conceptual methods are used in [1]. The goal is to obtain a 

simple model that can be used in GEP studies. In other types of power plants, the output at this 
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design level is considered a fixed number; however, in wind farms, it is necessary to obtain output as 

probabilities, and on the other hand, it should be as simple as possible so that it can be used in GEP. 

In the wind farm model, it is assumed that all farms will be under a specific regime at a time. With 

this assumption, the simplified wind farm model is obtained. 

There are currently new conceptual optimization methods, such as the particle swarm 

optimization (PSO) algorithm [2], the genetic algorithm (GA) [3], the honey bee algorithm [4], the 

taboo search (TS) [5], and ant colony (AC) [5], compared to mathematical methods such as linear 

programming (LP) [6], dynamic programming (DP) [7], and integer programming (IP) [8]. In 

addition to the variety of GEP optimization problem-solving techniques, the objective functions and 

the network-imposed constraints widely vary among different design cases. For example, objective 

functions can be profit maximization of a generation company in the restructured power market [9], 

maximizing reliability [10],[11], minimizing operating costs [12],[13], and minimizing environmental 

pollution [14],[15]. In addition, constraints such as network security constraints [16],[17],[18], [19] , 

[20] , [21], investment costs [22],[23],[24], reliability [25],[26],[27],[28],[29], and environmental 

pollution [30] could be part of the constraints that are required to be considered in the GEP problem. 

Although less attention has been paid to the GEP problem in the presence of wind power plants in 

the literature, extensive studies have been carried out on GEP of traditional power plants with 

various objective functions and constraints [31],[32]. From one side, the cost reduction of the initial 

investment in wind power plants over the past decade has led to a remarkable amount of renewable 

energy investment specifically allocated to this type of power plants [33],[34]. From the other side, 

the power generation capacity of these units is significantly lower than the nominal amount due to 

some new challenges posed by the presence of these intermittent generations in the power grid [35]. 

Planning for the expansion and operation of wind power plants for long-term intervals is a way to 

minimize these challenges. The use of the fast start-up power plants studied in [36] is another 

solution to reduce the vulnerability of the power system subject to the increasing penetration of 

wind power generation.    

GEP studies for wind power plants require proper modeling of wind turbines and wind farms. 

Numerous models of wind power plants have been presented in various papers [37],[38]. In [39], the 

planning of combining generation units in the presence of wind units is investigated. In [40], for a 

short period of time, the costs of operating and investing of wind farms are investigated in addition 

to the traditional power generation units. In [41], the penetration of wind power generation of 

different designs for various short-term economic incentives is examined. Another study aimed at 

minimizing the amount of carbon produced in GEP [42]. Few studies of GEP in the last decade have 

focused on the costs of wind power plant investment in various projects. In this paper, the main 

objective is to investigate GEP in the presence of wind farms for a long-term target period. For this 

purpose, a model of the turbine and the wind farm is presented for long-term studies. The turbines 

are assumed to be HAWT. The model considers the turbine’s Forced Outage Rate (FOR), which is 

used as input for GEP studies. The mathematical model of GEP problem is presented by defining the 

objective functions and constraints. And finally, a proposed GEP model is solved using the Genetic 

Algorithm optimization method. The impact of decreasing initial investment due to the growth of 

wind units’ technology is demonstrated and discussed. Moreover, considering the importance of the 

maximum possible use of wind energy in the generation system, the maximum possible use of wind 

power in the GEP process subject to the constraints is investigated. It is worth noting that the impact 

of wind regimes on long-term planning studies using two different weak and strong wind regimes is 

illustrated in this paper. 

Despite studies for wind power plants in GEP in the last decade, very limited number of studies 

have examined the cost of investment for various projects in system development planning. 

Concequently, the purpose of the present study is to investigate GEP with the presence of wind 

farms for a long time. 

The difference between the present article and most of the extensive studies in this field is as follows: 



 

 

• The objective function of this paper is to minimize the sum of expansion costs by considering the 

4 constraints of maximum unit capacity to build, refueling constraints, storage margin and Loss 

of Load Probability (LOLP). 

• In this paper, in addition to traditional power plants, the presence of wind power plants with a 

random generation nature is considered. 

• Due to the growth of technology for building wind farms, the initial investment required to build 

these units has decreased. In the present paper, the effect of this price reduction on the influence 

of wind units on the generation system for a long period of planning is studied. 

• Given the importance of the maximum possible use of wind energy in the production system, the 

maximum possible use of wind power in the GEP process is investigated, provided that the 

constraints are met. 

• The impact of the wind regime on long-term planning studies using two different wind 

regimes has been shown due to the development of wind unit technology and the increasing 

reliability of these units as well as different wind regimes. The type of wind regime is selected 

for 2 sample cities in Iran. Type 1 wind regime as a weak wind regime and type 2 wind regime 

as a strong wind regime have been used to obtain wind turbine output. 

In the following section, Section 2, turbine and wind farm modeling are discussed. Section 3 

presets the GEP mathematical model, including the objective function and constraints as well as the 

Genetic Algorithm method for optimization and problem-solving. In Section 4, case studies based on 

real network data are shown by performing three experiments. These experiments include 

comparing the combined use of traditional power plants and wind farms with the ones with only 

traditional power plants, computing the maximum possible penetration of wind power plants, and 

computing the objective function sensitivity to the initial investment cost changes. Finally, in Section 

5, the results of this study are summarized with some remarks. 

2. Modeling 

The model of system load adequacy assessment in the presence of wind farms has presented in 

[43]. As can be seen, in order to obtain the output of the wind farms, wind conditions must be 

applied as inputs to a farm which is containing a large number of wind turbines. GEP assumes that 

all loads and production units are assembled in one bus. Therefore, during planning, the location of 

units is not discussed and studies are performed at HL1 level. For reliability studies, a completely 

reliable transmission network is assumed. Each wind farm contains a large number of wind 

turbines. To obtain the wind farm model, one must first obtain the power output model for the wind 

turbines and then combine the model of these turbines to create the final model equivalent to the 

farm output. 

2.1. Wind Turbine Model 

The output characteristics of wind turbines are very different from those of the other turbines. 

Conventional power plants are capable of generating nominal output at all times of the year (with 

the exception of out-of-service times). However, wind turbines, in addition to the outage due to 

breakdowns, are sometimes unable to generate power due to wind speed dependency. As a result, 

wind turbine power output is a function of wind speed, and there is a nonlinear relationship 

between wind turbine output power and wind speed. The mathematical Equation for the 

power-velocity dependency is as Equation (1), as follows:  

𝑃𝑜𝑢𝑡 = {

   0                             ;      0 ≤ 𝑣 ≤ 𝑣𝑐𝑖𝑛

(𝐴 + 𝐵𝑣 + 𝐶𝑣2) ;           𝑣𝑐𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑟

𝑃𝑟  ;                                    𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑐𝑜

0 ;                                         𝑣 ≥ 𝑣𝑐𝑜

 (1) 



 

 

In Equation (1), 𝑣 is the wind speed variable, 𝑣𝑐𝑖𝑛  (cut-in wind speed) the minimum wind speed 

required to operate the turbine, 𝑣𝑐𝑜 (cut-out wind speed) is the maximum wind speed terminates 

turbine power generation, 𝑣𝑟  (rated wind speed) is the velocity of the nominal power of the turbine, 

and 𝑃𝑟  is the nominal power of the turbine. According to [43], in the Equation (1), the constants A, B, 

and C depend on the values of 𝑣𝑐𝑖𝑛  and 𝑣𝑟  and are defined in Equations (2), (3), and (4) as follows.  

A =
1

(vcin − vr)2
[vcin(vcin + vr) − 4(vcin × vr)(

vcin + vr

2vr

)3] (2) 

B =
1

(𝑣𝑐𝑖𝑛 − 𝑣𝑟)2
[4(𝑣𝑐𝑖𝑛 × 𝑣𝑟)(

𝑣𝑐𝑖𝑛 + 𝑣𝑟

2𝑣𝑟

)3 − (3𝑣𝑐𝑖𝑛 + 𝑣𝑟)] (3) 

𝐶 =
1

(𝑣𝑐𝑖𝑛 − 𝑣𝑟)2
[2 − 4 (

𝑣𝑐𝑖𝑛 + 𝑣𝑟

2𝑣𝑟

)
3

] (4) 

2.2. Wind Farm Model 

Although wind power generation has been considered adaptive to the environment, it has 

become an important issue due to the variable nature of this energy and its impact on system 

generation. Unlike traditional sources, the wind is not always available. Changes in wind energy 

output have created technical problems for the operation and generation expansion planning. In 

addition to being variable in the wind, changing the power output of wind farms, the unavailability 

of the turbine units can also lead to a change in power output. Therefore, the use of wind energy 

depends on the structure and weather conditions [44]. High utilization of wind farms creates 

fluctuations in the overall generation of the system that can vary depending on the amount of 

penetration in the system and the regional wind regime [44]. 

Wind farms can supply large amounts of energy, depending on the number of turbines 

installed. These farms can be connected to distribution and transmission networks. Different types 

of wind turbines with different capacities and output characteristics can be used in wind farms. To 

obtain the wind farm model, one must first obtain the power output model for the wind turbines 

and then combine this model to calculate the final model equivalent to the farm output. The wind 

sample used to obtain the wind turbine output was two-year wind data of Ardebil with an average 

velocity of 4 ( m
s⁄ ) [38]. In this section, the output power of a 2 MW unit is divided into six parts 0, 

0.4, 0.8, 1.2, 1.6 and 2 that the turbine output model is obtained from Table 1 based on the data of the 

last two years, adapted from [45]. 

The number of scenarios considered for the output of a wind farm depends on the available 

data, the nature of the wind regime, the characteristics of the wind data, the computation time and 

the accuracy required [44]. Each wind farm contains a large number of wind turbines. Assuming the 

similarity of all these units, the power output of a farm for use in long-term studies of system 

planning can be obtained in two ways. 

Table 1. Probability of turbine output power levels 

(MW) Output Power     Probability  

0 P(pw < 0.2) = 0.4750 

0.4 P(0.2 ≤ pw < 0.6) = 0.3036 

0.8 P(0.6 ≤ pw < 1) = 0.0854 

1.2 P(1 ≤ pw < 1.4) = 0.0623 

1.6 P(1.4 ≤ pw < 1.8) = 0.0098 

2 P(1.8 ≤ pw) = 0.3036 

 

A farm contains a large number of turbines. Their output depends on the wind speed. All wind 

power plants in a wind farm are exposed to a wind regime with the same speed and characteristics, 

and the output model is calculated from Equation (5). 



 

 

𝑃 = 𝐴 × 𝑋 (5) 

In Equation (5), P is the equivalent output power vector of the combination of units (MW), A is 

the number of units, and X is the output power vector of each wind unit (MW), and the probability 

of each wind farm output mode is equal to the probability of the same state in the wind farm [44]. 

However, in our study, the Forced Outage Rate (FOR) of each wind turbine is considered in the 

wind farm modeling. 

 

Forced Outage probability of each wind turbine is equivalent to FOR, and each turbine has a 

K-mode output model, as shown in Table 2, and the wind farm contains N turbine numbers. 

Table 2. Output table of a turbine. 

Capacity (MW)  Probability 

𝑝1 𝑃𝑊𝑇𝐺,1 

𝑝𝐾  𝑃𝑊𝑇𝐺,𝐾  

Suppose 𝑃𝑖  is the probability of i being the unit of power output and define as follows.  

𝑃𝑖 = (
𝑁

𝑖
) (1 − 𝐹𝑂𝑅)𝑖𝐹𝑂𝑅(𝑁−𝑖) (6) 

Since each turbine has a number of K output power levels, while the number of units available 

is i units, the capacity available for each level of output of the turbines (𝐶𝐴𝑃𝑎𝑣𝑎𝑖𝑙) using Equation (7) 

is obtained, and the probability of this capacity is available to 𝑃𝑎𝑣𝑎𝑖𝑙  can be calculated from Equation 

(8) as also described in [46].   

𝐶𝐴𝑃𝑎𝑣𝑎𝑖𝑙 = 𝑖 × 𝑃𝑊𝑇𝐺,𝑗𝑗 = 1, … , 𝐾 (7) 

𝑃𝑎𝑣𝑎𝑖𝑙 = 𝑃𝑖 × 𝑃𝑊𝑇𝐺,𝑗𝑗 = 1, … , 𝐾 (8) 

The process of obtaining the wind farm output model is shown in Table 3. 

Table 3. The process of obtaining an output model for a wind farm. 

Number of 

Units Available 

Number of 

Units Exited 
Available Probability (P) 

Available Capacity 

(𝑪𝑨𝑷𝐚𝐯𝐚𝐢𝐥) 

Possibility to Access 

𝑪𝑨𝑷𝒂𝒗𝒂𝒊𝒍 Capacity (𝑷𝒂𝒗𝒂𝒊𝒍) 

0 N 𝐏𝟏 = 𝐍. 𝟏. 𝐅𝐎𝐑(𝐍−𝟎) 
0 × p1 P0 × PWTG,1 

0 × pK P0 × PWTG,K 

i N − i Pi = (
N

i
) (1 − FOR)iFOR(N−i) 

i × p1 Pi × PWTG,1 

i × pK Pi × PWTG,K 

N 0 PN = (
N

N
) . (1 − FOR)N 

N × p1 PN × PWTG,1 

N × pK  PN × PWTG,K  

For a farm with N turbine unit, and K output mode for each turbine, the farm output model has 

(N + 1) × K different states. To simplify the scenarios, we have to classify the model based on the 

output power. Table 4 shows the outputs classified for a farm consisting of 30 turbine units 

presented in Table 2. 

Table 4. Sixty-megawatt farm output model for FOR = 0.1. 

  Probability  Output Power (MW) 

P(CAPavail < 6) = 0.475 0 

P(6 ≤ CAPavail < 18) = 0.304265 12 

P(18 ≤ CAPavail < 30) = 0.089295 24 

P(30 ≤ CAPavail < 42) = 0.061224 36 

P(42 ≤ CAPavail < 54) = 0.028845 48 

P(54 ≤ CAPavail) = 0.041371 60 



 

 

3. Methodology 

The mathematical model of the GEP problem consists of two parts: the objective function and 

the constraints as follows: 

3.1. Objective Functions 

GEP is divided into two-year periods, each of which is a planning stage. For each design stage, 

the objective function of the problem involves minimizing two different cost segments in Equation 

(9) as follows [47]: 

𝑚𝑖𝑛 𝑂. 𝐹 = 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝐶𝑜𝑠𝑡𝑠 + 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑠𝑡𝑠 (9) 

Reference [47] illustrates an adptation of the cost of different parts of the objective function.   

Capital Costs include two components, Investment Cost and Salvation Value. In addition, 

Operational Costs is consisting of two components as Fixed and Variable Operation & Maintenance Cost 

and Expected Energy Not Supplied .Components of the objective function are described separately: 

A. Investment Cost 

Investment Cost, calculated per kW and has varying amounts for different types of units. This 

includes the cost of generating equipment and electrical equipment, the cost of building a fuel 

storage tank, the cost of connecting to the grid, and the cost of filters and equipment that are used for 

reducing environmental pollution. 

In planning, this cost is assumed at the beginning of the stage in Equation (10) as follows[47]:  

𝐼(𝑈𝑡) = (1 + 𝑑)−𝑡′ . ∑[𝐶𝐼𝑖 . 𝑈𝑡,𝑖]

𝑁

𝑖=1

 (10) 

The row matrix 𝑈𝑡 contains the capacity of the units added at the t-th stage of the planning and 

contains the planning-decision variables. If the number of units is equal to N of a unit type, the 

vector 𝑈𝑡 at each step t contains N element in Equation (11) as follows:  

𝑈𝑡 = (𝑢𝑡
1, … , 𝑢𝑡

𝑖 , … , 𝑢𝑡
𝑁) (11) 

where 𝑢𝑡
𝑖  is the capacity of units of type i to be constructed in the t-th phase of the planning. 

Furthermore, in Equation (11), d is the interest rate, 𝐶𝐼i the initial investment cost required for 

units of type i ($/MW) and 𝑢𝑡
𝑖 the capacity of new units added of type i, in the t-th step is used. The 

parameter 𝑡′ is used to transfer the invested costs at the beginning of each planning step to the base 

year and is defined in Equation (12) as follows: 

𝑡′ = 𝑡0 + 𝑠 × (𝑡 − 1) (12) 

s is the number of years considered for each step, which, as mentioned, is often 2 years for planning. 

B. Salvation Value 

After the plant is built, over time and considering the unit Exhaustion Rate, at the end of its life, 

the unit's equipment and facilities still have a value equivalent to a percentage of the purchase cost. 

The amount that can be calculated from Equation (13) is the unit residual value, the capital value of the 

residual or the salvage value of the unit: 

𝑆(𝑈𝑡) = (1 + 𝑑)−𝑇′
. ∑[𝛿𝑡,𝑖𝐶𝐼𝑖 . 𝑈𝑡,𝑖]

𝑁

𝑖=1

 (13) 

In Equation (13), 𝛿𝑡,𝑖is the cost-return factor for unit type i. Since the residual value of the units is 

considered at the end of each planning step, parameter 𝑇′ is used to transfer it to the base year, 

which is defined in Equation (14) as follows: 



 

 

𝑇 ′ = 𝑡0 + 𝑠 × 𝑇 (10) 

C. Fixed and Variable Operation and Maintenance Cost  

Fixed operation and maintenance cost per MW is computed over a month or a year and 

includes costs related to overhaul, maintenance, tax and employees’ payroll costs. In addition to 

that, variable operation and maintenance cost, covers the cost of energy supplied by the units is 

obtained during each design step per KWh. Since energy production is proportional to fuel 

consumption per unit, this cost is equivalent to the fuel cost which is required. Therefore, the total 

operating cost is defined in Equation (15) as follows: 

𝑀(𝑋𝑡) = ∑ [(1 + 𝑑)−(𝑡′+0.5+𝑦) × ∑[𝑋𝑡,𝑖 × 𝐹𝐶𝑖 + 𝑀𝐶𝑖 × 𝐸𝐸𝑆𝑡,𝑖]

𝑁

𝑖=1

]

𝑠−1

𝑦=0

  (15) 

It should be noted that the vector 𝑋𝑡 is a cumulative vector of 𝑈𝑡 as Equation (16): 

𝑋𝑡 = 𝑋𝑡−1 + 𝑈𝑡    (𝑡 = 1, … , 𝑇) (16) 

In Equation (15), 𝑋𝑡,𝑖 is the capacity of existing units of type i in the t-th period, 𝐹𝐶𝑖 is constant 

operating cost of type i ($/MW), 𝑀𝐶𝑖 is the variable cost of operating unit type i at the t-th stage 

($/MWh) and 𝐸𝐸𝑆𝑡,𝑖 is the amount of energy that unit type i provides at the t-th period. Since the 

operating cost is routinely spent during each phase (not at the beginning or end of the phase), 

according to [47], using y parameter, the costs are transferred to the middle of the year for each year 

and then transferred to the base year for use in the objective function. Moreover, to determine the 

variable costs, the energy provided by each unit at each planning stage 𝐸𝐸𝑆𝑡,𝑖  approximately 

calculates the area under the Load Duration Curve (LDC).  

Since generation expansion planning is performed for long periods, accurate prediction of the 

LDC curve is not possible and only the maximum load at each design stage is available, so the LDC 

curve approximation has been used based on an adaptation from [47].  

The base load for each step is considered as a percentage of the peak load of that period. To 

calculate the amount of energy supplied by each unit at each stage (𝐸𝐸𝑆𝑡,𝑖), at each planning stage, 

the units are arranged in descending order of variable operating cost. Using the LDC linear curve, 

the energy supplied by each unit, which is equivalent to the area below the curve, is calculated from 

Equation (17). 

if   Time = f(Load)   then   EESt,i = ∫ f(Load) × dload
L2

L1

 (11) 

If the horizontal axis is the time axis and the vertical axis is the load, in Equation (17) f(Load) in 

the LDC curve is the characteristic of the load function of each stage in term of time. dload the 

differential value of the load used to calculate the surface area provided by each power unit. 

L1 is the level of generation capacity before adding i-th unit capacity and L2 is the level of 

generation capacity after adding i-th unit capacity. However, in the generation expansion planning 

instead of using a nonlinear LDC, a two-piece equivalent linear model is used and the above integral 

is easily calculated[47].  

The amount of energy supplied by each unit at each step (𝐸𝐸𝑆𝑡,𝑖) is equivalent to the area below 

the LDC curve. 

D. The Expected Energy Not Supplied (EENS) Cost  

In terms of the importance of the reliability of the system being planned, its cost is considered in 

the operating costs of the objective function. One of the parameters for reliability measurement of 

the system is the Expected Energy Not Supplied which is equivalent to the Outage Cost during the 



 

 

planning period. The cost of Energy Not Supplied per MWh of energy during each planning stage is 

obtained from Equation (18): 

𝑂(𝑋𝑡) = ∑ [(1 + 𝑑)−(𝑡′+0.5+𝑦). 𝐸𝐸𝑁𝑆𝑡 . 𝐶𝐸𝐸𝑁𝑆]

𝑠−1

𝑦=0

 (18) 

In Equation (18), 𝐸𝐸𝑁𝑆𝑡of energy not supplied in the t-th stage of planning (MWh) and 𝐶𝐸𝐸𝑁𝑆 is 

the value of each MWh of energy ($). As can be seen in [47], the load is lost for 𝑡𝑘 if the system 

output capacity is 𝑄𝑘 and is greater than the Reserve Margin. In this situation, 𝑝
𝑘
 is the probability 

that 𝑄
𝑘
 is out of capacity. 

In this case, 𝐸𝐸𝑁𝑆 is defined as Equation (19) 

𝐸𝐸𝑁𝑆 = ∑ 𝑆𝑘 × 𝑝𝑘

𝑄𝑘>𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑀𝑎𝑟𝑔𝑖𝑛

 (19) 

In Equation (19), 𝑆𝑘 is the amount of energy that is lost in the system if 𝑄
𝑘
 capacity outage 

occurs. Assuming the linearity of the LDC curve, the colored area (𝑆𝑘) can be easily obtained [47].  

Thus, from the all of the above studies, the ultimate objective functions of the GEP problem are 

to minimize the sum of initial investment costs, operating, system outage, or not supplied energy 

value, and the residual value of the units in Equation (20) as follows: 

𝑚𝑖𝑛𝑂. 𝐹 = ∑(𝐼(𝑈𝑡) + 𝑀(𝑋𝑡) + 𝑂(𝑋𝑡) − 𝑆(𝑈𝑡))

𝑇

𝑡=1

 (20) 

3.2. Constraints 

In general, the constraints governing the GEP problem can be divided as the below [47]: 

A. Practical Constraints 

The types of constraints associated with the process of adding units to the system are called 

executive constraints. These constraints include:  

The maximum number of units that can be manufactured 

There are restrictions on the number of units to be built at each planning stage for executive 

reasons. This constraint is considered in Equation (21) as follows: 

0 ≤ 𝑈𝑡 ≤ 𝑈𝑡.𝑚𝑎𝑥  (21) 

𝑈𝑡.𝑚𝑎𝑥 is the vector of the maximum capacity of new possible units for the programming stage t. 

A.1. Fueling Constraint 

Various types of units with different fuels such as furnace oil, natural gas, coal and nuclear fuel 

can be considered in the GEP. Given this constraint, system decision-makers can choose to combine 

generation to reduce the risk of dependence on a particular type of fuel. This constraint can be 

considered as Equation (22): 

𝑀𝑚𝑖𝑛
𝑖 ≤

𝑋𝑡,𝑖

∑ 𝑋𝑡,𝑘
𝑁
𝑘=1

≤ 𝑀𝑚𝑎𝑥
𝑖  (22) 

In Equation (22), 𝑀𝑚𝑖𝑛
𝑖  and 𝑀𝑚𝑎𝑥

𝑖  are the minimum and maximum ratios of the type i unit used 

in the t-th stage of planning, respectively. 

A.2. Pollution 



 

 

The increasing importance of environmental protection requires power plants to comply with 

relevant laws and standards in the design process to reduce the amount of unit pollution in the form 

of system constraints. In some cases, even pollution and its costs are considered as part of the 

objective function. In this article, the pollution-related constraint is ignored. 

B. Technical Constraints 

These constraints must be met by analyzing the system at each planning stage to ensure that the 

system reliability is at an acceptable level. In general, system reliability evaluation is divided into 

two subsets of System Adequacy and System Security. What is considered in long-term GEP is the 

System Adequacy section. System Adequacy is about having sufficient facilities to power customers 

at all times, which checks for planned and unplanned outages of system elements. System Adequacy 

can generally be divided into Probabilistic and Deterministic methods [48]. 

B.1. Reserve Margin constraint 

In the deterministic method, Reserve Margin is a definite criterion used to evaluate system 

reliability by specifying the Generation Margin. The Generation Margin is the percentage of surplus 

capacity installed at the annual peak load obtained from Equation (23) [48] : 

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑀𝑎𝑟𝑔𝑖𝑛 =
𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 − 𝑃𝑒𝑎𝑘𝐿𝑜𝑎𝑑

𝑃𝑒𝑎𝑘𝐿𝑜𝑎𝑑
× 100% (23) 

If ∑ 𝑋𝑡,𝑘
𝑁
𝑘=1  is the total installed capacity of the system in stage t, including existing and new 

units, any acceptable design shall meet the following condition as Equation (24): 

(1 + 𝑅𝑚𝑖𝑛) × 𝐷𝑡 ≤ ∑ 𝑋𝑡,𝑘

𝑁

𝑘=1

≤ (1 + 𝑅𝑚𝑎𝑥) × 𝐷𝑡  (24) 

where 𝑅𝑚𝑖𝑛  and 𝑅𝑚𝑎𝑥  are the minimum and maximum system reservations, respectively. 𝐷𝑡  is 

also the maximum predicted load for the programming stage t. 

B.2. Loss of Load Probability (LOLP) Constraint 

If the electrical system is more complex and larger in size, the Reserve Marginal one will not be 

sufficient to assess reliability. The deterministic method, which uses only Reserve Margin 

calculations, results in overinvestment or insufficient reliability. However, the Reserve Margin in GEP 

can be as high as 15% to 40%, because GEP is usually done for more than a decade, with forecasting 

times associated with error and therefore, high percentages are viewed as Reserve Margin. 

The major disadvantage of the deterministic method is that it does not respond to the random and 

probabilistic nature of system behavior, customer demand, and system component error, and the 

system risk is not determined by this method. The probabilistic method for evaluating system 

adequacy, which has been in use since 1930s, provides a comprehensive overview of the probability 

set of probabilistic events and examines system reliability indices [48]. 

Among the various probability parameters of reliability, the Loss of Load Probability index (LOLP) 

as a constraint has to be considered in the GEP problem. 

If the capacitance 𝑄
k
 is lost, the load is lost for 𝑡𝑘 and in this case, 𝑝

k
 is the probability of outage 

capacitance 𝑄
k
, LOLP can be obtained as follows [47]:  

                                                                                             (25) 

𝐿𝑂𝐿𝑃 =
∑ 𝑝𝑘×𝑡𝑘𝑄𝑘>𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑀𝑎𝑟𝑔𝑖𝑛

𝑇
    

 In the GEP problem, the units selected together with the new units must meet the LOLP 

criteria in Equation (26) as follows: 

𝐿𝑂𝐿𝑃(𝑋𝑡) ≤ 𝜀 (26) 



 

 

where ε is the maximum allowed value of LOLP. 

3.3. GA Optimization 

In this paper, the GA algorithm was used to solve the GEP optimization problem [46-55]. The 

general trend of the GA algorithm for solving the GEP problem is shown in Figure 1. The algorithm 

uses integer coding to form genes. Each gene can have an integer from zero to the maximum 

number of constructible units in each programming step. For the situation involving T the planning 

stage and selection from the N possible unit types in each period, the chromosomes would be as 

Equation (27): 

𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑙 , … , 𝑈𝑇) (27) 

In which the capacity of the selected units 𝑈𝑙 of each of the N types of power plant units in the 

l-th design stage is 

𝑈𝑙 = (𝑢𝑙
1, 𝑢𝑙

2, … , 𝑢𝑙
𝑁) (28) 

The algorithm is implemented in such a way that all the constraints of the system are satisfied 

while selecting the gene values for each programming stage and thus, the chromosomes production 

process of each generation goes out of pure random selection. 

4. Data  

A. Traditional Power Generation Units 

The technical and economic information of the existing generation system, as well as the 

candidate unit specifications, are consistent with the ones provided in Tables III and IV in [49], 

respectively. This system has 15 production units installed with different capacities. The total 

installed capacity is 5100 MW.  

B. Wind Farm 

The nominal capacity of each wind farm is 60 MW, including 30 turbines with the power of each 

turbine equal to 2 MW. The six-state model output power of 60 MW and 2 MW wind units used for 

two different wind regimes are shown in Table 5 and Table 6, respectively. Wind regime 1 is based 

on Ardebil wind data [38]. The 𝑣𝑐𝑖𝑛, 𝑣𝑟  and 𝑣𝑐𝑜 speeds of the turbine used are 4, 15 and 25 m/s, 

respectively [45]. Wind regime 2 was also obtained for a windy region (Figure 1). The fixed part of 

the cost of operating and maintaining wind farms is 11500 $per MW in a year. The variable cost of 

operating and maintaining wind farms is $ 0.0025 per kWh. The initial investment cost per kW of 

wind farms is also $ 1485 [11].  

Table 5. Sixty-megawatt wind farm output power model for two wind regimes. 

Output Power (MW) Probability for Wind Regime 2 Probability for Wind Regime 1 

0 0.475 0.2942 

12 0.304265 0.174601 

24 0.089295 0.165499 

36 0.061224 0.184267 

48 0.028845 0.096124 

60 0.041371 0.084879 

 



 

 

Table 6. Two-megawatt wind farm output power model for two wind regimes. 

Output Power (MW) Probability for Wind Regime 2 Probability for Wind Regime 1 

0 0.475 0.2942 

0.4 0.3036 0.1734 

0.8 0.0854 0.1543 

1.2 0.0623 0.1694 

1.6 0.0098 0.07714 

2 0.0639 0.1314 

The six-state output model of a wind farm, including 30 turbines with the power of each turbine 

equal to 2 MW was obtained in accordance with the described method. In both regimes, for each 2 

MW unit, FOR is set at 0.1. The output characteristic of a wind turbine in wind regime 2 (strong wind 

regime) is shown in Figure 1. Furthermore, figure 2 compares these two regimes. 

 

Figure 1. Output characteristic of a wind turbine in wind regime 2 (strong wind regime). 

 

Figure 2. Histogram of 60 MW wind farm output power for two wind regimes. 



 

 

C. Forecast Load 

The forecasted load for the next 14 years of the system is assumed as shown in Table 7 which is 

consistent with the assumption in [49]. A two-piece linear LDC curve is used to calculate the energy 

during the planning, and the baseload is considered to be 50% of the peak load of each planning 

stage. 

Table 7. Forecast peak load. 

7 6 5 4 3 2 1 0 Planning Stage 

19000 17000 15000 13000 11000 9000 7000 5000 Forecasted Load (MW) 

D. Objective Function and Constraint Parameters  

The interest rate (d) in the study was 8.5%. The EENS cost of 0.05 $/ was is also included in the 

studies. The maximum LOLP value is 0.01. The minimum and maximum reservations are 15% and 

40%, respectively.  

The remaining capital coefficient values for OIL, LNG, COAL, PWR, PHWR and WIND units 

are 0.1, 0.1, 0.15, 0.2, 0.2 and 0.1, respectively. The minimum and maximum fuel mix ratio of the 

various units is shown in Table 8. 

Table 8. A fuel mix ratio of units used in planning. 

Fuel Mix Ratio Max (%) Min (%) 

OIL 0 30 

LNG 0 60 

COAL 20 60 

PWR 30 60 

PHWR 30 60 

The interval between the study and the beginning of planning (𝑡0) was two years. The GEP 

problem was implemented for seven planning stages in which no wind farm case should have an 

optimal combination of the generation system with five types of power plants; and in the case of a 

wind farm, the number of units must be chosen from among the six types of power plants so that the 

objective function is (at minimum) optimal. 

E. Specifications of GA  

When only studies are performed in the presence of traditional units (five types of units), for the 

seven programming stages, each chromosome contains 35 genes. In Section 4.2, which also includes 

the number of wind units in the chromosomes forming a single selectable type, each chromosome 

will have 42 genes. Integer coding is used to form genes. That is, each gene can have an integer value 

from zero to the maximum number of constructible units at each programming stage. 

To reproduce the generation in each iteration, the crossover operator was used for 60% of the 

population. The Roulette wheel is used to select the type of crossover and the probability of each 

type of one-point, two-point and substring crossovers is 0.7, 0.15 and 0.15, respectively. The 

mutation operator was used for one generation percentage, equivalent to three chromosomes per 

generation. To maintain the best chromosomes of each generation, the three chromosomes of each 

generation that have the best value for the objective function are transferred unchanged to the next 

generation. The initial population consists of 300 chromosomes, and GA was repeated for 150 

generations. Of course, to get the best possible answers, every GA was run multiple times and the 

best answer was reported as the optimal answer. 

 

 

 



 

 

5. Case Studies 

In this paper, two types of wind regime, including type 1 wind regime as the weak wind regime 

for Ardebil city in Iran, and type 2 wind regimes as a strong wind regime for a windy sample city, 

were used to obtain wind turbine output [38]. The output power of a 2 MW turbine unit was divided 

into 6 parts, 0, 0.4, 0.8, 1.2, 1.6 and 2 MW and for FOR = 0.1, using the output model calculation 

procedure according to Equations (2)–(4), the output models classified for two farms consists of 30 

turbine units calculated and is shown in Table 9. 

Table 9. Sixty-megawatt wind farm output power model for two types of wind regimes. 

Probability for Wind 

Regime 1 

Probability for Wind 

Regime 2 

Output Power 

(MW) 

0.475 0.2942 0 

0.304265 0.174601 12 

0.089295 0.165499 24 

0.061224 0.184267 36 

0.028845 0.096124 48 

0.041371 0.084879 60 

The required technical and economic data of the traditional power plants and wind farms 

studied in this article have been extracted entirely from references [49] and [11], respectively. In 

Section 4, the technical and economic information of the system under study was introduced. The 

studies in this article are presented in the form of three experiments as follows: 

5.1. GEP in the presence of wind farm 

In the first experiment, the planning was performed separately for two separate schemes. In 

plan 1, a 14-year planning interval, including seven 2-year planning stages, was implemented for the 

traditional power plant units. In plan 2, wind units were also considered as a selectable type of unit 

in the planning process. Thus, for plan 1, only studies were performed in the presence of five 

traditional unit types, for 7-stage planning, each chromosome contains 35 genes, whereas for plan 2, 

which also includes the wind units as a selectable unit type in chromosome formation, each 

chromosome will have 42 genes. 

For wind farms, the minimum number of constructions in each period is one unit, and the 

initial investment cost of wind farms is $ 1485 per kWh. The results of the two selected optimal plans 

and the costs of each plan are presented in Tables 10 and 11. 

Table 10. Selected optimal plans with the least cost function, in the presence of wind farm (plan 1) 

and in the presence of a wind farm (plan 2). 

WIND PHWR PWR COAL LNG OIL 
Power 

Plant 

2 1 2 1 2 1 2 1 2 1 2 1 Plan 

1 0 0 0 1 0 1 0 2 4 0 3 
Stage 

1 

2 0 0 1 0 0 2 1 2 2 0 3 
Stage 

2 

1 0 1 1 0 0 1 1 4 3 0 0 
Stage 

3 

3 0 0 0 1 1 2 1 1 1 1 3 
Stage 

4 

3 0 1 1 0 0 1 1 2 0 2 4 
Stage 

5 

3 0 2 0 0 1 1 1 0 0 1 2 Stage 



 

 

6 

2 0 0 0 1 1 1 1 1 1 3 0 
Stage 

7 

Table 11. Selected optimal design with the least cost function. 

2 1 Optimal Plan 

17245,513 17136,679 Total Cost (M$) 

11468,975 11461,397 Investment Cost of Initial Plan (M$) 

3723,465 3772,192 Operational Cost of Plan (M$) 

The results show that due to the high cost of initial investment of wind farms compared to other 

units, the total cost of investment increases, although the use of wind farms in planning leads to 

reduce the cost of operation.  

5.2. Investigating the impact of wind penetration on GEP 

The scenario which was considered in the second experiment was aimed at investigating the 

impact of adding wind to the system in a step-by-step manner. A certain number of fixed wind farm 

steps were added to the system at each stage. For example, to achieve 4% wind penetration in the 

generation system, two wind units must be constantly added to the production system at each 

planning stage, to the end of the 7-stage planning of 14 wind farm installations that have a capacity 

equivalent to 4% of the total peak load available in the generation system. To achieve 9, 13, 18, and 22 

percent wind penetration, 4, 6, 8, and 10 wind farms must be constructed in each 2-year design 

period, respectively. Since the number of wind units added in this scenario is initially fixed and 

constant, the number of chromosome genes is 35. Only in the process of problem-solving, the effect 

of the added wind units at each stage should be considered in the constraints of the problem. The 

process of adding stairwells continues until the LOLP constraint was violated. This scenario was 

implemented for both types of wind regime, and the results were obtained. 

Figure 3 illustrates the cost function changes as the wind farm penetrates the system. Although 

using wind farm as shown in Figure 4 reduces the Operational Cost of the system due to its low 

operating cost compared to other types of power plants, since the cost of building these units is high, 

adding these units to the production system increases the overall cost of the project. 

 
Figure 3. Increasing the cost of wind penetration plans in the system. 



 

 

 

Figure 4. Reducing the operational cost of wind penetration plans in the system. 

The effective amount of wind farm output power is the expected value of farm output power. 

For wind regimes 1 and 2 this is 11.8652 and 22.4075 MW, respectively. Due to the small cost of 

variable operating and maintenance of wind farms, these units were used in the process of 

calculating the operating cost to support the load. However, due to the low effective power output, 

the impact of increasing the cost of building these units was far greater than the cost of operating 

these units and increases the overall cost of the project. 

The effective amount of wind farm output with wind regime 1 is less than regime 2. For this 

reason, the amount of reduction in operating costs for regime 2 is higher than that of regime 1. 

As mentioned, the addition of wind farms can continue as long as the LOLP constraint is not 

violated, even if the increased cost incurred by the system is used. For the studied system, the LOLP 

constraint was violated in exchange for 22% penetration of wind farms with type 1 wind regime. 

Therefore, it is possible to install wind farms in the system if the wind regime type is one, with 8 

farms at each planning stage. Figure 5 shows the different values of LOLP at different planning 

stages for different wind permeation values with the Type 1 regime.  

 

Figure 5. Changes in loss of load probability (LOLP) plans with different type 1 wind regimes. 



 

 

As shown in Figure 6, for the penetration of regime-1 wind farms on the generation system, the 

LOLP constraint approaches the limit value of 0.01, and for the 22% penetration of this constraint in 

the 4-th planning stage, it was violated. However, if the LOLP constraint of Figure 5 is examined for 

wind regime 2, it is found that for the 26.5% wind penetration in the system, this constraint is 

violated due to the more appropriate wind regime 2 because of the higher reliability of the ratio to 

the wind regime is 1. Hence, the maximum possible installation of a wind farm with 2 wind regimes 

at each planning stage is 10 farms. 

 
Figure 6. LOLP constraint violation for 26.5% wind penetration in the system. 

5.3. Investigating the Sensitivity of the Problem of Initial Investment in Wind Farms 

In the third experiment, wind farms are considered as one of the types of power plant units to 

be selected. The minimum number of wind farm options for both types of wind regime is 1 unit and 

the maximum for type 1 wind regime is 8 units and for wind 2 regimes is 10 units. This experiment 

was conducted to determine the sensitivity of the objective function to the initial investment cost of 

the wind units using two turbine output power models derived from two different wind regimes. 

For this purpose, for each of the two initial investment amounts less than $ 1485 (1402 and 1320, 

respectively), and for the higher initial investment amounts of 1575 and 1650, different design costs 

are compared. As shown in Figure 7, by reducing the initial investment cost of the wind units, the 

cost of the required designs is reduced and by increasing the investment cost of these units, the total 

cost of the optimal design increases.  

 



 

 

Figure 7. The impact of reduced wind unit investment on the objective function. 

When the initial investment cost of wind units ($/KW) is 1650, the number of wind units in the 

optimally selected plan will yield the minimum designated number one. By reducing the cost of 

initial investment in optimizing the layout, more wind farms are being selected. Interestingly, in 

order to reduce the cost of investing wind farms to ($/kW) 1320, the final design selected has a lower 

cost than one that is not used in any wind farm system. In other words, if the cost of initial 

investment required for wind farms is reduced to less than ($/kW) 1320, plans are selected that, 

despite the use of wind farms, cost less than the total cost of not using wind farms. 

In the system under study, a plan with 8% wind penetration was chosen as the optimal design 

for reduction of the initial investment required for wind farms to ($/kW) 1320 for type 1 regime and 

for farms with wind regime 2, the selected plan has 11% wind penetration. Figures 8 and 9 illustrate 

the amount of variation in initial investment cost and operating cost of the selected designs for 

different amounts of initial unit investment cost reduction. Figure 10 shows the change in the 

number of units selected in different plans for regime 2. 

 

Figure 8. Cost reduction of system operation by increasing wind farm penetration. 

 

Figure 9. The impact of reducing the cost of investing wind farms in initial system investment. 



 

 

 

Figure 10. Change in the number of optimal design units by changing the cost of investing in regime 

2 wind farms. 

Due to the number of OIL units selected in different plans, it can be said that with the increase 

in the possibility of using wind units, the system is moving towards less use of OIL units. Due to the 

cost of investment required for OIL units, it is determined by reducing the initial investment cost of 

wind farms and making the price competitive with OIL units, given the lower operating costs of the 

wind units, plans use less OIL units. 

6. Conclusions 

In this paper, Genetic Algorithm was used to solve the problem of GEP. A six-state model was 

used to obtain the wind farm output power model. The method of calculating the six-state wind 

farm output model with the Forced Outage Rate (FOR) of wind farm units for use in long-term GEP 

calculations is described. Next in the first experiment of GEP using genetic optimization algorithm 

(GA) an optimized plan was obtained. In the second experiment, depending on the importance of 

knowing the maximum utilization of wind farms in plans for system planning, the maximum 

possible penetration was calculated by increasing the number of wind units in steps. Due to the 

existence of different wind regimes in different regions, two models of power output were 

developed for strong and weak wind regimes. The outcomes of the models were studied and 

compared. It was observed that by increasing the capacity utilization of wind farms, the cost of the 

plans increases. This was less for areas with a strong wind regime than for areas with a weak wind 

regime. 

In addition, by installing wind farms in areas with strong wind regimes, the maximum amount 

of capacity which is available is increased, subject to all constrains. Due to the growth of technology 

associated with the construction of wind farms and the reduction in construction cost per kW of 

wind, the sensitivity of the objective function to the change in construction cost was tested in the 

third experiment. It was found that for a 10% reduction in cost, the construction of these units can be 

found in a combination of generating units that, while using wind farms, cost less than the total plan 

cost.   

Finally, the studies presented in this paper show that by reducing the cost of initial investment 

due to the improvement of wind turbine and wind farm technology, the competitive potential of 

wind power plants is significantly increased compared to other power plants. This justifies the 

increase in the number and capacity of wind power plants. It is worth mentioning that the problem 

of generation expansion planning was investigated with some assumptions that by revising these 

assumptions we can re-examine the effect of these factors. The following can be suggested to 

complement the research: 



 

 

• A model with a higher number of scenarios for the wind farm can be used to increase the 

accuracy of the calculations. 

• In this study, the predicted two-piece linear model was used, while a more accurate model can 

be used to make the results more realistic. 

• Uncertainties in both forecasted load and costs can also be included in the calculations and its 

effect can be examined.  

• Given the problem with the HL1 level, the transmission system is assumed to be quite reliable, 

which can be considered the transmission network. 

• Models can be used to simultaneously consider wind, solar, and other types of renewable 

energy sources and address the issue. 

• In the issue of generation expansion planning, which was examined in this study, only the type 

of unit, the number and time of units being added to the final design are specified.  

• Running the problem by considering the network can determine the location of the units and 

the impact of the location on the reliability of the system. In this case, different regimes of wind 

can be applied to different regions, making the results closer to reality. 

• This study is conducted as a single bus, therefore the network is not considered. At the next 

level of system planning so-called Transmission Expansion Planning (TEP), the network should 

be studied, hence the role of increasing reactive power and low power factor due to the 

expansion of wind power can be investigated. 

 

Acronyms 

GEP Generation Expansion Planning 𝑃𝑎𝑣𝑎𝑖𝑙  probability of the 𝐶𝐴𝑃𝑎𝑣𝑎𝑖𝑙 

FOR Forced Outage Rate P Available Probability 

LOLP 

 

Loss of Load Probability Capacit

y (𝑃𝑎𝑣𝑎𝑖𝑙) 

Possibility to Access 𝐶𝐴𝑃𝑎𝑣𝑎𝑖𝑙   

𝑣 wind speed variable K output mode for each turbine 
𝑣𝑐𝑖𝑛 (cut-in wind speed) 

minimum wind speed required to operate the 

turbine 

𝑂. 𝐹 Objective Function 

𝑣𝑐𝑜 (cut-out wind speed) 
maximum wind speed terminates turbine power 

generation 

𝐼 Investment Cost 

𝑣𝑟 (rated wind speed) 
is the velocity of nominal power of the turbine 

𝑈𝑡 capacity of the units added at the 

t-th stage of the planning 
𝑃𝑟 nominal power of the turbine 𝑢𝑡

𝑖  capacity of units of type i to be 

constructed in the t-th phase of the 

planning 

P equivalent output power vector of the 

combination of units (MW)  

d interest rate 

A the number of units 𝐶𝐼i initial investment cost required for units 

of type i ($/MW) 
X output power vector of each wind unit (MW) s number of years considered for each 

step, which, is often 2 years for planning 
𝑃𝑖  probability of i being the unit of power 

output 

𝑆 Salvation Value 

K number of output power levels 𝛿𝑡,𝑖 cost-return factor for unit type i 
i number of available units 𝑇′ parameter is used to transfer to the 

base year 
𝑋𝑡 Cumulative vector of 𝑈𝑡  𝐸𝐸𝑁𝑆𝑡 energy not supplied in the t-th stage of 

planning (MWh) 
𝑋𝑡,𝑖 capacity of existing units of type i in the t-th 

period 

𝐶𝐸𝐸𝑁𝑆 value of each MWh of energy ($) 

𝐹𝐶𝑖 constant operating cost of type i ($/MW) 𝑡𝑘 Time which the system output capacity , 



 

 

𝑄𝑘 is greater than the Reserve Margin 

and load is lost 

𝑀𝐶𝑖 variable cost of operating unit type i at the t-th 

stage ($/MWh) 
𝑝

𝑘
 probability that 𝑄

𝑘
 is out of capacity 

𝐸𝐸𝑆𝑡,𝑖 amount of energy that unit type i provides at the 

t-th period 

𝑂 the Outage Cost during the planning 

period         
y operating cost routinely spent during each phase 

(not at the beginning or end of the phase)  
𝑆𝑘 amount of energy that is lost in the 

system if 𝑄
𝑘
 capacity outage occurs 

LDC Load Duration Curve 𝑈𝑡.𝑚𝑎𝑥 vector of the maximum capacity of 

new possible units 
for the programming stage t 

F (Load) characteristic of the load function of each stage in 

term of time in the LDC curve 
𝑀𝑚𝑖𝑛

𝑖  minimum ratios of the type i unit  
used in the t-th stage of planning, 

respectively 
L1 level of generation capacity before adding i-th unit 

capacity 
𝑀𝑀𝑎𝑥

𝑖  maximum ratios of the type i unit used 

in the t-th stage of planning  
L2 level of generation capacity after adding i-th unit 

capacity 
dload the differential value of the load used to 

calculate the surface area provided by 

each power unit  
dload the differential value of the load used to calculate 

the surface area provided by each power unit 

𝑅𝑚𝑖𝑛 minimum system reservations 

𝑅𝑚𝑎𝑥 maximum system reservations 𝑝
k
 probability of 𝑄

k
 

𝐷𝑡 maximum predicted load for the programming 

stage t 

ε maximum allowed value of LOLP 

𝑄
k
 outage capacitance , capacitance  is lost,   
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