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Abstract. We introduce a system that provides explanations in Nat-
ural Language for individual clusters of RDF resources, where clusters
are obtained using an external clustering tool. Our system is based on
the theory of (Least) Common Subsumers (CS) in RDF. We propose an
optimized algorithm for computing a CS, which allows us to compute the
CS for up to 80 RDF resources (each with its own RDF-graph of linked
data). We then generate a Natural Language sentence to describe each
cluster. A unique aspect of our explanations is the use of relative sen-
tences, including nested ones, to represent blank nodes in an RDF-path.
We demonstrate the usefulness of our tool by describing the resulting
clusters of a real, publicly available, dataset on Public Procurements.

Keywords: Explainable Artificial Intelligence (XAI) · Resource De-
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1 Introduction and Related Work

The success of subsymbolic approaches to the clusterization problem has in-
creased the importance of describing the obtained clusters — i.e., explaining
why some items were put together — both to developers who tune parameters,
and to end users [3]. For instance, a decision tree with k leaves has been recently
proposed as an explanation of the clustering obtained by the well-known method
of k-means [16], and by finding a minimal set of outliers to be excluded by the
clusterization, one can approximate a “reasonably-sized” decision tree [4]. Yet,
while decision trees and other data-structure-oriented descriptions could be well
suited for Computer Science developers and practitioners, explanations using
Natural Language — when available — are still among the most understandable
ones for end users, given that an explanation is a social interaction [15].

A different perspective is given by the distinction between model-aware vs.
model-agnostic explanation methods. Some clustering methods are self-explaining:
conceptual clustering [14] was introduced in 1980 as the problem of returning,
together with clustering results, a concept explaining the criterion for resources
aggregation. A recent review [18] collected most influential proposals on the
subject, but does not include any approach dealing with RDF resources. Again,
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while model-aware explanations describing the inner clustering mechanisms can
be useful for developers’ fine-tuning activities, model-agnostic explanations just
describing the common characteristics of an obtained cluster seem to be prefer-
able for communicating the results to lay users.

Motivated by the above considerations, in this paper we present a system that
given any clusterization method for RDF resources in an RDF dataset, returns
a description of the main commonalities in a cluster by a plain English sentence.
Our system builds on a formal foundation of Least Common Subsumers of a set
of RDF resources [6], but improves both on some computational aspects and
the Natural Language generation (NLG) of descriptions.

After some preliminary notions (Section 2), we present in Section 3 the op-
timized algorithm computing the CS of several resources. An NLG tool for CS
explanation is introduced in Section 4 and validated in Section 5 w.r.t. to a
publicly available dataset for Public Procurement. Conclusion and future work
close the paper.

2 Preliminaries

We assume the reader familiar with RDF and RDFS [17], fully covered by
textbooks [11]. We recall here just some basic concepts and definitions about
RDF Common Subsumers [6, 8] to make the paper self-contained.

When comparing RDF resources, it is indispensable to select the portion
of Linked Open Data [20] more suitable to describe them. In fact, taking into
account all triples unboundedly linked to a resource (also in a limited set of
datasets) would make unscalable most of applications. Thus we refer to an RDF
resource as a pair ⟨r, Tr⟩ — which we call rooted RDF-graph (in brief r-graph)
— collecting the resource identifier r and a set of triples used for its description
[6] with the condition that from r every other triple in Tr can be reached through
an RDF-path (see below). Coherently, both Simple Entailment between r-graphs
can be defined [6, Def.6], denoted as ⟨a, Ta⟩ |= ⟨b, Tb⟩, and Common Subsumers
(CS) in RDF [6, Def.7], which are themselves modeled as r-graphs of the form
⟨x, Tx⟩ (where x is a blank node unless a = b) such that both ⟨a, Ta⟩ |= ⟨x, Tx⟩
and ⟨b, Tb⟩ |= ⟨x, Tx⟩.

RDF-graphs have some peculiarities w.r.t. usual graphs (including Knowl-
edge Graphs), which ask for the extension of some basic notions of Graph Theory.
First, RDF admits also paths connected through the predicate (i.e., the predi-
cate of a triple stands as subject in another one). Thus, we define an RDF-path
of length n from r to s as a sequence of triples t0, t1, . . . , tn in which (1) the
subject of t0 is r, (2) for i = 1, ..., n−1, either the predicate or the object of ti is
the subject of ti+1, and (3) either the predicate or the object of tn is s [6]. Such
a peculiarity changes also the notion of connectedness, which may occur also
through the predicate; a resource r is RDF-connected to a resource s if there
exists an RDF-path from r to s [6]. The RDF-distance between two resources
is the length of the shortest RDF-path between them [6]. The distance between
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a resource r and a full triple t is the RDF-distance between r and the subject
of t; note that triples whose subject is r have zero-RDF-distance from r itself.

The representation of RDF resources as r-graphs ⟨r, Tr⟩ asks for some cri-
teria for the selection of triples to include in Tr describing a resource r. We
encapsulate all selection criteria in a Boolean predicate ϕ [6]: only triples sat-
isfying ϕ are selected. Our current implementation asks for the specification of
three parameters determining the value of ϕ: i) the datasets to analyse; ii) the
RDF-distance for exploration; iii) the list of so-called stop-patterns (analogous to
stop-words to be discarded in search engines). In our proposal, ϕ aims at focusing
on triples which are significant for the computation of a CS: tuning ϕ may lead
to r-graphs which are more representative of the main commonalities in a CS. To
further increase the significance of a CS, we iteratively eliminate from it triples
that provide little information, called uninformative triples. Stop-patterns and
uninformative triples include both general patterns/triples discarded in every
application domain, and some domain-dependent patterns/triples.

3 An optimized algorithm for the CS of several resources

We recall [6, 8] that the operation of computing a (Least) Common Subsumer is
associative — that is, to compute the LCS of three or more r-graphs, one can
start from computing the subsumer of any pair of them, and use the result to
add the third one, etc. in any order. Hence below we first present Algorithm 1 for
the computation of a CS of just two r-graphs, whose iteration to several r-graphs
is just hinted at the end of this section.

Algorithm 1 is an optimized version of a previously published algorithm [6],
which computes a CS ⟨x, Tx⟩ of two r-graphs ⟨a, Ta⟩, ⟨b, Tb⟩. Mimicking the
depth-first search in n-ary trees, ⟨x, Tx⟩ is computed incrementally with respect
to the triples (filtered by ϕ) directly outgoing from each resource, and recursively
when the predicates and/or the objects of such triples are subjects of other
triples. More precisely, for each pair of triples t1 =≪ a p c ≫, t2 =≪ b q d ≫,
both satisfying ϕ(t1), ϕ(t2), Algorithm 1 first recursively computes a CS ⟨y, Ty⟩ of
the two predicates p, q, and a CS ⟨z, Tz⟩ of objects c, d, then it forms a provisional
r-graph ⟨x, Tw⟩ with Tw = {≪ x y z ≫} ∪ Ty ∪ Tz}. Then it adds the triples in
Tw to Tx only if ⟨x, Tx⟩ does not entail ⟨x, Tw⟩ (Line 21).

Of course, Line 21 is only an optimization step, since in general it was proved
[2] for Description Logics that the size of the Least Common Subsumer of several
tree-shaped concepts can be exponential in the number of concepts, and that
proof could also be repeated for r-graphs3. Also regarding time consumption,
observe that Algorithm 1 could be launched with the two arguments equal to an
r-graph ⟨x,G⟩ (with x any subject of a triple that reaches all other resources),
and it is well known that finding a lean4 equivalent of an RDF-graph G is
NP -complete [19]. Since Algorithm 1 runs in time polynomial in the sizes of its

3 The same conclusion was recently reached [1] using cycles instead of trees.
4 A lean graph G [17] is an RDF-graph which is ⊆-minimal with respect to all other
RDF-graphs logically equivalent to G.
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arguments, we cannot expect it to yield a minimal r-graph (unless P = NP ), but
only a reduced version of it. Nevertheless, on the real RDF datasets we tested,
this optimization greatly reduces the size of the CS.

By iterating Algorithm 1 — i.e., starting from an initial pair of r-graphs and
using its returned CS as the input of the next iteration with another r-graph —
we can compute a CS of the whole cluster. By using the optimization of Line 21,
we were able to compute a CS of clusters up to 80 resources — i.e., the size of
the largest cluster returned in our experiments – and cascade such a CS to the
verbalization module.

4 Explaining commonalities of sets of RDF resources

The triple set computed by iterating Algorithm 1 may be serialized in different
formats and visualized as a graph, but none of these transformations is intelligible
by unacquainted readers. Thus, we designed and developed a Natural Language
Generation (NLG) tool able to explain in natural language the content of a CS.

Traditional NLG approaches for RDF are based on the application of rules
and templates, i.e., solutions highly domain-dependent and demanding man-
ual intervention. Recently, the advancements in deep learning gave a boost to
neural network-based NLG models (see [23] and [13], among others). In both ap-
proaches, the generated text considers only triples already present in the input
RDF graphs and not including blank nodes.

We here propose a template-based approach, generating text from r-graphs
logically computed from inputRDF-graphs: CSs; such r-graphs, by construction,
include blank nodes, that may also occur in positions other than the root. As
an example, consider a group of contracting processes described in the dataset
TheyBuyForYou [21] (further introduced in Section 5). The CS collecting their
commonalities may include the following triples:

_:x <http://data.tbfy.eu/ontology/ocds#hasRelease> _:y .
_:y <http://data.tbfy.eu/ontology/tbfy#releaseDate> "2019-01-14T00:00:00+00:00" .

which means that all contracting processes in the group (abstracted in the blank
node :x) have some release ( :y) dated 14 January 2019. Notably, :y does
not occur by itself in the input r-graphs but represents the fact that different
contracting processes refer to different releases, yet all dated 14 January 2019.

To the best of our knowledge, the tool we present is the only NLG tool able
to verbalize RDF triples involving blank nodes in any position. Other available
tools5 do not mention such a capability. Furthermore, Bouayad-Agha et al. [5]
surveyed 11 NLG approaches working on RDF graphs in 2014; none of them was
able to manage anonymous resources or generate text from triples not explicitly
in the input RDF graph (i.e., derived triples).

In the design of our NLG tool, we follow the approach of Gatt and Krahmer
[10], synthesized in the following six tasks:

Content Determination. This step aims at identifying the portion of avail-
able informative content to include in the text to generate. In our tool, such a

5 https://aclweb.org/aclwiki/Downloadable_NLG_systems
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Algorithm Find ReducedCS(⟨a, Ta⟩, ⟨b, Tb⟩, n)

Input :
⟨a, Ta⟩, ⟨b, Tb⟩ : a pair of r-graphs;

n : the RDF-distance for RDF-graphs exploration;

Output : ⟨cs, Tcs⟩ : r-graph s.t. both

{
⟨a, Ta⟩ |= ⟨cs, Tcs⟩
⟨b, Tb⟩ |= ⟨cs, Tcs⟩

Subroutine : Simple entailment between r-graphs ⟨x, Tx⟩ |= ⟨y, Ty⟩ [6]

Global
variables

:

ϕ : boolean predicate selecting triples;
uninf triples : triple patterns to eliminate from the results

S : set of records [a, b, ⟨w, Tw⟩] s.t.
{

(a, b) was already examined
⟨w, Tw⟩ is their CS

Local
variables

: ⟨x, Tx⟩ : the r-graph to be returned, incrementally built

1 if there is already the record [a, b, ⟨w, Tw⟩] ∈ S then
2 let ⟨x, Tx⟩ = ⟨w, Tw⟩
3 else
4 add [a, b, ⟨x, Tx⟩] to S;
5 if a = b then
6 let ⟨x, Tx⟩ = ⟨a, Ta⟩
7 else
8 let x be a new blank node not occurring in S;
9 let Tx = ∅

10 end
11 if n > 0 then
12 foreach t1 =≪ a p c ≫ such that ϕ(t1) = true do
13 foreach t2 =≪ b q d ≫ such that ϕ(t2) = true do
14 let ⟨y, Ty⟩ = Find ReducedCS(⟨p, Tp⟩, ⟨q, Tq⟩, n− 1);
15 let ⟨z, Tz⟩ = Find ReducedCS(⟨c, Tc⟩, ⟨d, Td⟩, n− 1);
16 let ⟨x, Tw⟩ = ⟨x, {≪ x y z ≫} ∪ Ty ∪ Tz}⟩;
17 while ∃t ∈ Tw s.t. t matches a pattern in uninf triples do
18 delete t from Tw

19 end
20 if ⟨x, Tx⟩ ̸|= ⟨x, Tw⟩ then
21 add Tw to Tx

22 end

23 end

24 end

25 end

26 end
27 return ⟨x, Tx⟩;

Algorithm 1: Optimized construction of a CS of ⟨a, Ta⟩ and ⟨b, Tb⟩
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content coincides with a computed CS, which by construction holds a compact
representation of all commonalities we consider significant. In fact, we: i) include
in the input set only triple patterns which are relevant to the problem of finding
similarities (Algorithm 1, Row 12); ii) exclude from the CS all triples too generic
to be informative (Algorithm 1, Row 17).

Text Structuring.This task deals with deciding how to structure the con-
tent above in a readable text. In our case, the content is organized in an r-graph,
in which different paths are RDF-connected to the root and include triples at
variable RDF-distance from the root. The tool generates one sentence (with
subject in the root) for each full path. Such sentences are presented in the order
the paths appear in the CS construction, supposing they are equally informative.

Sentence Aggregation. The RDF-connection is a native criterion for sen-
tence aggregation: each path RDF-connected to the root becomes one sentence.

Lexicalisation. This step aims at finding the right words to express informa-
tion. Our approach exploits the inherent structure of paths for the lexicalization
of triples, that depends on their RDF-distance form the root. At every RDF-
distance, the subject of a triple is lexicalized with a (different) pronoun, the
predicate with a verb in present tense and the object with a noun. Such nouns
and predicates are collected in a dictionary. If the predicate and/or the object is a
blank node, it is generated a phrase (“some generic resource”), further explained
through a relative sentence when the resource has successors in the r-graph.
Referring Expression Generation. This task deals with selecting the words
and phrases to identify domain objects. In our case, such entities are triple sub-
jects at any level of the RDF path to consider, represented by blank nodes. We
refer to them through generic pronouns, followed by (possibly recursive) relative
sentences lexicalizing paths connected to them. All such information are orga-
nized around the root: the tool generates sentences whose main subject is the
phrase corresponding to the root (“They all”).

Linguistic Realisation. The final step consists in combining all words and
phrases into well-formed sentences following a human-crafted grammar-based
approach. We give below the main rules of the grammar (terminal symbols are
quoted and vertical bar represents a choice between two forms of a rule).

CS → ”They all” Predicate (Noun | Noun RC )
RC → ”which” Predicate (Noun | Noun RC )

In the grammar above: RC is a nonterminal representing a relative clause;
Predicate (respectively Noun) is a nonterminal describing the text linguistically
realizing a term in the position of triple predicate (respectively, subject/object).
If the term is a blank node, the phrase ”some resource” linguistically realizes it.
We notice that Predicate and Noun produce a finite number of terminals; thus,
the substitution of all such terminals in the above rules yields a (very lengthy)
right-recursive Type-3 Grammar. Such a grammar guides the implementation of
the linguistic realisation, that follows a breadth-first strategy. In particular, if
the CS includes multiple (say, n) RDF-paths, we first generate n phrases, one
for the first triple of each path. Such phrases are complete if the path has length
0 (just one triple), or refer to a nonterminal RC when the path has length ≥ 1.
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The approach proceeds by browsing each path one triple further: their verbaliza-
tion is added by substituting all non terminals RC once. The exploration ends
when no path extends further.

5 Use case: explaining clusters in TheyBuyForYou

We validate the NLG tool presented in Section 4 w.r.t. the public procurement
knowledge domain, modeled in the “TheyBuyForYou” dataset [21]. TheyBuy-
ForYou knowledge graph includes an ontology for procurement data, based on
the Open Contracting Data Standard (OCDS) [22] . The OCDS data model is
built around the concept of a contracting process, which models the procedures
followed by a business entity when purchasing services or products.

Our use case shows the commonalities shared by different contracting pro-
cesses, collected in the same cluster by the well-known clustering algorithm k-
Means [12]. We implemented k-Means with k = 250 by Scikit learn6 on the set of
contracting processes released on 14 Jan. 20197, which includes 3,198 resources.
The first returned cluster is made up of 14 resources, to which we iteratively
applied Algorithm 1, finding a CS of them all. Figure 1 shows the text generated
by our NLG tool to explain the commonalities in the above cluster.

We stress that we do not evaluate here clustering results: our approach is
agnostic w.r.t. to the clustering process and aims at generating human-readable
text corresponding to a set of RDF triples modeling the commonalities of a
group of resources.

Intuitively, when finding commonalities in a set of resources, the addition of
a new item may only reduce the CS, if the fresh resource does not share the full
content collected up to its addition. In fact, in Figure 2 we show the explanation
of the commonalities of the first seven resources in the analyzed cluster. The
reader may notice that the explanation in Figure 2 is more informative (i.e.,
specific) than the one in Figure 1, because it describes a smaller set of resources.

We now discuss two distinguishing features of our NLG approach.

First, the ability of managing blank nodes is crucial for abstracting several
triples with common predicate/object. In both figures, the phrase “some re-
source” translates blank nodes with successors in the CS r-graph; triples rooted
in such blank nodes are further explained in relative sentences whose common
subject is the pronoun “which”. As an example, consider Commonality 1) in Fig-
ure 1. Each contracting process in the cluster has a release that references one
resource, which, although different from all other contracting processes, shares
with them 7 features (publisher name, release initiation, etc.). All the commonal-
ities recursively expressed in relative sentences would be lost without considering
blank nodes. Instead, our method uses blank nodes to chain triples reaching the
same known object, until the maximum exploration depth.

6 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.

KMeans.html
7 The full Knowledge Graph is downloadable at https://tbfy.github.io/data/
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Fig. 1. Explanation provided by our NLG tool of a cluster of 14 contracting processes,
returned by running k-means (k=250) over the whole set (3,198 resources) of contract-
ing processes emitted on 14 January 2019.

Second, unlike NLG-based summarization approaches, our method does not
just verbalize the set of triples explicitly included in input RDF-graphs; it gen-
erates human-readable text from a newly computed set of RDF triples that
logically represent the commonalities shared by groups of resources. As a conse-
quence, the informative potential of the returned explanation is rather significant
and double-tied to the logic-based nature of computation.

6 Conclusion and Future Work

We implemented a post hoc, model-agnostic explanation system that provides
natural language descriptions of single clusters of RDF resources, previously
obtained by any external clusterization tool. Our system is based on the theory
of (Least) Common Subsumers (CS) in RDF [6, 8]. We presented an optimized
version of an algorithm for computing a CS, that allowed us to compute the CS
of the largest cluster in our experiments (80 RDF resources, each one with its
own RDF-graph of linked data), to which we pipeline the generation of a Natural
Language sentence describing it. An original feature of our explanations is the
use of (possibly nested) relative sentences to represent blank nodes in an RDF-
path. The application of our tool to a real dataset regarding Public Procurements
shows both its usefulness in describing the obtained clusters and the possibility
to use it in an interactive process to find more meaningful, fine-grained clusters.

The results of our tool show that although all the characteristics described by
the CS are actually common to all resources, some of them could be considered
more relevant than others for an end user. Hence, in the near future, we aim to
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Fig. 2. Explanation provided by our NLG tool of the commonalities of 7 contracting
processes selected in the cluster of 14 previously explained in Figure 1.

add to our tool a filter by relevance of the characteristics in the CS, considering
that there are two types of relevance [7, 9]: one relative to the general context,
and one relative to the user’s previous knowledge.

Data availability: Data publicly available at https://tbfy.github.io/data/
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