
EasyChair Preprint
№ 6204

Enhancing Software Quality Using Artificial
Neural Networks to Support Software Refactoring

Parveena Sandrasegaran and Sivakumar Vengusamy

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 1, 2021

1

Abstract— Current trends of software refactoring involve

tools and techniques to eliminate code smells that hinder the

software from achieving quality goals. This is carried out

manually as the developer is required to analyse the system

in order to identify how a particular quality attribute is

being affected. This approach to software development is

inefficient as a majority of software engineers lack this skill

and it prolongs the time allocated for the software’s

implementation and maintenance. This dissertation outlines

the need for Artificial Neural Networks to support software

refactoring in order to enhance the system’s quality. This

justification is emphasized by means of illustrating the

issues that arise when software quality is affected by the

presence of codes smells that have been overlooked by the

developers. By adhering to a research methodology that

comprises of SEVEN major phases, an ANN model is able

to measure software quality in terms of efficiency,

maintainability, and reusability. This calculation is based

off inputs that are generated through SciTools whereby an

application is decomposed into metric parameters such as

Cyclomatic Complexity (CC). The results of the quality of

ELEVEN JAVA projects were quantified in order to

further analyse patterns of code smells; this provides an

insight on how the model may be utilized to enhance

software quality. Furthermore, the performance of the

model is evaluated relative to other Machine Learning (ML)

models.

Index Terms—Software Quality, Software Refactoring, Neural

Networks, Code Smells, Refactoring Techniques

 Introduction

Software products that are produced by traditional or agile

methodologies often require a prolonged implementation,

testing, and maintenance phase. This is due to the coding style

that several developers adopt by which unnecessary Lines of

Code (LOC) are present in the system. This imposes a delay in

the software’s start-up and may degrade its performance. In

addition, such systems do not meet the quality criteria based on

McCall’s Factor Model by which a system should attain

specific quality standards that are categorized as product

operation, product revision, and product transition factors.

Ideally, the term quality is defined based on the user’s

perception of a quality system. However, general features

influence this ideology of a quality system; such aspects include

each classification of McCall’s Factor Model respectively:

efficiency, maintainability, and reusability. The core of

degraded quality commences with programming concepts that

have been implemented incorrectly.

Software refactoring is the process of reorganizing the code

that makes up a software, it involves improving the internal

structure of the system to enhance its non-functional properties

without any modification to its behaviour (Satwinder Singh,

2018). This process is supported by a series of techniques that

identifies defects that hinder the system from executing.

Although current trends of software refactoring assist

developers to identify and fix bugs and errors within the system,

these techniques are applied manually which leads to the

excessive consumption of time, effort, and resources (Alotaibi,

2018).

Developers are limited to identifying errors and defects with

regards to the desired output from the code during its execution.

Code smells are characteristics of a program that is a result of

design issues which hinders the program from achieving

particular quality goals (M. Mohan, 2019). Such characteristics

continue to exist among the various classes and methods of the

system regardless of whether manual refactoring has been

performed. Artificial Intelligence (AI) is an approach

considered to automate refactoring. Various studies on an AI

subset known as Machine Learning (ML) have been conducted

to critically analyse its effectiveness towards addressing issues

in refactoring. Specifically, Artificial Neural Networks (ANN)

have been designed to execute aspects of software refactoring.

The following section aims to discuss problems that are not

addressed by current software refactoring techniques.

 Problem Statement

The current use of software refactoring improves the design

of an application. However, it does not eliminate code smells;

such as data clumps, long method, refused bequest, and God

class; that have an adverse effect on software quality goals.

These code smells violate the SOLID design principles

resulting in an increased time, cost, and effort to cater novel

requirements while simultaneously failing to achieve quality

standards. The support of ANN specifically to measure

software quality may be investigated to provide the developer

with appropriate refactoring options to achieve quality goals

that are hindered by code smells.

 Aim

The aim of this research is to propose an ANN model that

measures the quality of an application in order to manually

Enhancing Software Quality using Artificial Neural Networks to support

Software Refactoring

Parveena Sandrasegaran, V. Sivakumar

Asia Pacific University Malaysia

parveena6@gmail.com, dr.sivakumar@staffemail.apu.edu.my

2

identify code smells affecting a specified set of quality goals.

This assists in justifying the model’s support for refactoring as

this enhances software quality.

 Objective

▪ To design an ANN model that measures software quality

based on parameters that are prone to creating code smells

▪ To acquire and pre-process the data set using a repository

tool known as GitHub

▪ To analyze the data set for object-oriented metrics using

SciTools

▪ To assess testing strategies that enable the researcher to

test the proposed ANN model and measure its impact on

software quality

▪ To evaluate the ANN model relative to existing ML

models

 Significance of the study

Often coding errors with regard to the software’s structure

are created during implementation; however, these errors are

overlooked and/or unidentifiable. This is costly to amend once

the software has been deployed and will require double the

effort and man hours to identify and eliminate the error

(HaitaoZhao, 2019). Existing studies on ML models concluded

a tainted quality as the system’s complexity increased.

Therefore, these models are applicable to support software

refactoring to an extent. The study of ANN models to support

software refactoring is significant as it is able to quantify

software quality in order to recognize patterns of code smells

regardless of a system’s complexity (Chen, 2018). This is ideal

in the specified context as several patterns of code smells are

overlooked due to the system’s complexity. Such complexity is

commonly experienced in the software industry. Furthermore,

the model may act as a tool to alert the developer of a decline

in a particular quality in order to perform the corresponding

refactor. The selection of ANN minimizes the effort, cost, and

time required during software development and achieves

software quality goals by embedding quality that is based on

each category of McCall’s Factor Model into the system.

 Literature Review

Software refactoring is a major role in the implementation

phase of the Software Development Life Cycle (SDLC).

Existing software refactoring techniques are not automated

hence resulting in an excessive consumption of time, effort, and

resources (Alotaibi, 2018). Additionally, developers are limited

to identifying errors and defects by means of monitoring the

desired output from the code during its execution. Numerous

experimental researches have been conducted to analyze the

ability of a software refactoring technique to eliminate a

particular code smell.

The presence of code smells hinders the software from being

maintainable and expandable. Current software refactoring

techniques do not promote a full elimination of the code smell.

This suggests that code smells continue to exist among the

various classes and methods of the system regardless of whether

refactoring has been performed. Therefore, utilizing a set of

algorithms intended for recognizing patterns, known as neural

networks, may be used to improve the software refactoring

process in order to accommodate particular quality attributes.

Using neural networks to support refactoring techniques is

vital as it assists in minimizing the time, cost, and effort

required to carry out the software refactoring process.

Additionally, automating software refactoring has been proven

to be complex and may result in added ramification to the code

(O.Deryugina, 2019). Therefore, the use of neural networks

rather than automating the process would provide the developer

with a series of predictions of the software’s quality in order to

apply the appropriate refactoring techniques to the code.

This systematic literature review aims to identify and

critically evaluate commonly utilized refactoring techniques

that are applied manually or with the aid of tools. In addition,

approaches to how neural networks may be used to support the

process shall be analysed. The impact of neural networks used

to enhance the quality of the system in the implementation and

maintenance phases of the Software Development Life Cycle

shall then be assessed. In order to understand the reliability of

neural networks and its utilization with software refactoring, the

following research questions shall be pursued.

RQ1. How is software quality impacted by the support of

neural networks in refactoring techniques?

RQ2. How can neural networks be integrated with existing

refactoring tools?

RQ3. What training algorithm can be applied to the neural

network to assist software refactoring?

The structure of this chapter is as follows: The following

section outlines related works and the search strategy employed

to recognize the relevance of the work with consideration of the

area of study. Subsequently, a discussion of the various

software refactoring techniques shall be outlined to answer

RQ1 and RQ2 respectively. Furthermore, a solution to RQ3

shall be explored prior to identifying the research gap and

providing a conclusion to this literature review.

2.1 Related Works

Studies were carried out to analyse the impact of software

refactoring in order to detect and eliminate code smells and anti-

patterns. Several systematic literature surveys in the area of

software refactoring to eliminate code smells have been carried

out. In the discipline of software refactoring, specific

milestones have been presented by several authors such as

(Alotaibi, 2018), (Satwinder Singh, 2018), and (M. Mohan,

2019). A summary of the results presented by the systematic

literature survey gathered by the respective authors is outlined

in Table 1.

(Alotaibi, 2018) revealed various perspectives of the impact

of software refactoring and the challenges that arise during the

implementation and maintenance phases due to the current form

of refactoring. More than 30 papers were filtered from search

engines such as ScienceDirect and Elsevier to extract and

analyse the findings of the paper. This was carried out to grasp

a deeper understanding of the influence of the current mode of

refactoring to the Software Development Life Cycle.

3

A systematic literature survey was conducted by (Satwinder

Singh, 2018) on the study of refactoring techniques to eliminate

smells in the code. 1053 research items between 2015 and 2018

were reviewed to understand uniform methods to optimize the

code by eliminating code smells. These items were filtered and

gathered from IEEE, Elsevier, ACM, and Springer.

Approximately 200 articles were refined after applying an

inclusion-exclusion criterion to the research items.

Similar to the systematic literature survey conducted by

(Alotaibi, 2018), (M. Mohan, 2019) exhibits the opportunities

that emerges to counteract the challenges faced in the current

utilization of software refactoring. 58 papers dated between

2012 to 2017 were reviewed on the basis of the investigation.

These papers were published by leading Journals such as

Springer and IEEE. Based on the systematic literature survey,

the author concluded that the current trend of software

refactoring (manual) affects other aspects of the code. This is

exemplified in a scenario whereby a software refactor in one

class causes errors to arise within the same class or another

class.

2.2 Search Strategy

The process of refining research articles commences by

specifying essential keywords related to the area of study.

Additionally, numerous leading Journals; such as IEEE and

Elsevier; were identified to commence the search. These papers

then went through two levels of refinements in order to filter

appropriate papers that added valuable knowledge to the area of

study. Initially, 50 papers were filtered based on the relationship

between the title of the paper and the research area. The

research papers were further refined to 25 papers on the basis

of its abstract. The final concentrated research articles were

then reviewed and analysed to identify similarities between the

papers and limitations to the study. Based on the acquired

papers, the researcher was able to justify the use of neural

networks to aid software refactoring techniques in order to

enhance software quality. The outcome of the papers reviewed

is discussed in the following section.

2.3 Software Refactoring Technique Analysis

The following section aims to discuss possible solutions to

the research questions outlined in the introduction section of

this paper. Three software refactoring techniques have been

selected to focus on the problems that it addresses and

challenges that are faced with the current delivery of the

technique. These techniques shall be evaluated on the basis of

how the software’s quality is influenced as a result of the

refactor. Furthermore, the possible integration of neural

networks with these techniques shall be critically analysed to

justify its ability to enhance the software’s quality with focus to

improving productivity in the Software Development Life

Cycle.

2.3.1 Encapsulate Field

A key feature that object-oriented programming comprises of

is encapsulation. This feature is used to encourage the

utilization of access specifiers rather than allowing all objects

to be public. Code is refactored using this technique by

suggesting the use of getter and setter methods for a particular

field; the field is then converted from public to private.

Additionally, data class is the code smell that this refactoring

technique addresses whereby a newly created class comprises

of objects containing only data (Giovanni Grano, 2019). This

code smell violates the Single Responsibility Principle as a

class that comprises of numerous objects containing data to be

utilized by other classes would require multiple reasons to

change and will involve major reworks to the system to

accommodate the necessary changes. The violation of this

principle degrades the system’s maintainability quality

attribute.

Visual Assist is a refactoring tool embedded within

Microsoft Visual Studio that implements Encapsulate Field.

Figure 1 illustrates how this tool is utilized during the

implementation phase. However, the use of this tool only

enhances the system’s security and integrity attributes rather

than eliminating code smells that violate the Single

Responsibility Principle. Neural networks may be integrated

with this tool by assessing the nature of the program in order to

provide suggestions to the developer to apply the Encapsulate

field. This ensures that unauthorized parties do not have direct

access to the field.

Table 1 Summary of systematic literature survey

Figure 1 Refactoring using Encapsulate Field in Visual Assist

4

2.3.2 Extract Method

Code fragments that are grouped together into a single

method should be separated into a new method. Likewise, the

existing method should include a method call to the new

method, this is performed using a refactoring technique known

as Extract Method. This technique improves the code

readability and decreases code duplication and the probability

of errors occurring within the class. Extract method addresses

several code smells that affects the program’s design and

implementation such as data clumps, long method, refused

bequest, and duplicate code.

Code Smell What is it? Quality factors

impacted

Data

Clumps

Code that comprises

of identical groups

of variables that

were the effect of

copying and pasting

open source code

snippets

Flexibility,

Reliability

Long

Method

An oversized

method that

comprises of too

many Lines of Code

(LOC) (Gupta,

2019)

Efficiency,

Maintainability,

Reusability

Refused

Bequest

Creating inheritance

to use objects in a

parent class,

however, both the

child and parent

classes are entirely

dissimilar

Testability,

Reliability

Duplicate

Code

Redundant code

within the same

method, class, or

program

Efficiency,

Maintainability,

Reusability,

Flexibility,

Reliability,

Testability

Table 2 summarizes the code smells that Extract method

discloses and its influence to software quality. Extract method

is supported in a refactoring tool known as Smalltalk

Refactoring Browser whereby code is restructured without any

modifications to its behaviour. In contrast to Visual Assist, this

refactoring tool requires the programmer to select a method’s

component that should be extracted as a separate method

relative to the code smells that are addressed. This tool does not

enhance the productivity of novel programmers that are not able

to recognize the code smells. Therefore, neural networks many

be integrated with this technique by initially recognizing the

code smells that exist within the program. Once these smells

have been detected, the developer may be notified to apply the

extract method to the area where the code smell exists. The

application of neural networks will uphold software quality as

it assists in immediate detection of the code smells to apply the

extract method.

2.3.3 Pull Up Field

Problems arise when two or more classes comprise of the

same field as redundant changes are required when

functionalities are added to the system. Pull up field is a

refactoring technique that is used to counteract this problem by

moving the same field to a superclass that extends the

corresponding classes and removing redundant code.

Additionally, long parameter list and duplicate code are the

main code smells that are addressed by pull up field.

Long parameter list is a common code smell that is

encountered by several programmers for several reasons that

are dependent on the nature of the class. The primary cause of

long parameter lists from arising is due to the necessity of a

series of algorithms to be utilized in order to obtain a particular

result. This is recurrent when using different algorithms to

capture and extract random features of an image. Long

parameter lists may also arise when classes are constructed

more independently, this decreases the dependency among the

various classes and affects the efficiency of passing parameters

between classes.

Similar to long parameter list, duplicate code is a code smell

that commonly occurs in the programming industry whereby

several programmers are working on various segments of a

program simultaneously (Sievi-Korte, 2019). Programmers are

unaware of the same code being applied within the same

program at the same time; this affects the testability,

maintainability, and efficiency of the program. Testability is

affected as it would introduce redundant errors and bugs which

will result in an increase in testing efforts. Similarly, it

replicates the need to maintain the same set of code rather than

maintaining and applying novel functionalities once.

Furthermore, the time taken to execute the program would be

prolonged due to the compiling and execution of duplicate

code.

The Eclipse IDE

comprises of a

refactoring tool that

implements the Pull Up

Field technique by

declaring abstract

methods in a parent class

and/or relocating a field

to a parent class, this is

illustrated in Figure 2.

This tool provides the

developer with an

insight of the refactoring

results prior to executing

a refactor. This is

previewed as a tree that

displays each component within the program that will be

affected by the refactor. By integrating neural networks, the

developer is able to be notified of overlooked code smells such

as redundant code as they are required to manually detect code

Table 2 Impact of code smells to software quality

Figure 2 Pull Up Field implemented in the

Eclipse IDE

5

smells and utilize the tool to refactor the code. The integration

of neural networks with the Pull Up Field technique contributes

to the software’s testability, maintainability, and efficiency.

2.4 Using Neural Networks to detect code smells

Neural networks can be utilized to support several software

refactoring techniques by recognizing patterns of code smells

in order to perform a refactor (Ouni, 2017). This will decrease

the effort required and improve the productivity of the

developers during the implementation and maintenance phases.

This is due to the automated detection of code smells rather than

developers analysing the code to detect such code smells.

Similarly, the utilization of neural networks in software

refactoring would assist novel programmers to recognize

patterns of code smells and enhance their skills with regards to

writing quality code. In order to recognize patterns of code

smells, the neural network shall segregate the program into n

number of sections to conduct a predictive analysis that

forecasts when a particular form of code smell will appear.

Based on this analysis, the developer is notified of the potential

code smell to perform the respective refactor.

2.4.1 Newton’s Method

Newton’s method is an algorithm that uses the Hessian

matrix to train neural networks for optimization (Oliveira,

2019). This algorithm searches for a finer training direction by

using the second derivatives of a function that plots an event

onto a real number in order to represent a “cost” that is linked

to the event, this is known as a loss function (Ting, 2019). The

premier Newton’s training direction is initially acquired in

order to augment the performance of the parameters and

training rate. This training algorithm is preferred over several

training algorithms due its ability to converge to the root

promptly (Mujtaba Alshakhouri, 2018). This is essential during

the development of the software as it increases the productivity

of the developers and improves the quality of the code with

regards to catering for efficiency, testability, and

maintainability. Furthermore, the expression below depicts

Newton’s method with regards to training the neural network to

recognize code smells whereby 𝒂 = the first Newton’s training

direction.

𝒂 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
−

(𝑥𝑘)2

2

𝑓"(𝑛𝑘)

𝑓′(𝑥𝑘)

𝑥 = 𝑉𝑒𝑐𝑡𝑜𝑟 𝑝𝑜𝑖𝑛𝑡

𝑛 = 𝐷𝑖𝑣𝑖𝑑𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎 𝑝𝑟𝑜𝑔𝑟𝑎𝑚

𝑘 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

2.4.2 Variable Learning Rate Backpropagation

Variable Learning Rate Backpropagation is a training

algorithm that iteratively processes a set of training data in order

to learn (Ting, 2019). To implement this algorithm, the input

pattern (Xi) and target outputs (Xo) are expressed as (Xi, Xo). The

input pattern requires specific outputs of each neuron

throughout the layer. The output layer is responsible for

presenting a certain output based on the inputs; therefore, the

actual and target outputs provide an error signal that

differentiates the two from each other (Ting, 2019).

Furthermore, the value that each neuron and weight carries

influence this error signal. The error is propagated backwards

after calculating its value; this updates the values of the weights

and bias in order to achieve a better accuracy. As outlined in the

equation below, the error is continuously adjusted until the

validation dataset ensures that the model is underfitted (Davide

Arcelli, 2018).

𝑬𝒋 = 𝑂𝑗(1 − 𝑂𝑗) ∑ 𝐸𝑖𝑊𝑖𝑗

𝑖=0

𝐸 = 𝐸𝑟𝑟𝑜𝑟

𝑂 = 𝑇𝑎𝑟𝑔𝑒𝑡 𝑜𝑢𝑡𝑝𝑢𝑡

𝑊 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑠

𝑖 = 𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑗 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

2.4.3 Levenberg-Marquardt

By computing a matrix, known as the Jacobian Matrix, that

contains the first-order partial derivative of a vector valued

function, the Levenberg-Marquardt algorithm (represented in

the expression below) is able to proceed towards a second-order

training rate (Almas Hamid, 2018). The algorithm offers dual

possibilities to converge in different directions for a single

iteration, this enforces a more robust execution. Although, input

parameter spaces may be at loss in this algorithm, it is able to

identify optimal solutions in order to attain high accuracy

(Almas Hamid, 2018). Furthermore, this allows the algorithm

to achieve a better performance, speed, and accuracy in

comparison to Variable Learning Rate Backpropagation and

Newton’s method algorithm.

𝑺 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽 ∑[𝑦𝑖 − 𝑓(𝐽𝑖 , 𝛽)]2

𝑚

𝑖=1

𝑆 = 𝑆𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑞𝑖𝑜𝑛𝑠

𝛽 = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑒𝑐𝑡𝑜𝑟

𝑓 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

𝐽 = 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑀𝑎𝑡𝑟𝑖𝑥

𝑚 = 𝐸𝑚𝑝ℎ𝑖𝑟𝑎𝑐𝑎𝑙 𝑃𝑎𝑖𝑟𝑠

 Research Gap and Summary

Software refactoring is a major role in the implementation

phase of the Software Development Life Cycle. This process

has not evolved to result in an automated procedure as

developers are required to manually analyze the program to

recognize code smells that have to be eliminated using software

refactoring. However, several code smells remain within the

program as they have been overlooked by developers due to the

lack of skill or refactoring tool constraints. Neural networks are

an agile approach to recognizing patterns of code smells in

order to perform a refactor and enhance the quality of the

software. This approach to support the refactoring process may

be supported by utilizing training algorithms such as Newton’s

method, Variable Learning Rate Backpropagation, or

Levenberg-Marquardt to understand the nature of the program

and recognize code smells rapidly. This study is limited to

common refactoring techniques and commonly utilized training

algorithms that are able to predict outputs based on novel

inputs. Future research with regard to automating software

6

refactoring or utilizing evolutionary computations to enhance

the application of software refactoring may be required.

 Research Methodology

This section presents a suitable research methodology that

encourages a systematic approach to conducting an

experimental research based on quantitative data. The

methodology consists of SEVEN distinct phases that produces

minor deliverables to document the administration of the

research accordingly. The phases include data collection, data

pre-processing, design, implementation, testing, validation, and

evaluation.

 Data Collection

The datasets that are required during the testing phase of the

research will be acquired from GitHub. It acts as a public code

repository that allows users to upload various projects that

varies in consideration of programming languages that were

used for its development. FIFTEEN Java Projects that have

been uploaded into the repository were collected with varying

complexity, LOC, and various legacy systems that comprises of

code smells; this assists the researcher in justifying the use of

ANN to enhance software quality. The selected projects

become the input of the subsequent phase.

 Data Pre-Processing

Subsequently after the Java Projects have been collected, the

data shall be analysed to identify any missing data. The

execution of the projects in the NetBeans IDE assists in

identifying any missing data that involves absent dependencies

between classes and/or loss of values/variables in a

method/class. Noisy, missing, and inconsistent data shall be

discarded from the acquired data set. The refined projects were

then analysed using SciTools in order to identify the

independent variables; this is outlined in Table 3. The refined

and analysed dataset shall be stored in an Excel spreadsheet for

the implementation and testing phases of the research.

 Design

The formulation of ANN specific to enhance software

efficiency, maintainability, and reusability is designed during

this phase. As illustrated in Figure 3, the ANN comprises of a

Single Layer Architecture that is embodied by THREE distinct

layers: input, hidden, and output layer. This architecture

receives metric parameters that are organized in different

columns. This input enters the hidden layer and is dependent on

the set bias and weights. SIX neurons form the hidden layer; the

output it produces is relative to the activation function initiated.

The data produced in the output layer is then utilized to quantify

the efficiency, maintainability, and reusability of the

corresponding application in consideration of the metric

parameters that have been extracted.

 Implementation

MATLAB is the IDE that shall be used to simulate the ANN

model, this is due to the deep learning toolbox that is offered in

the platform. The analysed dataset that was stored during data

pre-processing shall be imported to IDE in order to act as an

input for the ANN model. In order to ensure that the neural

network is able to accept the imported inputs, it is essential to

convert the numerical values in the spreadsheet into binary

values in an array.

As stated in the design phase, the hidden layer comprises of

SIX neurons. These neurons act as a mathematical function that

receives n-number of inputs that are mathematically weighted

separately. The sum of this computation subsequently passes

through an activation function. The selected activation function

comprises of a hyperbolic tangent function, 𝑥(𝑗) =
tanh(𝛽1 + 𝛽0 ∑ 𝑗, 𝑘𝑗𝑖), as it is useful for classification issues.

Additionally, the use of this activation function ensures that the

probability of the network getting wrapped remains at a

minimal as it avoids slowing down the network’s classification.
The output layer as a similar design to the hidden layer.

However, the further computation with its neuron provides a

predicted probability of the software’s necessary coefficient.

This value is inserted into the respective quality metrics to

quantify the software’s efficiency, maintainability, and

reusability. Furthermore, the results from the output layer

undergoes a Variable Learning Rate Backpropagation

algorithm that applies a chain rule. This minimizes the

network’s chance of error by calculating the direction of the

steepest descent and executing a backward pass in order to

adjust the parameters of the model.
MATLAB comprises of a Machine Learning Toolbox that

assists in visualizing the network’s architecture, progress, and

plots. However, the results of this feature are subject to the

Figure 3 Single Layer Architecture

Table 3 Extracted metric parameters of the refined Java Projects

7

IDE’s pre-programmed training algorithm: Levenberg-

Marquardt that may result in a different performance and error

histogram.

 Testing

The results that were gathered from the execution phase

involves the predicted and quantified software quality with

regard to efficiency, maintainability, and reusability. The

metric’s parameters are analysed in order to manually identify

code smells in consideration of Design Principles. The standard

recognition of code smells, discovered by (Kim, 2017), is in

reference to Table 4. These rules are established to discover the

effect of the code smell with the corresponding quality attribute.

The result of this phase is documented in the following chapter.

Code Smell Rules Affected quality

attribute

Large Class ACU>70% || RC>20 Maintainability,

Efficiency

Lazy Class RC=0 || CC<3 ||

WMC<=2

Usability, Reliability

Data Class HV>4500 ||

WMC>50

Flexibility, Testability

Parallel

Inheritance

Hierarchies

NCC>4 Reusability,

Portability, Flexibility

God Class WMC>=47 ||

HV>4900

Efficiency, Reliability,

Usability,

Maintainability,

Flexibility,

Testability,

Portability,

Reusability

Feature Envy RC>20 || WMC>50 Reusability,

Efficiency

Data Clumps MI>60 || ACU>50%

|| CC >=35

Maintainability,

Efficiency

Long

Parameter List

RC>=15 || MI>70 Maintainability,

Reusability

 Validation

Validation of the neural network is carried out by calculating

the classification error of the neural network. This is performed

by utilizing the weights generated from the model’s training

(model training is elaborated in the Implementation phase). In

a scenario where the classification error is high, a higher

threshold is declared and the process of presenting the input or

target vectors to compute novel weights and biases for the

network is repeated; this measure is known as epoch. This phase

is partially demonstrated as

“net.divideParam.valRatio = 15/100;”. The data

fraction that is situated in the validation set is 0.15 by default.

This may be manipulated with to identify which ratio produces

a minimal classification error.

 Evaluation

MSE is known as a risk function that refers to the desired

value of an error loss. As depicted in Figure 4, the MSE value

decreased towards the end of the training phase. This signifies

that the network had been trained accordingly. The value of

MSE is required to be proximate to zero as the desired and

actual outputs are obliged to be adjacent to each other.

Table 5 illustrates

the MSE plots for

decision trees, SVM,

and BBN. In

contrast to ANN,

BBN, and SVM;

decision trees are not

relative to the

number of epochs

(an epoch is the digit

of repetition where

all training vectors

are utilized to update

the weights)

(Kahlon, 2015). Comparatively they correspond to the number

of trees that constructs the model. Furthermore, it undergoes

cross validation which requires excessive processing power and

training time. With regard to SVM, the best performance of the

models is attained at epoch 39. Whereas the best performance

was 1.1132e-24 at epoch 4 in the proposed ANN, this value may

be improved by ensuring that the input parameters are less than

or equal to the output parameters as this will utilize less memory

and would accelerate the model’s training as illustrated in

BBN’s best performance that is attained at epoch 2 (Kahlon,

2015).

Figure 4 Performance plot of the model

Table 4 Rules for code smell identification

Table 5 MSE plots for various ML models

8

 Results and Analysis

The results from the testing phase has been summarized in

Table 5. It highlights the code smells that are present in the

application; therefore, resulting in a decline in software quality.

63% of the total JAVA projects comprised of code smells. The

difference in quality amongst the projects is synthesized in this

section.

5.1 Efficiency

Figure 5 provides a visual representation of the efficiency

level relative to the JAVA projects tested. The lower the

efficiency level, the higher the efficiency for the reason that the

efficiency level represents the response time and average CPU

utilization ratio. This suggests the speed of the application as

the lesser the response time of the application, the increase in

user productivity and throughput.

Furthermore, the application’s efficiency is affected when

data clumps, feature envy, God class, and/or large class are

present in the program. These code smells exist in the following

projects: APM, WCS, and DCS. Among these projects, DCS

exhibits the most decline in efficiency which results in user

dissatisfaction due to a prolonged response time. Additionally,

the existence of this code smell violates the Interface

Segregation Principle as the interface of a class is not separated

into different methods (Giovanni Grano, 2019). However, this

may be subdued by implementing an Adapter design pattern to

decouple the system and organize the delegation of methods in

order to improve the system’s efficiency.

5.2 Maintainability

Most applications that comprise of code smells often endure

maintainability issues (Dag I.K. Sjøberg, 2019). This is due to

the nature of code smells that forces the application to adopt a

bad design. In contrast to the efficiency levels, the higher the

maintainability level, the more sustainable the system. As

illustrated in Figure 6, projects that have the highest

maintainability levels do not contain code smells.

Data clumps, God class, large class, and long parameter list

are the code smells that affect maintainability in addition to

efficiency. These code smells violate the Open-Close Principle

whereby a system should be open for extension but closed for

modification (Dag I.K. Sjøberg, 2019). This is due to the need

to change existing methods/classes that have been tested in the

earlier phases of software development. Additionally, there

would be an increase in cost and effort to implement a single

new feature for the reason that the maintenance phase of

software development consumes 67% of the total effort and cost

(Dag I.K. Sjøberg, 2019). However, the maintainability of the

system may be improved by implementing the Strategy or

Template pattern to avoid this design violation.

5.3 Reusability

Reusability levels are calculated differently than

maintainability levels; however, they are interpreted the same

(the higher the reusability level, the better the component’s

reusability). Maintainability and reusability are interrelated as

components that are tightly coupled and complex will not be fit

to support a different system with a similar nature (Gupta,

2019). In addition to Lazy class, the projects comprise of the

exact code smells that affect its maintainability. The decreased

reusability of APM, WCS, and EMS differs the projects from

the maintainability computation; this is visualized in Figure 7.

0

10

20

30

40

50

Ef
fi

ci
e

n
cy

 L
e

ve
l

Project Name

Efficiency

Figure 5 Efficiency levels of the tested JAVA projects

0

20

40

60

80

100

M
ai

n
ta

in
ab

ili
ty

 L
e

ve
l

Project Name

Maintainability

Figure 6 Reusability levels of the tested JAVA projects

Table 6 Quantified quality of the JAVA projects

9

In conjunction with the violation of the Open-Close

Principle, the projects breach the Dependency Inversion

Principle. This does not ease the process of using components

of a class for a different project as several errors will arise

(Almas Hamid, 2018). Code reuse is a fundamental goal that

assists in reducing time-effort, and cost of software

development. Therefore, the structure of the system should be

carefully planned out to ensure it adopts a well-designed, OO

application (Giovanni Grano, 2019).

 Conclusion and Future Research

This dissertation has successfully outlined issues in the area

of study that is being addressed in this research. A software’s

complexity decreases its efficiency, maintainability, and

reusability; this may result in a software that does not

accommodate changes. By recognizing issues in the system,

ANN is the proposed solution due to its potential to support

refactoring options that would optimize the code and augment

several quality attributes. Additionally, a set of research

questions were developed to assist the researcher with regard to

investigating the proposed model to acknowledge the

challenges faced in software development. The scope of the

research is clearly defined to ensure that the research conducted

is within the disclosed boundaries in order to prevent delays and

direct the focus on the proposed solution.

The execution of this research is procedurally documented in

Chapter 3: Research Methodology. This enabled the researcher

to successfully implement an ANN model that is specifically

designed to determine software quality. The results of the

chapter are documented in Chapter 4: Results and Analysis. The

two sets of results included the quantified quality and

performance measures of the proposed model. Based on the

measured quality, it was discovered that applications that

hosted code smells had a lesser quality than applications that

were unrestricted from code smells. Additionally, the

performance measures gathered were differentiated from other

ML models. The proposed model did not have the best

performance; however, the differentiating environment

consisted of varying independent variables that are not able to

solidify this conclusion.

It is promising that the ANN model is able to predict the

quality attributes accurately based on metric parameters

generated by SciTools. This measure is able to support software

refactoring by displaying the quantified quality attributes to the

developer. Further research should be conducted to investigate

the possibility of embedded refactoring tools in an IDE

determining which parts of the code should be refactored in

order to enhance the system’s quality.

 References

Almas Hamid, M. I. M. H., 2018. A Comparative Study on

Code Smell Detection Tools. International Journal of

Advanced Science and Technology , Volume 60, pp. 25-32.
Alotaibi, M., 2018. Advances and Challenges in Software

Refactoring: A Tertiary Systematic Literature Review.

ROCHESTER INSTITUTE OF TECHNOLOGY, Volume 1, pp.

5-9.

Andre Carnieletto Dotto, S. G., 2018. A systematic study on the

application of scatter-corrective and spectral-derivative

preprocessing. Journal of Artificial Intelligence, Volume 31,

pp. 23-41.

B.Delahunt, C., 2019. Putting a bug in ML: The moth olfactory

network learns to read MNIST. Neural Networks, Volume 118,

pp. 54-64.

Carvalho, M. L. L., 2018. On the implementation of dynamic

software product lines: An exploratory study. The Journal of

Systems and Software, 13(6), pp. 74-100.

Chen, R., 2018. A Robust Learning Approach for Regression

Models Based on Distributionally Robust Optimization.

Journal of Machine Learning Research, 19(1), pp. 1-26.

Dag I.K. Sjøberg, A. Y. B. A. A. M. T. D., 2019. Quantifying

the Effect of Code Smells on Maintenance Effort. IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING, 14(12),

pp. 1-14.

David G. Brown, F. W. S., 2019. Pitfalls and Opportunities in

the Development and Evaluation of Artificial Intelligence

Systems. Artificial Intelligence in the Age of Neural Networks

and Brain Computing, 1(2), pp. 139-159.

David Shriver, D. X. S. E. M. B. D., 2018. Refactoring Neural

Networks for Verification. Stockholm, Sweden, Proceedings of

the 35th International Conference on Machine Learning.

Davide Arcelli, V. C., 2018. Performance-driven software

model refactoring. Information and Software Technology, 9(5),

pp. 366-397.

El-Sharkawy, S., 2019. Metrics for analyzing variability and its

implementation in software product lines: A systematic

literature review. Information and Software Technology, 10(6),

pp. 1-30.

Giovanni Grano, F. P. H. C. A. B., 2019. A large-scale

empirical exploration on refactoring activities in open source

software projects. Science of Computer Programming, 18(1),

pp. 1-15.

Gupta, P., 2019. Multi-objective optimization framework for

software maintenance, component evaluation and selection

involving outsourcing, redundancy and customer to customer

relationship. Information Sciences, 48(3), pp. 21-52.

HaitaoZhao, 2019. Global-and-local-structure-based neural

network for fault detection. Neural Networks, Volume 118, pp.

43-53.

0

20

40

60

80

R
e

u
sa

b
ili

ty
 L

e
ve

l

Project Name

Reusability

Figure 7 Maintainability levels of the tested JAVA projects

10

Ibrahim, R., 2018. Reducing redundancy of test cases

generation using code smell detection and refactoring. Journal

of King Saud University – Computer and Information Sciences,

5(10), pp. 1-8.

Javed, M. A., 2007. A Rationale Focused Software Architecture

Documentation method (RFSAD). Göteborg, Sweden : IT

UNIVERSITY OF GÖTEBORG.

José Amancio M. Santos, J. B. R.-J. L. C. L. P., 2018. A

systematic review on the code smell effect. The Journal of

Systems & Software, Volume 144, pp. 450-477.

Junzi Sun, J. H. J. E., 2017. Bayesian Inference of code smells.

Seattle, AIP Publishing.

Kahlon, K. S., 2015. Object oriented software metrics threshold

values at quantitative acceptable risk level. Springer Link, 2(3),

pp. 191-205.

Kaur, S., 2015. A Comprehensive Review of Refactoring

Techniques. IJLTEMAS, 9(10), pp. 1-6.

Kim, D. K., 2017. Finding Bad Code Smells with Neural

Network Models. International Journal of Electrical and

Computer Engineering (IJECE) , 7(6), pp. 3613-3621.

M. Mohan, D. G., 2019. Using a many-objective approach to

investigate automated refactoring. Information and Software

Technology, 11(2), pp. 83-101.

Maen Hammad, A. L., 2018. Automatic Detection of Bad

Smells from Code Changes. International Review on

Computers and Software, 12(1), pp. 2-8.

Mesfin Abebe, C.-J. Y., 2014. Trends, Opportunities and

Challenges of Software Refactoring: A Systematic Literature

Review. International Journal of Software Engineering and Its

Applications, 8(6), pp. 299-318.

Morales, R., 2017. On the use of developers’ context for

automatic refactoring of software anti-patterns. The Journal of

Systems and Software, 12(8), pp. 236-251.

Moskalenko, V., 2019. The Model and Training Algorithm of

Compact Drone Autonomous Visual Navigation System. Data

Stream Mining and Processing, 4(1), pp. 19-34.

Mostafazadeh-Fard, B., 2012. Linear and Nonlinear Modeling

for Predicting Code Smells. Journal of Artificial Intelligence,

29(8), pp. 765-775.

Mujtaba Alshakhouri, J. B. S. G. M., 2018. Synchronised

visualisation of software process and product artefacts:

Concept, design and prototype implementation. Information

and Software Technology, 9(8), pp. 131-145.

Muslim, M. T., 2017. Manifold absolute pressure estimation

using neural network with hybrid training algorithm. PLoS

ONE , 12(11), pp. 51-56.

O.Deryugina, 2019. Analysis of the AnyWalker Software

Architecture Using the UML Refactoring Tool. s.l., Elsevier.

Oliveira, J., 2019. Revisiting the refactoring mechanics.

Information and Software Technology, 11(1), pp. 136-138.

Ouni, A., 2017. MORE: A Multi-objective Refactoring

Recommendation Approach to Introducing Design Patterns and

Fixing Code Smells. JOURNAL OF SOFTWARE:

EVOLUTION AND PROCESS, 9(1), pp. 1-67.

Peters, R., 2017. Evaluating the Lifespan of Code Smells using

Software Repository Mining. IEEE Transactions on Software

Engineering, 13(12), pp. 1-6.

Samir, A., 2016. Reusability Quality Attributes and Metrics of

SaaS from Perspective of Business and Provider. International

Journal of Computer Science and Information Security

(IJCSIS), 14(3), pp. 295-309.

Satwinder Singh, S. K., 2018. A systematic literature review:

Refactoring for disclosing code smells in object oriented

software. Ain Shams Engineering Journal, Volume 9, pp. 2129-

2135.

Sievi-Korte, O., 2019. Challenges and recommended practices

for software architecting in global software development.

Information and Software Technology, 10(6), pp. 234-253.

Ting, D. S. W., 2019. Artificial intelligence and deep learning

in ophthalmology. BMJ, 10(3), pp. 167-175.

Tummala Pradeep, P., 2011. Comparison of variable learning

rate and Levenberg-Marquardt back-propagation training

algorithms for detecting attacks in Intrusion Detection Systems.

International Journal on Computer Science and Engineering

(IJCSE), 3(11), pp. 3572-3580.

Wu, J., 2016. Open software architecture for east articulated

maintenance arm. Fusion Engineering and Design, 10(9), pp.

474-479.

YILMAZ, M., 2013. A Software Process Engineering

Approach to Understanding Software Productivity and Team

Personality Characteristics: An Empirical Investigation.

Dublin: Dublin City University.

