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Abstract

Quantization converts neural networks into low-bit fixed-
point computations which can be carried out by efficient
integer-only hardware, and is standard practice for the de-
ployment of neural networks on real-time embedded devices.
However, like their real-numbered counterpart, quantized net-
works are not immune to malicious misclassification caused
by adversarial attacks. We investigate how quantization af-
fects a network’s robustness to adversarial attacks, which is a
formal verification question. We show that neither robustness
nor non-robustness are monotonic with changing the number
of bits for the representation and, also, neither are preserved
by quantization from a real-numbered network. For this rea-
son, we introduce a verification method for quantized neu-
ral networks which, using SMT solving over bit-vectors, ac-
counts for their exact, bit-precise semantics. We built a tool
and analyzed the effect of quantization on a classifier for
the MNIST dataset. We demonstrate that, compared to our
method, existing methods for the analysis of real-numbered
networks often derive false conclusions about their quantiza-
tions, both when determining robustness and when detecting
attacks, and that existing methods for quantized networks of-
ten miss attacks. Furthermore, we applied our method beyond
robustness, showing how the number of bits in quantization
enlarges the gender bias of a predictor for students’ grades.

1 Introduction
Deep neural networks are powerful machine learning mod-
els, and are becoming increasingly popular in software de-
velopment. Since recent years, they have pervaded our lives:
think about the language recognition system of a voice as-
sistant, the computer vision employed in face recognition or
self driving, not to talk about many decision-making tasks
that are hidden under the hood. However, this also subjects
them to the resource limits that real-time embedded devices
impose. Mainly, the requirements are low energy consump-
tion, as they often run on batteries, and low latency, both
to maintain user engagement and to effectively interact with
the physical world. This translates into specializing our com-
putation by reducing memory footprint and set of instruc-
tions, to minimize cache misses avoid costly hardware oper-
ations. For this purpose, quantization compresses neural net-
works, which are traditionally run over 32-bit floating-point
arithmetic, into computations that only require bit-wise and
integer-only arithmetic over small words, e.g., 8 bits. Quan-

tization is the standard technique for the deployment of neu-
ral networks on mobile and embedded devices, and is imple-
mented in TensorFlow Lite (Jacob et al. 2018). In this work,
we investigate the robustness of quantized networks to ad-
versarial attacks and, more generally, to formal verification
questions.

Adversarial attacks are a well-known vulnerability of neu-
ral networks (Szegedy et al. 2013). For instance, a self-
driving car can be tricked into confusing a stop with a speed
limit sign (Evtimov et al. 2017), or a home automation sys-
tem can be commanded to deactivate the security camera
by a voice reciting a poetry (Schönherr et al. 2019). The at-
tack is carried out by superposing the innocuous input with
a crafted perturbation that is imperceptible to humans. For-
mally, the attack lies within the neighborhood of a known-
to-be-innocuous input, according to some notion of distance.
The fraction of samples (from a large set of test inputs) that
do not admit attacks determines the robustness of the net-
work. We ask ourselves how quantization affects networks’
robustness or, dually, how many bits it takes to keep robust-
ness above some specific threshold. This amounts to proving
that, for a set of given quantizations and inputs, there does
not exists an attack, which is a formal verification question.

The formal verification of neural networks has been ad-
dressed either by overapproximating—as it happens in ab-
stract interpretation—the space of outputs given a space of
attacks, or by searching—as it happens in SMT-solving—
for a variable assignment that witnesses an attack. The first
category include methods that relax the neural networks into
computations over interval arithmetic (Pulina and Tacchella
2010), treat them as hybrid automata (Xiang, Tran, and
Johnson 2018), or abstract them directly by using zonotopes,
polyhedra (Gehr et al. 2018), or tailored abstract domains
(Singh et al. 2019). Overapproximation-based methods are
typically fast, but incomplete: they prove robustness but do
not produce attacks. On the other hand, methods based on
local gradient descent have turned out to be effective in pro-
ducing attacks in many cases (Moosavi-Dezfooli, Fawzi, and
Frossard 2016), but sacrifice formal completeness. Indeed,
the search for adversarial attack is NP-complete even for
the simplest (i.e., ReLU) networks (Katz et al. 2017), which
motivates the rise of methods based on Satisfiability Mod-
ulo Theory (SMT) and Mixed Integer Linear Programming
(MILP). SMT-solvers have been shown not to scale beyond



toy examples (20 hidden neurons) on monolithic encodings
(Pulina and Tacchella 2012), but today’s specialized tech-
niques can handle real-life benchmarks such as, e.g., neural
networks for the MNIST dataset. Specialized tools include
DLV (Huang et al. 2017), which subdivides the problem
into smaller SMT instances, and Planet (Ehlers 2017), which
combines different SAT and LP relaxations. Reluplex takes
a step further augmenting LP-solving with a custom calcu-
lus for ReLU networks (Katz et al. 2017). On the other side
of the spectrum, a recent MILP formulation turned out ef-
fective using off-the-shelf solvers (Tjeng, Xiao, and Tedrake
2018). Moreover, it posed the basis for Sherlock (Dutta et
al. 2018), which couples local search and MILP, and for a
specialized branch and bound algorithm (Bunel et al. 2018).

All techniques mentioned above reason about the real-
number relaxation of the network. Unfortunately, adversar-
ial attacks computed over the reals are not necessarily at-
tacks on execution architectures, in particular for quantized
neural networks. We show that attacks and, more generally,
robustness and vulnerability to attacks do not transfer be-
tween real and quantized networks and also do not transfer
monotonically with the number of bits across quantized net-
works. As a result, verifying a network with either real or
finite precision for the numbers representation may (i) con-
clude that samples are robust while they admit attacks under
a different finite precision (false negative), but also may (ii)
find attacks for samples that are instead robust under a dif-
ferent finite precision (false positive); in addition, it may (iii)
correctly identify samples as vulnerable but provide invalid
attacks, and all three phenomena may happen in either direc-
tion and non-monotonically with the number of bits. For this
reason, the verification of real-numbered neural networks
is inadequate for the analysis of quantized networks, and
their analysis needs techniques that account for their exact
semantics. Recently, a similar problem has been addressed
on binarized neural networks, through SAT-solving (Naro-
dytska et al. 2018). Unfortunately, binarized networks are
bound to the special case of 1-bit quantizations. For many-
bit quantizations, a methods based on gradient descent has
been recently introduced (Zhao et al. 2019). While very ef-
ficient (and sound), the method is incomplete and may pro-
duce false negatives.

We introduce, for the first time, a complete method for
the formal verification of quantized neural networks. Our
method accounts for the bit-precise semantics of quantized
networks by leveraging the first-order theory of bit vec-
tors without quantifiers (QF BV) to exactly encode hard-
ware operations such as 2’complementation, bit-shift, inte-
ger arithmetic with overflow. On the technical side, we en-
code multiply-add operations in a balanced fashion, which
enabled the SMT-solver to scale up to our benchmarks. As
a result, we obtain a monolithic encoding of the verifica-
tion problem into a first-order logic formula, amenable to
modern bit-precise SMT-solving. We built a tool using the
SMT-solver Boolector (Niemetz, Preiner, and Biere 2014),
we evaluated its performance, compared—favorably—its ef-
fective soundness and completeness against Reluplex and
gradient descent for quantized networks, while assessing the
effect of quantization for different networks and verification

questions.
We measured the robustness to attacks of a neural clas-

sifier involving 890 neurons and trained after the MNIST
dataset (handwritten digits), for quantizations between 6 and
10 bits. First, we observed that our SMT encoding with bal-
ancing could compute every attacks within 16 hours, with
median time of 3h 41m, while the naive (linear) encoding
timed-out on all instances beyond 6 bits. Second, we experi-
mentally confirmed that both Reluplex and gradient descent
for quantized networks can produce false conclusions about
quantized networks; in particular, spurious results occurred
consistently more frequently as the number of bits in quan-
tization lowered. Finally, we discovered that, to achieve an
acceptable level of robustness, it takes a higher bit quantiza-
tion than assessed by standard accuracy measures.

Finally, we applied our method beyond the property of
robustness to attacks. We estimated the effect of quantiza-
tion upon the gender bias emerging from quantized predic-
tors for students’ performance in mathematics exams. More
precisely, we computed the maximum predictable grade gap
between any two student with identical features except for
the gender. The experiment showed that a substantial gap
existed and was proportionally enlarged by quantization: the
lower the number bits the larger the gap.

We summarize our contribution in five points. First, we
show that the robustness of quantized neural networks is
non-monotonic in the number of bits and that is independent
of the robustness of its real-numbered counterpart. Second,
we introduce the first complete method for the verification of
quantized neural networks. Third, we built a tool and used it
to demonstrate that our method, unlike a naive approach, can
verify networks with hundreds of neurons. Fourth, we also
show that our method determines both robustness and vul-
nerability of quantized networks more accurately than ex-
isting methods, in particular for low-bit quantizations. Fifth,
we illustrate how quantization affects the robustness of neu-
ral networks, not only with respect to adversarial attacks, but
also with respect to other verification questions, specifically
fairness in machine learning.

2 Quantization of Feed-forward Networks
A feed-forward neural network consists of a finite set of neu-
rons x1, . . . , xk partitioned into a sequence of layers: an in-
put layer with n neurons, followed by one or many hidden
layers, finally followed by an output layer with m neurons.
Every pair of neurons xj and xi in respectively subsequent
layers is associated with a weight coefficient wij ∈ R; if the
layer of xj is not subsequent to that of xi, then we assume
wij = 0. Every hidden or output neuron xi is associated
with a bias coefficient bi ∈ R. The semantics of the neural
network gives to each neuron a real value: upon a valuation
for the neurons in the input layer, every other neuron xi as-
sumes its value according to the update rule

xi = ReLU-N(bi +

k∑
j=1

wijxj), (1)

where ReLU-N : R → R is the activation function. Alto-
gether, the neural network implements a function f : Rn →



Rm whose result corresponds to the valuation for the neu-
rons in the output layer.

The activation function governs the firing logic of the neu-
rons, layer by layer, by introducing non-linearity in the sys-
tem. Among the most popular activation functions are purely
non-linear functions, such as the tangent hyperbolic and the
sigmoidal function, and piece-wise linear functions, better
known as Rectified Linear Units (ReLU) (Nair and Hinton
2010). ReLU consists of the function that takes the positive
part of its argument, i.e., ReLU(x) = max{x, 0}. We con-
sider the variant of ReLU that imposes a cap valueN , known
as ReLU-N (Krizhevsky and Hinton 2010). Precisely

ReLU-N(x) = min{max{x, 0}, N}, (2)

which can be alternatively seen as a concatenation of two
ReLU functions (see Eq. 10). As a consequence, the real-
numbered version of all neural networks we treat are full-
fledged ReLU networks, whose verification is amenable to
state-of-the-art verification tools including Reluplex.

Quantizing consists of converting a neural network over
real numbers, which is normally deployed on floating-point
architectures, into a neural network over integers, whose se-
mantics corresponds to a computation over fixed-point arith-
metic (Jacob et al. 2018). Specifically, fixed-point arithmetic
can be carried out by integer-only architectures and possibly
over small words, e.g., 8 bits. All numbers are represented
in 2’s complement overB bits words and F bits are reserved
to the fractional part: we call the result aB-bits quantization
in QF arithmetic. More concretely, the conversion follows
from the rounding of weight and bias coefficients to the F -th
digit, namely b̄i = rnd(2F bi) and w̄ij = rnd(2Fwij) where
rnd(·) stands for any rounding to an integer. Then, the fun-
damental relation between a quantized value ā and its real
counterpart a is

a ≈ 2−F ā. (3)

Consequently, the semantics of a quantized neural network
corresponds to the update rule in Eq. 1 after substituting of
x, w, and b with the respective approximants 2−F x̄, 2−F w̄,
and 2−F b̄. Namely, the semantics amounts to

x̄i = ReLU-(2FN)(b̄i + int(2−F
k∑

j=1

w̄ij x̄j)), (4)

where int(·) truncates the fractional part of its argument or,
in other words, rounds towards zero. In summary, the update
rule for the quantized semantics consists of four parts. The
first part, i.e., the linear combination

∑k
j=1 w̄ij x̄j , propa-

gates all neurons values from the previous layer, obtaining a
value with possibly 2B fractional bits. The second scales the
result by 2−F truncating the fractional part by, in practice,
applying an arithmetic shift to the right of F bits. Finally,
the third applies the bias b̄ and the fourth clamps the result
between 0 and 2FN . As a result, a quantize neural network
realizes a function f : Zn → Zm, whose evaluation relies on
integer-only hardware operations.

We assume all intermediate values, e.g., of the linear com-
bination, to be fully representable as, coherently with the

+ =

Figure 1: Adversarial attack.

common execution platforms (Jacob et al. 2018), we al-
ways allocate enough bits for under and overflow not to hap-
pen. Hence, any loss of precision from the respective real-
numbered network happens exclusively, at each layer, as a
consequence of rounding the result of the linear combination
to F fractional bits. Notably, rounding causes the robustness
to adversarial attacks of quantized networks with different
quantization levels to be independent of one another, and in-
dependent of their real counterpart.

3 Robustness is Non-monotonic in the
Number of Bits

A neural classifier is a neural network that maps a n-
dimensional input to one out of m classes, each of which
is identified by the output neuron with the largest value, i.e.,
for the output values z1, . . . , zm, the choice is given by

class(z1, . . . , zm) = arg max
i

zi. (5)

For example, a classifier for handwritten digits takes in in-
put the pixels of an image and returns 10 outputs z0, . . . , z9,
where the largest indicates the digit the image represents. An
adversarial attack is a perturbation for a sample input

original + perturbation = attack
that, according to some notion of closeness, is indistinguish-
able from the original, but tricks the classifier into inferring
an incorrect class. The attack in Fig. 1 is indistinguishable
from the original by the human eye, but induces our classi-
fier to assign the largest value to z3, rather than z9, misclas-
sifying the digit as a 3. For this example, misclassification
happens consistently, both on the real-numbered and on the
respective 8-bits quantized network in Q4 arithmetic. Unfor-
tunately, attacks do not necessarily transfer between real and
quantized networks and neither between quantized networks
for different precision. More generally, attacks and, dually,
robustness to attacks are non-monotonic with the number of
bits.

We give a prototypical example for the non-monotonicity
of quantized networks in Fig. 2. The network consists of 7
neurons with all weight and bias coefficients fully repre-
sentable in Q1. For every hidden and output neurons in the
top row, we show, respectively from top to bottom, the val-
uations for the Q3, Q2, and Q1 quantizations of the network
(following Eq. 4); in particular, we show their real counter-
part x̄/2F (as in Eq. 3). We evaluate all quantizations and
obtain that the valuations for the top output neuron are non-
monotonic with the number of fractional bits; in fact, the Q1
dominates the Q3 which dominates the Q2 output. Coinci-
dentally, the valuations for the Q3 quantization correspond
to the valuations with real-number precision (i.e., never un-
dergo truncation), indicating that also real and quantized net-
works are similarly incomparable. Notably, all phenomena
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Figure 2: Neural network with non-monotonic robustness w.r.t. its Q1, Q2, and Q3 quantizations.

occur both for quantized networks with rounding towards
zero (as we show in the example), and with rounding to the
nearest, which is naturally non-monotonic (e.g., 5/16 rounds
to 1/2, 1/4, and 3/8 with, resp., Q1, Q2, and Q3). Besides,
non-monotonicity of the output causes non-monotonicity of
robustness.

An input constitutes an adversarial attack when the out-
put layer violates the maximality of the neuron associated
with the class of the original sample. For instance, the attack
of Fig. 1 constitutes an attack because it violates z3 < z9,
and 9 is the original class. As for the example in Fig. 2, we
suppose the original sample is 3/2 and its class is associated
with the top output neuron; notably, the original sample is
correctly classified by all quantizations. Assuming attacks
can only lay in the neighboring interval 3/2 ± 1, we obtain
that the Q2 network admits an attack, e.g., the input 5/2.
Conversely, for the same neighboring interval, neither of the
Q1 and Q3 networks admit an attack, showing that robust-
ness is non-monotonic. Dually, also non-robustness is non-
monotonic as, for the sample 9/2 (whose class corresponds
to the bottom neuron) and the interval 9/2 ± 2, Q2 is ro-
bust while both Q3 and Q1 are vulnerable, even though their
specific attacks do not always coincide as for, e.g., 7/2.

Robustness and non-robustness are non-monotonic in the
number of bits for quantized networks. As a consequence,
verifying a high-bits quantization, or a real-valued network,
may derive false conclusions about a target lower-bits quan-
tization, in either direction. Specifically, for the question as
for whether an attack exists, we may have both (i) false neg-
atives, i.e., the verified network is robust but the target net-
work admits an attack, and (ii) false positives, i.e., the ver-
ified network is vulnerable while the target network robust.
In addition, we may also have (iii) true positives with invalid
attacks, i.e., both are vulnerable but the found attack do not
transfer to the target network. For these reasons, we intro-
duce a verification method that accounts for the bit-precise
semantics of quantized neural network.

4 Verification of Quantized Networks using
Bit-precise SMT-solving

Bit-precise SMT-solving comprises various technologies
for deciding the satisfiability of first-order logic formulae,
whose variables are interpreted as bit-vectors of fixed size.
In particular, it produces satisfying assignments (if any ex-
ist) for formulae that include bitwise and arithmetic opera-
tors, whose semantics corresponds to that of hardware ar-
chitectures. For instance, we can encode bit-shifts, 2’s com-

plementation, multiplication and addition with overflow,
signed and unsigned comparisons. More precisely, this is the
quantifier-free first-order theory of bit-vectors (i.e., QF BV),
which we employ to produce a monolithic encoding of the
verification problem for quantized neural networks.

A verification problem for the neural networks f1, . . . , fK
consists of checking the validity of a statement of the form

ϕ(~y1, . . . , ~yK) =⇒ ψ(f1(~y1), . . . , fK(~yK)), (6)

where ϕ is a predicate over the inputs and ψ over the out-
puts of all networks; in other words, it consists of checking
an input–output relation, which generalizes various verifi-
cation questions, including robustness to adversarial attacks
and fairness in machine learning, which we treat in Sec. 5.
For the purpose of SMT solving, we encode the verification
problem in Eq. 6, which is a validity question, by its dual
satisfiability question

ϕ(~y1, . . . , ~yK) ∧
K∧
i=1

fi(~yi) = ~zi ∧ ¬ψ(~z1, . . . , ~zK), (7)

whose satisfying assignments constitute counterexamples
for the contract. The formula consists of three conjuncts: the
rightmost constraints the input within the assumption, the
leftmost forces the output to violate the guarantee, while the
one in the middle relates inputs and outputs by the semantics
of the neural networks.

The semantics of the network consists of the bit-level
translation of the update rule in Eq. 4 over all neurons, which
we encode in the formula

k∧
i=1

xi = ReLU-(2FN)(x′i) ∧ x′i = b̄i + ashr(x′′i , F )

∧ x′′i =

k∑
j=1

w̄ijxj .

(8)

Each conjunct in the formula employs three variables x, x′,
and x′′ and is made of three, respective, parts. The first part
accounts for the operation of clamping between 0 and 2FN ,
whose semantics is given by the formula ReLU-M(x) =
ite(sign(x), 0, ite(x ≥M,M,x)). Then, the second part
accounts for the operations of scaling and biasing. In par-
ticular, it encodes the operation of rounding by truncation
scaling, i.e., int(2−Fx), as an arithmetic shift to the right.
Finally, the last part accounts for the propagation of values
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Figure 3: Abstract syntax trees for alternative encodings of
a long linear combination.

from the previous layer, which, despite the obvious opti-
mization of pruning away all monomials with null coeffi-
cient, often consists of long linear combinations, whose ex-
act semantic amounts to a sequence of multiply-add opera-
tions over an accumulator; particularly, encoding it requires
care in choosing variables size and association layout.

The size of the bit-vector variables determines whether
overflows can occur. In particular, since every monomial
wijxj consists of the multiplication of two B-bits variables,
its result requires 2B bits in the worst case; since summation
increases the value linearly, its result requires a logarithmic
amount of extra bits in the number of summands (regardless
of the layout). Provided that, we avoid overflow by using
variables of 2B + log k bits, where k is the number of sum-
mands.

The association layout is not unique and, more precisely,
varies with the order of construction of the long summation.
For instance, naively associating to the right (or to the left)
produces a linear layout, as in Fig. 3a. For the verification
of quantized networks, we associate by recursively splitting
the sum into equal parts, producing a balanced layout as in
Fig. 3b. While linear and balanced layouts are semantically
equivalent, we have observed that, in practice, the second
impacted—positively—the performance of the SMT-solver
as we discuss in Sec. 5, where we also compare against other
methods and investigate different verification questions.

5 Experimental Results
The MNIST dataset consists of 70,000 handwritten digits
represented by 28-by-28 pixel images with a single 8-bit
grayscale channel. Each sample belongs to exactly one cat-
egory {0, 1, . . . 9}, which a machine learning model must
predict from the raw pixel values. The MNIST set is split
into 60,000 training and 10,000 test samples.

We trained a neural network classifier on MNIST, follow-
ing a post-training quantization scheme (Jacob et al. 2018).
First, we trained, using TensorFlow with floating-point pre-
cision, a network composed of 784 inputs, 2 hidden layers
of size 64, 32 with ReLU-7 activation function and 10 out-
puts, for a total of 890 neurons. The classifier yielded a stan-

dard accuracy, i.e., the ratio of samples that are correctly
classified out of all samples in the testing set, of 94.7% on
the floating-point architecture. Afterwards, we quantized the
network with various bit sizes, with the exception of impos-
ing the input layer to be always quantized in 8 bits, i.e., the
original precision of the samples. The quantized networks
required at least Q3 with 7 total bits to obtain an accuracy
above 90% and Q5 with 10 bits to reach 94%. For this rea-
son, we focused our study to the quantizations from 6 and
the 10 bits in, respectively, Q2 to Q6 arithmetic.

Robust accuracy or, more simply, robustness measure the
ratio of robust samples: for the distance ε > 0, a sample a is
robust when, for all its perturbations y within that distance,
the classifier class ◦ f chooses the original class c = class ◦
f(a). In other words, a is robust if, for all ~y

|a− ~y|∞ ≤ ε =⇒ c = class ◦ f(~y), (9)

where, in particular, the right-hand side can be encoded as∧m
j=1 zj ≤ zc, for ~z = f(~y). Robustness is a validity ques-

tion as in Eq. 6 and any witness for the dual satisfiability
question constitutes an adversarial attack. We checked the
robustness of our selected networks over the first 300 test
samples from the dataset with ε = 1 on the first 200 and
ε = 2 on the next 100; in particular, we used the SMT-solver
Boolector (Niemetz, Preiner, and Biere 2014), off-the-shelf
and without any specific configuration.

Our experiments serve two purposes. The first is evaluat-
ing scalability and precision of our approach. As for scala-
bility, we study how encoding layout, i.e., linear or balanced,
and number of bits affect the runtime of the SMT-solver. As
for precision, we measured the gap between our method and
both Reluplex (Katz et al. 2017), a formal verifier for real-
numbered networks, and the IFGSM algorithm (Zhao et al.
2019), with respect to the accuracy at identifying robust and
vulnerable samples. The second purpose of our experiments
is evaluating the effect of quantization on the robustness to
attacks of our MNIST classifier and, with an additional ex-
periment, measuring the effect of quantization over the gen-
der fairness of a student grades predictor, demonstrating also
the expressivity of our method beyond adversarial attacks.

5.1 Scalability and performance
We ran all our experiments on an Intel Xeon W-2175 CPU,
with 64GB memory and 16 hours of time budget per prob-
lem instance, which we encoded in the two variants with,
resp., linear and balanced layout. With linear layout the

Bits 6 7 8 9 10

Linear 3h 25m oot oot oot oot
Balanced 18m 1h 29m 3h 41m 5h 34m 8h 58m

Table 1: Median runtimes for bit-exact robustness checks.

solver timed-out on all instances but the smallest networks
(6 bits), while with balanced layout it checked all instances
with an overall median runtime of 3h 41m and, as shown in
Tab. 1, roughly doubling at every bits increase, as also con-
firmed by the histogram in Fig. 4.
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Figure 4: Runtimes for bit-exact robustness checks.

Our results demonstrate that using a balanced associa-
tion layout improves the performance of the SMT-solver
so as to scale up to networks beyond 7 and up to 10 bits,
while the linear encoding turned out to be ineffective. Be-
sides, our method tackled networks with 890 neurons which,
while small compared to state-of-the-art image classification
models, already pose challenging benchmarks for the formal
verification task. In the real-numbered world, for instance,
off-the-shelf solvers could initially tackle up to 20 neurons
(Pulina and Tacchella 2010), and modern techniques, while
faster, are often evaluated on networks not beyond 1000 neu-
rons (Katz et al. 2017; Bunel et al. 2018).

Additionally, we pushed our method to its limits, refin-
ing our MNIST network to a four-layers deep Convolutional
network (2 Conv + 2 Fully-connected layers) with a total of
2238 neurons, which achieved a test accuracy of 98.56%.
While for the 6-bits quantization we proved robustness for
99% of the tested samples within a median runtime of 3h
39min, for 7-bits and above all instances timed-out. Notably,
Reluplex also failed on the real-numbered version, reporting
numerical instability.

5.2 Comparison to other methods
Looking at existing methods for verification, one has two op-
tions to verify quantized neural networks: Verifying the real-
valued network and hoping the property is preserved when
quantizing the network, or relying on incomplete methods
and hoping no counterexample is missed. A question that
emerges is how accurately are these two approaches for ver-
ifying robustness of a quantized network.

To answer this question we used Reluplex (Katz et al.
2017) to prove robustness of the real-valued network. Ad-
ditionally, we compated against the Iterative Fast Gradient
Sign Method (IFGSM), which has recently been proposed to
generate `∞-bounded adversarial attacks for quantized net-
works (Zhao et al. 2019); notably, IFGSM is incomplete in
the sense that it may miss attacks.

Regarding the real-numbered encoding, Reluplex accepts
only pure ReLU networks. For this reason, we translate our
ReLU-N networks into functionally equivalent ReLU net-
works, by translating each layer with

ReLU-N(W · ~x+~b) =

ReLU
(
− I · ReLU(−W · ~x−~b+N)

)
. (10)

Out of the 300 samples, at least one method timed out on
56 samples, leaving us with 244 samples whose result was
computed over all networks. Tab. 2 depicts how frequently
the robustness property could be transferred from the real-
valued network to the quantized networks. Non surprisingly,
we observed the trend that when increasing the precision of
the network, the error between the quantized model and the
real-valued model decreases. However, even for the 10-bit
model, in 0.8% of the tested samples, verifying the real-
valued model leads to a wrong conclusion about the robust-
ness of the quantized network. Moreover, our results show
the existence of samples where the 10-bit network is robust-
ness while the real-valued is attackable and vice versa. The
invalid attacks illustrate that the higher the precision of the
quantization, the more targeted attacks need to be. For in-
stance, while 94% of attacks generated for the real-valued
network were also attacks for the 7-bit model, this percent-
age decrease to 80% for the 10-bit network.

True False False True
Bits negatives negatives positives positives

6 66.4% 25.0% 3.3% 5.3%
7 84.8% 6.6% 1.6% 7.0%
8 88.5% 2.9% 0.4% 8.2%
9 91.0% 0.4% 0.4% 8.2%
10 91.0% 0.4% 0.4% 8.2%

Invalid
attacks

8%
6%

10%
20%
20%

Table 2: Transferability of robustness from real-valued net-
work to quantized model.

Next, we compared how well incomplete methods are
suited to reason about the robustness of quantized neural
networks. We employed IFGSM to attack the 244 test sam-
ples for which we obtained the ground-truth robustness and
measure how often IFGSM is correct about assessing the ro-
bustness of the network. For the sake of completeness, we
perform the same analysis for the real-valued network.

True False False True
Bits negatives negatives positives positives

6 69.7% 1.2 % - 30.3%
7 86.5% 1.6 % - 13.5%
8 88.9% 0.8 % - 11.1%
9 91.4% 0.8 % - 8.6 %

10 91.4% 0 % - 8.6 %

R 91.4% 0 % - 8.6 %

Table 3: Transferability of unsound robustness (IFGSM
(Zhao et al. 2019)) to ground-truth robustness (ours)

Our results in Tab. 3 present the trend that with higher
precision, e.g. 10-bits or reals, incomplete methods provide
a stable estimate about the robustness of the network, i.e.
IFGSM was able to find attacks for all non-robust samples.
However, for lower precision levels, IFGSM missed a sub-
stantial amount of attacks, i.e. for the 7-bit network IFGSM
could not find a valid attack for 10% of the non-robust sam-
ples.



5.3 The effect of quantization on robustness
In Tab. 3 we show how standard accuracy and robust ac-
curacy degrade on our MNIST classifier when increasing
the compression level. The data indicates a constant dis-
crepancy between standard accuracy and robustness; for real
numbered networks, a similar fact was already known in the
literature (Tsipras et al. 2019): we empirically confirm that
observation for our quantized networks, whose discrepancy
fluctuated between 3 and 4% across all precision levels. Be-
sides, while an acceptable, larger than 90%, standard accu-
racy was achieved at 7 bits, an equally acceptable robustness
was achieved at 9 bits.

Precision 6 7 8 9 10 R
Standard 73.4% 91.8% 92.2% 94.3% 95.5% 94.7%
Robust 69.7% 86.5% 88.9% 91.4% 91.4% 91.4%

Table 4: Accuracy of the MNIST classifiers on the 244 test
samples that are checked for robustness.

One relationship not shown in Tab. 3 is that these 4% of
non-robust samples are not equal for across quantization lev-
els. For instance, we observed samples that are robust for
7-bit network but attackable when quantizing with 9- and
10-bits. Conversely, there are attacks for the 7-bit networks
that are robust samples in the 8-bit network.

5.4 Network specifications beyond robustness
Concerns have been raised that decisions of a ML system
could discriminate towards certain groups due to a bias in
the training data (Barocas, Hardt, and Narayanan 2017). A
key issue in quantifying fairness is that neural networks are
black-boxes, and it is hard to explain how each input con-
tributes to certain decisions.

We trained a network on a publicly available dataset con-
sisting of 1000 students’ personal information and academic
test scores. The personal features include gender, parental
level of education, lunch plans, and whether the student took
a preparation course for the test, all of which are discrete
variables. We train a predictor for students’ math scores,
which is a discrete variable between 0 and 100. Notably, the
dataset contains a potential source for gender bias: the mean
math score among females is 63.63, among males is 68.73.

The network we trained is composed of 2 hidden lay-
ers with 64 and 32 units respectively. We use an 7-bit
quantization-aware training scheme, achieving a 4.14%
mean absolute error, i.e., the difference between predicted
and actual math score, on the test set.

The network is fair if the gender of a person influences the
predicted math score by at most the bias β. In other words,
checking fairness amounts to verifying that∧
i 6=gender

si = ti ∧ sgender 6= tgender =⇒ |f(~s)− f(~t)| ≤ β,

(11)
is valid over the variables ~s and ~t, which respectively model
two students for which gender differs but all other features
are identical—we call them twin students. When we encode

the dual formula, we encode two copies of the semantics of
same network: to one copy we give one student ~s and take
the respective grade g, to the other we give its twin ~t and
take grade h; precisely, we check for the unsatisfiability the
negation of formula in Eq. 11. Then, we compute a tight up-
per bound for the bias, that is the maximum possible change
in predicted score for any two twin. To compute the tightest
bias, we progressively increase β until our encoded formula
becomes unsatisfiable.

We measure mean test error and gender bias of the 6- to
the 10-bits quantization of the networks. We show the results

Quantization Mean Tightest bias
level test error upper bound

6 bits 4.46 21
7 bits 4.14 21
8 bits 4.37 16
9 bits 4.38 15

10 bits 4.59 15

Table 5: Results for the formal analysis of the gender bias of
a students’ grade predictor.

in Tab. 5. The test error was stable between 4.1 and 4.6%
among all quantizations, showing that the change in preci-
sion did not affect the quality of the network in a way that
was perceivable by standard measures. However, our formal
analysis confirmed a gender bias in the network, producing
twins with a 15 to 21 difference in predicted math score. Sur-
prisingly, the bias monotonically increased as the precision
level in quantization lowered, indicating to us that quantiza-
tion plays a role in determining the bias.

6 Conclusion

We introduced the first complete method for the verifica-
tion of quantized neural networks which, by SMT solv-
ing over bit-vectors, accounts for their bit-precise seman-
tics. We demonstrated, both theoretically and experimen-
tally, that bit-precise reasoning is necessary to accurately
ensure the robustness to adversarial attacks of a quantized
network. We showed that robustness and non-robustness
are non-monotonic in the number of bits for the numerical
representation and that, consequently, the analysis of high-
bits or real-numbered networks may derive false conclu-
sions about their lower-bits quantizations. Experimentally,
we confirmed that real-valued solvers significantly produce
spurious results, in particular for low-bit quantizations. Ad-
ditionally, we showed that gradient descent may also miss
attacks on low-bit networks. Besides, we showed that quan-
tization indeed affects, not only robustness, but also other
properties of neural networks, such as fairness. We also
demonstrated that, using our balanced encoding, off-the-
shelf SMT-solving could tackle networks with hundreds of
neurons which, despite hitting the limits of current solvers,
poses an encouraging baseline for future research.
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