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Abstract—In Vehicular Ad Hoc NETworks (VANET), dynamic
topology changes of network and inconstant bandwidth make
it hard to maintain an end-to-end path to complete long-time
stable data transmission. Facing this challenge, researchers have
proposed the hybrid routing approach, which tries to combine
both the advantages of recalculating route when topology changes
and looking up routing table as long as the network topology is
relatively stable. However, the existing hybrid routing algorithms
can easily cause the blind path problem, that is a route entry in
the routing table becomes invalid before it expires due to timeout,
because the next hop is already unavailable before timeout.
To address this issue, we propose a Reinforcement learning
based Hybrid Routing algorithm (RHR) that can online track
the available paths with their status and use packet-carry-on
information as real-time feedback to guide routing. RHR keeps
the forwarding path always the freshest and thus improves the
system performance. Simulation results show that RHR achieves
better performance in packet delivery ratio (PDR), roundtrip
time (RTT) and overhead than other peers under different
scenarios of network scale, request frequency and vehicle velocity.

Index Terms—routing algorithm, reinforcement learning,
VANET

I. INTRODUCTION
With the development of Internet of Things (IoT), the era

of Internet of Everything is coming. As a branch of
IoT, Intelligent and Connected Vehicles (ICV) have attracted
increasing attention in recent years. In this trend, how to
maintain an uninterrupted end-to-end real-time communication
among vehicles has become a challenging problem.

Efficient, accurate and reliable routing protocols play an im-
portant role in achieving the above goal. Among previous stud-
ies, researchers proposed the hybrid routing algorithms [1], [2]
which combine topology-based method with location-based
approach to improve the VANET performance. In order to
minimize the route re-calculation frequency of vehicle nodes
during end-to-end communication, existing hybrid routing
algorithms preset an expiration time for every route entry
once a new path is generated. Although the expiration time
is adjustable at the system initialization, it is fixed once being
set. GPSR [3] and AODV [4] are two extreme cases. The
former presents the calculating-route while the latter is lookup-
route. Calculating-route works on per-packet basis, which will
obviously bring high computation overhead as the transmission
rate goes high. As to the lookup-route, the current approach is
to purely try one fixed path towards destination in forwarding
table maintained by a timeout mechanism. It can easily happen
that an entry in the route table is still within its lifetime, but
actually the corresponding node is unreachable to destination

because it either runs out of the communication range or goes
failure. This explains how blind path generates.

To address the above blind path problem, in this paper,
we propose a Reinforcement learning based Hybrid Routing
algorithm (RHR) that utilizes reinforcement learning to online
track the available paths with their status and use the packet-
carry-on information in VANET as real-time feedback. RHR
will potentially generate multiple paths adaptively and dynam-
ically upon the current network conditions, while setting each
path an appropriate random value as an initial parameter for
reinforcement learning. During the communication, some data
information from the back and forth packets will be abstracted
as seeds to guide and optimize the routing selection (changing
the weight of some paths). In this way, RHR is able to select
the current best path to forward packets. Particularly, we made
the following contributions:

1) We have exposed the blind path problem in the current
hybrid routing algorithms and proposed a solution to always
keep the latest valid next hop in forwarding table during each
lookup process;

2) We design and implement RHR, a hybrid routing al-
gorithm based on the combination of calculating-route and
lookup-route, which uses the improved low-cost Q-Learning
algorithm, broadcast control and obstacle-avoiding strategies
to make the communication between vehicles more stable and
reliable;

3) We evaluate the performance of RHR and compare it
with representative VANET routing protocols under different
experimental conditions on the NS-3 [5] simulation platform.
The experimental results indicate that RHR shows the best
performance in all spectrums.

The rest of this paper is organized as follows. Section II
raises and analyzes the blind path problem in current hy-
brid routing protocols. Section III describes how to use Q-
Learning on traditional hybrid routing together with some
other improved strategies. Section IV conducts the simulation
experiments. Section V surveys the related work. Finally,
Section VI concludes the paper.

II. ILLUSTRATION OF THE BLIND PATH PROBLEM
In this section, we will show the blind path problem in

existing hybrid routing protocols. As shown in Figure 1, node
S wants to send packets to D. At first, S chooses the path
S-N1-D at time T0, because D is in the covering scope of
N1 and this path is the shortest one and presents good quality.
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Fig. 1: Limitations of traditional routing methods
When D moves away from N1’s coverage at time T1, the
corresponding entry from S to D in N1’s forwarding table
should be changed to an updated new one immediately. But
it is kept non-updated until the predefined period is expired.
So the path S-N1-D becomes a blind path from time T1 to
T . Obviously, before a new path is re-calculated, the packets
from S to D via N1 will be lost.

In VANET, supposing each node has several neighbors,
there is more than one path to the destination. Hence, we
utilize reinforcement learning to let S constantly track the
available paths via exploring the packet-carry-on information.
In our design, each path has a weight, representing the path
quality (such as W1, W2 and W3 in Figure 1 and higher value
means better quality). As the example in Figure 1, S uses
calculating-route method to get three available paths to D: S-
N1-D, S-N2-N5-D and S-N3-N4-N5-D. When S finds that
the path S-N1-D will be no longer valid, it will check which
one among the remaining paths is the best. Here, S turns the
path to S-N3-N4-N5-D, as its path quality W3 is higher than
W2, meaning it performs better than path S-N2-N5-D, though
the latter path has fewer hops.

III. REINFORCEMENT LEARNING
BASED HYBRID ROUTING AND OTHER IMPROVEMENTS
In this section, we will first introduce the Reinforcement

learning based Hybrid Routing algorithm (RHR) in detail,
which aims at solving the blind path problem that commonly
exists in hybrid routing protocols presented in Section II. Then,
we will introduce our another work on controlling broadcast
overhead in Section III-B. Subsequently, we will describe the
obstacle-avoiding strategy in Section III-C.
A. Optimize routing using low-cost Q-Learning

In the field of robotics research [6], researchers often use
reinforcement learning to train a robot to move and avoid
obstacles, that is, to reward or punish their behaviors based
on whether the chosen path is good. Moreover, the VANET
environment has rich packet information which can be used as
the data source to guide the behavior of vehicles through data-
mining methods. Inspired by that, we utilize reinforcement
learning to help make better routing decisions. Due to the
movement of vehicles, the network topology changes con-
tinuously. Thus, in the vehicle intensive environment, relying
only on one path makes it hard to keep the best transmission
during vehicle movement. We try to explore multiple paths
(if exist) simultaneously to a specific destination and run
the reinforcement learning mechanism for each route in the
forwarding table. It utilizes different kinds of data packets
to reward the routes that can benefit packet forwarding and
punish those ones with more broadcast overhead or failures.

The forwarding table is dynamically maintained via data-
mining on the back and forth data packets, with the purpose
of finding the current best forwarding path. Only when there
are not enough alternative paths, will the route re-calculation
be triggered to replenish the forwarding table.

1) Two-level Forwarding Table: In our design, each route
to a specific destination will maintain the optimal K available
nodes as optional next hops during the reinforcement learning
process. That means there are multiple alternative paths toward
the destination for any arrival packets (unless only one path
exists). We design a two-level forwarding table to record this
new routing structure as shown in Table I. It contains a special
sub-table that can store multiple next-hop information (ID,
weight and lifetime) for each routing entry.

2) Reinforcement Learning Strategy: Figure 2 shows the
basic principle of reinforcement learning: if a certain action
at of an agent brings a positive reward rt, then the strategy
to generate this action will be strengthened. The duty of the
agent is to seek the optimal strategy in each discrete state to
maximize the expectation summation of the discount reward.

TABLE I: Two-level
Forwarding Table

Dst ID Next Hop ID Weight Lifetime

A
D 100 1007
E 85 1006
F 64 1006

B H 86 1007
J 50 1005

TABLE II: Parameter settings
of Q-Learning

Parameter Value
R Value of A Packets -5
R Value of B Packets -10
R Value of C Packets 10
R Value of D Packets 5

Learning Rate α 0.2
Discount Factor γ 0.8

Exploration Probability ε 0.01

We observe that the traditional reinforcement learning prob-
lem usually has the following characteristics:
• Different actions incur different rewards;
• Reward has delay;
• The reward of an action relies on the current state.

These three features are very similar to the routing process in
VANET. To begin with, different selections of next hop can
be regarded as different states. Secondly, receiving different
kinds of packets related to the current next hop corresponds
to different actions. For these actions in different states,
vehicle nodes will get feedback through the packet-carry-on
information in VANET, which can guide them making better
choices in the routing process.

We use the low-cost Q-Learning theory [7] to model and
analyze this mapping relation. The process of optimizing
routing through Q-Learning is shown in Figure 3. Different
actions will have diverse influence on the forwarding table.
Routing weight that changes with these actions in different
states will serve as the feedback to guide routing. Further, we
reduce the overhead of this algorithm by simplifying Q-table
and conditional learning strategy.

First, the core of Q-Learning is Q-table. The value Q(s, a)
in the Q-table measures how well the action a is taken under
the current state s. In the traditional Q-Learning method, there
may be numerous states in real situations, so the scale of Q-
table is hard to control. [8] proposed a scheme to use neural
network to compress the scale of Q-table. But this approach
is complex and incurs additional overhead. In our design, we
adopt the idea of combining Q-table and forwarding table.
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Compared with the multiple states in traditional method, the
selections of next hop for current node in RHR are limited
to K nodes which refers to K states. For ensuring the time-
validity, vehicles only need to save the information of those
selectable next-hop nodes within their lifetimes. Therefore, the
size of Q-table is ideally controllable in VANET.

Second, it is worth noting that we use the conditional
learning strategy to make the learning process low-cost. When
the traffic pressure is beyond the threshold, we will use the
probability p calculated by Threshold

RequestsPerSecond to sample data
packets to reduce the overhead of reinforcement learning
algorithm.

Subsequently, the main challenge of applying our algorithm
to the routing process in VANET is how to establish a feedback
mechanism according to the corresponding state.

3) Feedback Learning Mechanism: We optimize the routing
by data-mining on the information of correctly calibrated data
packets. While there are countless combinations of domains
for the data packets, most of them are unnecessary for RHR.
We only need the DestinationID domain contained in the
header of most routing protocols to increase the applicability
of our algorithm. To sum up, we use A, B, C and D four
kinds of packets as learning data, as shown in Figure 4.

If the current node receives a broadcast packet which goes
toward itself, the reverse route to source via the last hop node
will gain negative reward (A). Because this route is built up by
the means of broadcasting, it is not an optimal route intuitively.
On the contrary, if the received broadcast packet’s destination
is not the current node and there is a route to that destination
in the current forwarding table, we will check whether the last
hop of the received packet is on the way of that route. If so,
it indicates that the route is not reliable and negative reward
will be added to the path (B).

In the other case, if the current node receives a unicast
packet which goes toward itself (destination or next hop), that
reverse route through the last hop should be rewarded because
it completes a successful data transfer (C or D). And all the
intermediate nodes on this path will be rewarded accordingly.

In conclusion, these relevant packets can be divided into
two categories, one is positively related (C and D) while the
other is negatively related (A and B). In the learning process,
we use the Algorithm 1 to update the forwarding table.

To begin with, we use random values to initialize the Q-
Value of top K neighbor nodes closest to the destination in

forwarding table (Random values must be kept in the same
order as the top K neighbors). Secondly, we use the ε-greedy
strategy to select a next hop. The selection strategy is that
each state has the probability of ε to explore (select the
next hop randomly), and the remaining (1 − ε) probability
to develop (select the next hop with the largest utility value).
Then the corresponding Q-Value in the table will be updated
according to the related packet information. In Algorithm 1, α
and γ represent learning rate and discount factor respectively.
Higher α makes the retention of previous training result less
effective. And the larger the γ, the greater the effect of
maxaQ(s′, a) we can get, which represents the maximum
utility value of the corresponding forwarding node s′ record
in the routing process. Through this method, the Q-table is
updated to gradually converge to the optimal routing.
Algorithm 1 Q-Learning process in RHR

1: Initialize Q-Value in forwarding table randomly
2: for each forwarding process do
3: Select the next hop according to the ε-greedy strategy
4: Obtain rewards (R) via the related packet information
5: Q(s, a)←(1−α)×Q(s, a)+α×[R+γ×maxaQ(s′, a)]
6: end for
We use a specific example to describe the process of our

algorithm. Suppose Table I is the forwarding table of a vehicle
node at a certain moment. Q(D,A) denotes the weight that
node D is selected as the next-hop to destination A (measuring
the value of this choice). When the node receives a positive
related packet towards node D, it updates the utility value
in the forwarding table based on the learning rate α, discount
factor γ and the reward value R according to Equation 1 (The
specific values of α, γ and R will be described in Section IV).

Q(D,A) = (1− α)×Q(D,A) + α×
[R+ γ ×max{Q(E,A), Q(F,A)}]

(1)

Based on this feedback mechanism, the vehicle node can
gradually maintain these stable routes and mark them with
higher weights, meanwhile those poor routes will be phased
out in the selection process.
B. Broadcasting control

In VANET, the control of broadcast packets has always
been a hot research issue [9], [10]. Without effective broadcast
control, the route to destination will contain more hops, or
even cause routing loops, which will decrease the communi-
cation quality of the network. Hence, in this section, we will
introduce our broadcasting control strategy from two aspects.



1) Protocol Packet: In our design, each node needs to
periodically broadcast the Beacon packet to inform neighbor
nodes of its location and speed. In order to effectively reduce
the bandwidth consumption of Beacon by controlling its
number, we design an adaptive broadcast strategy that uses
vehicle position prediction algorithm [11] to calculate the
future positions of the neighbor nodes. The time interval of the
broadcast is determined by the accuracy of prediction. If the
motion of vehicle node is regular in a certain period of time
and the predicted result is accurate, then the broadcast interval
will be increased, otherwise we will reduce the interval.

2) Data Packet: When a vehicle node wants to send a data
packet, if it cannot find a suitable entry in its forwarding table
and has no destination’s location information for calculation,
it will broadcast that packet. We set the TTL (Time to
Live) of the broadcast packet to be slightly smaller than the
normal data packet to reduce flooding. Furthermore, if the
target is the neighbor of the forwarding node, the broadcast
packet can be sent to it as a unicast packet. At the same
time, if the vehicle node with a large number of neighbors
rebroadcasts the received broadcast packet every time, it will
cause heavy flooding. Therefore, when a node judges whether
to perform rebroadcast, it is necessary to check the number of
its neighbors. Only when this number is within the threshold,
shall the broadcast continue. Otherwise, this node will stop
rebroadcasting.
C. Obstacle-avoiding strategy

The geographical environment of VANET is very com-
plicated, and the communication between vehicles is often
affected by the roadside buildings or other obstacles. In order
to make the communication process more stable and reliable,
we design an obstacle-avoiding strategy.

As shown in Figure 5, we present the concept of
communication sector. When the vehicle selects next hop,
the communication sector of the node is constructed ac-
cording to the direction of vehicle’s motion d, the appropriate
angle θ and the communication radius R. Only nodes in this
area can be selected as the next hop. This setting allows the
vehicle to communicate in the direction towards destination.

IV. SIMULATION
In this section, we will verify the performance of RHR in

different scenarios and compare it with the topology based
routing protocol AODV [4], the position based routing pro-
tocol IGPSR [12] and the hybrid routing protocol RHR-
simple which runs without reinforcement learning. Detailed
configuration and experimental results are illustrated as below.
A. Experimental scenarios

For simulating the actual traffic environment, we use Open-
StreetMap [4] to generate an area map of approximately
1500m × 900m from the real world, which contains main
roads and a dozen of crossroads. Meanwhile, we use the
SUMO [13], a road traffic simulation tool to generate traces
of vehicle motion and use the NS-3 [5] network simulation
tool to conduct experiments. As to the wireless configura-
tion, we adopt the IEEE 802.11p with DCF standard in the
MAC layer and set the log distance propagation loss model

in the physical layer. According to the parameter analysis
in section III-A3 and experimental debugging, the specific
settings of Q-Learning in RHR during the simulation process
are shown in Table II.

As for the configuration of application layer, we choose five
pairs of vehicles to run the basic client-server application, in
which each client periodically sends request packets (with 64-
byte payload) to its corresponding server, and then the server
will instantly reply data packets (with 1000-byte payload)
to the client when receiving a request. Next, we conduct
experiments under different scenarios of network scale, request
frequency and vehicle velocity. Finally, we take Packet Deliv-
ery Ratio (PDR), Round Trip Time (RTT) and Normalized
Routing Overhead (NRO) as metrics in the experiments.

• PDR: the ratio of successfully delivered packets to the
destination over the total sent packets from the source.

• RTT : the experienced time from launching a request to
receiving the corresponding reply.

• NRO: equals to the count of protocol packets (Rsf)
divided by the total number of data packets (Psf), which
is denoted as Rsf

Psf . This indicator reflects the efficiency
of a protocol in a macro sense.

B. Analysis of Experimental Results
In this section, we conduct experiments by changing the

density of vehicle nodes in network (from 30 nodes to 110
nodes), the number of packets per second (from 20 pps to 100
pps) and the maximum moving speed of vehicles (from 10 m/s
to 50 m/s). We take the logarithm of RTT and NRO to better
reflect the difference of performance between different proto-
cols. And we verify the effect of our optimization strategies.
The experimental results are analyzed and compared based on
the metrics in Section IV-A.

1) Results on Network Size: As shown in Figure 6(a), as the
number of nodes in the network increases, RHR has the best
PDR and remains relatively stable. This is because it well uses
the packet-carry-on information on the fly in the link. Then,
with the network scale and data traffic increase, the feedback
and correction of the route also grow gradually. However, as
the other three routing protocols cannot track the network state
online, so their PDR are all lower than RHR.

Figure 6(b) shows that the RTT of AODV is much higher
than the others with the expansion of network size. This is
because AODV is a topology based routing protocol. If the
communication link fails, it will temporarily store the data
packet in the buffer and send routing detection packet to repair
the route. Not until the link is available again will those
packets be sent out. Moreover, the topology of the VANET
changes more frequently as the network size grows, which
will lead to more link failures. It’s worth mentioning that
even though the differences of RTT among the other routing
protocols are tiny, we can still see that RHR has the shortest
delay because it selects the optimal route each time through
Q-Learning.

Figure 6(c) shows that the overhead of AODV remains
the highest and keeps rising as the network scale increases,
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Fig. 6: Performance comparison on network size (Request frequency is 10 pps, maximum moving speed is 10 m/s).
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(c) Normalized routing overhead
Fig. 7: Performance comparison on request frequency (Network size is 120 nodes, maximum moving speed is 10 m/s).
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(c) Normalized routing overhead
Fig. 8: Performance comparison on moving speed (Network size is 120 nodes, request frequency is 10 pps).

because it needs more protocol packets to repair links fre-
quently. IGPSR, RHR-simple and RHR have less overhead
because they only use Beacon as the protocol packet. RHR-
simple can reduce a part of computation overhead through
forwarding table, so its NRO is slightly smaller than IGPSR.
Benefiting from the adaptive Beacon strategy and broadcast
control, RHR has the smallest overhead.

2) Results on Request Frequency: Figure 7(a) shows that as
the request frequency increases, the communication pressure
continues to rise, so the PDRs of all four protocols decline.
However, because RHR adopts the Q-Learning, with packets
increasing, more information is available for routing optimiza-
tion, so it can still maintain the highest PDR. RHR-simple
combines lookup and calculation to avoid some drawbacks of
the single routing method, so its PDR is higher than IGPSR
and AODV. Since IGPSR needs to calculate the routing for
every packet, the computation overhead increases rapidly, and
thus its PDR decreases gradually. AODV has the lowest PDR
because increasing data traffic forces it to send more protocol
packets to find the path, leading to more congestion.

As shown in Figure 7(b), AODV has the largest delay
because it needs to resend the cached packets when the link is
re-established. RHR-simple avoids per-packet calculation like
IGPSR through hybrid routing, so the delay is relatively small.
As the communication pressure increases, the computation
overhead gradually grows. Hence, the delay of RHR-simple
and IGPSR also increases. In the whole process, RHR always
maintains the lowest delay due to the conditional learning
strategy. When the request frequency reaches 100 pps, the
RHR’s RTT is much less than that of the other three protocols

the gap even reaches up to 500 ms!
Figure 7(c) shows that AODV has a relatively large overhead

because it has the maximum number of protocol packets. Both
RHR-simple and IGPSR only use Beacon packets to maintain
topology information. And RHR-simple has a higher PDR than
IGPSR, so it can transmit more data packets via employing
relatively fewer protocol packets. Thus, its overhead is smaller
than IGPSR. RHR has the minimal NRO due to the best PDR
and minimum number of protocol packets.

3) Results on Maximum Moving Speed: It can be seen from
Figures 8(a) and 8(b) that as the maximum moving speed of
vehicles increases, the performance of RHR is stable, with the
highest PDR and the lowest RTT in each scenario. However,
the other three protocols’ PDRs have different degrees of
decline, and the RTTs are relatively large. This is because
the dynamic of the network topology is also increasing with
the speed of vehicle nodes. Then, the probability of the
blind path problem in routing protocols will rise when the
topology changes drastically, resulting in packet loss. Beyond
that, the route re-establishment mechanism of AODV leads to
higher latency. Moreover, the number of failed links of IGPSR
increases with higher motion speed of vehicle nodes, which
reduces its performance, resulting in lower PDR and higher
RTT than RHR simple.

As to the overhead, RHR has the highest PDR because of
its effective control of the number of Beacons. Figure 8(c)
shows that, RHR always maintains the minimal NRO in each
scenario.

4) Results on Broadcast Control & Computation Overhead:
As shown in Figures 9 and 10, by applying our optimization



strategies, the number of broadcast packets and the calculation
times in the network are greatly reduced.
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Fig. 9: The number of
broadcast packets
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Fig. 10: The calculation times
in routing process

V. RELATED WORK
The highly dynamic topology is the major cause of high

latency as well as packet loss for VANET and makes the
design of efficient routing protocols more challenging. Pre-
vious researchers have proposed various kinds of routing
protocols to solve this problem. With the development of
artificial intelligence, it attracts more attention to use the idea
of reinforcement learning to optimize the routing process.
A. Protocols of VANET

According to our survey, the routing protocol of VANET
can be mainly divided into three categories: topology based,
position based and hybrid routing protocols. AODV [4] and
DSR [14] are both topology based routing protocols which
need to establish the end-to-end path when a node requires
sending data packets. But this kind of approach is diffi-
cult to achieve in the highly dynamic VANET. GPSR [3]
is a typical position based routing protocol in which each
node in network knows its own geographical location. As
an extension of GPSR, [12] proposed IGPSR to set the
priority for each next hop according to the information of
vehicle nodes, and then it will select the node with the
highest priority as next hop. However, per-packet routing
computation may lead to large overhead. In order to cope
with the various scenarios in VANET, some combined ap-
proaches have emerged. GEOADV [1] which combines both
geographic and reactive routing method establishes the route
by unicasting RREQ/RREP through locations of vehicle nodes.
Beyond that, [2] proposed a new location-based hybrid routing
protocol to particularly address the communication link broken
issue between vehicles by efficiently using all the location
information available.
B. Q-Learning usage in routing

Paper [15] first proposed to use the Q-Learning algorithm
in routing process. It utilizes a routing learning policy which
keeps the balance between minimizing the number of hops a
packet will take and the possibility of congestion along popular
routes. Based on this research, [16] used the Dual Reinforce-
ment Q-Routing algorithm to select the route that takes the
shortest time by receiving packets from neighbors. In VANET,
for overcoming the shortcomings of AODV, paper [17] used
the Q-Learning algorithm to infer network state information
and used unicast control packets to check the path availability
to set up the dynamic route switching mechanism. Moreover,
[18] proposed the PFQ-AODV algorithm that combines Q-
Learning and AODV. It used the protocol packet to learn and
used fuzzy logic to evaluate the quality of wireless link.

However, all previous methods do not take the blind path
problem into account. In our design, RHR not only combines
both look-up and calculation but also uses Q-Learning and
two-level forwarding table to optimize the routing process,
effectively avoiding blind path, which performs better on
packet delivery ratio, delay and overhead.

VI. CONCLUSION
In order to solve the blind path problem in existing

VANET protocols, we designed and simulated a light-weight
routing algorithm RHR based on reinforcement learning which
combines calculating-route and lookup-route. In addition, we
raised broadcast control and obstacle-avoiding strategies to
optimize the performance. Finally we compared it with other
representative routing protocols in VANET through simulation
experiments in various scenarios. Experimental results show
that RHR outperforms other approaches in PDR, RTT and
NRO.
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