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Tamil Talk: What you speak is what you get! 
Abstract- Tamil is one of the longest surviving classical languages in the world. Speech to text in Tamil  would provide 
huge benefit to a lot of native Tamil speakers throughout the world. There are many speech recognition and speech to 
text systems available for a wide variety of languages but many minority languages, such as Tamil are overlooked. In 
this paper, we propose to develop a system for Tamil speech to text that will be consitent with the pronunciation of the 
user and conforms wih the syntax of the language.  

 

Index Terms— Speech to text, application, Agile, Tamil Language, Tamil Orthography, Speech Recognition, ASR  

——————————      —————————— 

1 INTRODUCTION 

peech is the ability to express thoughts and feelings by 
articulating sounds. It is a key component of communi-

cation for humans. Each language uses phonetic composti-
tions of a limited set of vowels and consonant sounds that 
form words. Speech recognition  is the interdisciplinary 
subfield of computational linguistics that develops meth-
odoligies and technologies that enables the recognition 
and translation of spoken language into text (Rabiner et al, 
2004).   
 
Tamil is a syllabic language with almost one to one corre-
spondence to the sound and orthography (Keane,2004). 
The work os Shulman (2016), point to unique syllables of 
Tamil often mispronounced especially the syllable 'zha' by 
the native speakers for various reasons as also identified 
and raised by Ramachandran (2018) in the context of not 
just predicting the user acceptance of speech to text but 
also to be able to use speech to text in Tamil due to the na-
ture of the language. There are very few studies on recog-
nition of 'zha' primarily by Srinivasan et.al (2009, 2010, 
2013). It Is argued that David (2010) views on language 
variation do not apply in this context due to the syllabic 
nature of the language. Some of the participant comments 
from Ramachandran (2018) informed the design and de-
velopment of Tamil talk: 
 
"Language and spelling cannot be changed" 
"You have to pronounce the word correctly" 
"People must change their pronunciation" 
 
The first successful speech recognition machine was re-
leased by three Bell Labs researchers in 1952 and it was 
called Audrey. This machine was able to recognize spoken 
digits with 90% accuracy; however, it only recognized the 
inventor’s voice (Boyd, 2018). The technology then devel-
oped into understanding English words about 10 years 
later.  Raj Redy was the first person to research on contin-
uous speech recognition as a graduate student in the late 
1960s, as systems prior to this, required users to pause after 
ever word (Carnegie Mellon, 2010).  
 
Speech recognition technology has grown in sophistication 
and accessibility leading to the ability to convert speech 
into text for hundreds of languages and dialects. This in-

cludes languages like  Tamil which uses a script that is dif-
ferent to  Roman letters and uses completely different 
structure. Nowadays, almost everyone has a smartphone 
which is more than capable of recognizing spoken lan-
guage using the most basic of hardware. The research con-
ducted  in this paper points to different  design possibilities 
and details of developing a speech to text application. An 
application was built to convert spoken Tamil to text and 
display what has been spoken onto the screen of a given 
device. Example,  a smartphone or a laptop. 

 

1.1 Overview 

The structure of the paper is as follows:   
 The first section deals with the research carried out into 

the Tamil language and investigates any speech to text 
applications that are currently available.   

 The second section describes the method used to de-
sign, develop , implement and test the application de-
veloped.   

 The third section documents the testing carried out on 
the developed application. 

 The final section provides the discussion and conclu-
sion for the project and suggested work that could be 
conducted in the future.   

 

1.2 Aims 

The aim of this research is to implement a speech to text 
application in Tamil based on the conceptual framework of 
Ramachandran (2018) ‘what you speak is what you get’. 
 
The aim of application itself is designed to work as a teach-
ing tool for native and non-native Tamil speakers to con-
firm correct pronunciation of syllbles and words.  

2 LITERATURE REVIEW  

Speech to text is the conversion of spoken words into text. 
ASR applications are very widely available and help assist 
millions of people every day, however, many of these ap-
plications have language-based limitations by only sup-
porting a handful of languages. Developing an application 
that supports “minority languages” would provide great 
technological benefit and help develop more inclusive and 
accessible technology (Fu et al, 2018). Pandharipande 
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(2002) defines minority langaues as a language spoken by 
less than 50% of the given region, state, or community.This 
research views the definition of minority language as de-
fined by Pandharipane (2002) outside of the context and 
region where Tamils are in majority. For example in the In-
dian state of Tamil Nadu and Puducherry.  

2.1 Tamil 

Tamil is a Dravidian language spoken by eighty million 
people in South Asia and across fifty-five diaspora coun-
tries but predominantly by the Tamil people of Tamilnadu 
(Steever, 1998). It is one of the longest surviving classical 
languages in the world and recorded Tamil literature has 
been documented for over 2000 years (Zvelebill, 1992).  
The Tamil script consists of 12 vowels (Uyir Ezhuthukkal), 

18 consonants (Mei Ezhuthukkal) and one special charac-
ter, the Aytha Ezhuthu (see fig.1). The vowels and conso-
nants combine to form 216 compound characters (Uyir Mei 
Ezhuthukkal), giving a total of 247 haracters (Lo, 2012). 
Unlike other South Asian scripts, 3.1such as Gujarati, Tamil 
does not have script to represent voiceless aspirated (such 
as “kh”), voiced (“g”) and voiced aspirated stops (“gh”). 
 

2.2 Speech to Text in  Tamil  

There are many existing speech-to-text software and appli-
cations that support the Tamil language. The most com-
monly used system is Google Translate (McGuire, 2018); 
which could potentially be  used to translate from one lan-
guage to another, such as French to English, but could also 
be used for speech to text.  Unfortunately, there are short-
comings with the existing application. The existing system 
does not incorporate the concept of ‘what you speak is 
what you get’. The concept as seen in Ramachandran 
(2018) is based on the structure of the language as opposed 
to an application that accommodates language and pro-
nunciation variation of the users.  
 
This kind of predictive speech-to-text will give the users a 
sense of pronouncing  the words correctly, where in reality 

the words are pronounced differently. This makes users 
believe they speak correctly and will teach them the lan-
guage incorrectly which is a significant issue (Devarajan, 
2009). 
 

2.3 Design considerations for Tamil talk 

 

In a standard speech recognition system (fig.2) the raw 

speech is typically sampled at a high frequency (16KHz – 

8KHz) this produces a sequence of amplitude values over 

time. This raw speech data is then transformed and com-

pressed to enable simplified processing (Deng et al, 2007). 

Many signal analysis techniques are available which can 

extract useful features and compress the data by a factor of 

ten, such as Fourier analysis, Perceptual Linear Prediction, 

and Lineal Predictive Coding.  

 
Fig 2. Trivedi (2014)  

 

The speech-to-text transformation is one of the most diffi-

cult tasks in computer science because it consists of many 

difficult problems (Pornpanomchai et al, 2012) but it is an 

important technology to develop and to develop well. 

Speech recognition has many potential applications in-

cluding command and control, dictation, transcription of 

recorded speech, searching audio documents, and interac-

tive spoken dialogues (Gale and Young, 2007). At the core 

of all speech recognition systems consists of a set of statis-

tical models representing the various sounds of the lan-

guage to be recognised (Baum and Eagon, 1967). 

The task of speech recognition is to find the best matching 

word-sequence (Ŵ) given the data of an utterance (O). O 

is a sequence of input vectors generated from the raw 

speech data. According to Bayes’ Theorem the task can be 

formulated as seen below (fig.3).  

 
Fig 3. Blanken, de Vires, Blok and Feng, 2007  

 

To decode the sequence of words spoken you have calcu-

late the next probability (fig.4) where W is the decoded se-

quence and O is the observed sequence or incoming fea-

ture vector (Blanken et al, 2007).  

Fig 1 Basic Tamil script (Lo, 2012) 
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Fig 4. Blanken, de Vires, Blok and Feng, 2007  

This splits the task into two components P(O|W), also 

known as the acoustic model and P(W),which is also 

known as the language model. In most speech recognition 

systems the acoustic model is represented by the HMM or 

the Hidden Markov Model (Kreyssig, 2018). Each HMM is 

a finite state machine with n states whereby each state, be-

sides the first and last, has specific output probabilities and 

each arc between states is associated with a transition prob-

ability (Gales and Young, 2007). Previously the output 

probabilities were modelled by multivariate Gaussian 

Mixture Model or GMM (Stuttle, 2003). Given restraints in 

computational power the GMM is restricted to have a di-

agonal co-variance matrix and hence require independ-

ence between the input dimensions.  

 

Artificial neural networks (ANNs) on the other hand, do 

not need this independence requirement, which is why 

they are more currently used for acoustic modelling and 

give increased performance to speech recognition, particu-

larly Convolutional Neural Networks and Recurrent Neu-

ral Networks (Duran and Battle, 2018). There are several 

possible ways to exploit ANNs in automatic speech recog-

nition systems, such as the Hidden Markov Model-Artifi-

cial Neural Network hybrid system which takes the ad-

vantage of ANN’s strong representation learning power 

and HMM’s sequential modelling ability.  

There is also research into using what is called Connection-

ist Temporal Classification (fig.5) which is very similar to 

the standard HMM-ANN approach however a single-state 

HMM is used, usually with three times lower output 

frame-rate and after each single-state HMM a “blank” state 

is allowed (Graves et al, 2006). Further, this model does not 

need alignment of the training data, which is an advantage, 

but only starts to show benefits starting with very large 

quantities of data (Yu and Deng, 2014). 

 

Fig 5. Framewise and CTC networks classifying a speech signal (Graves et 

al, 2006) 

All these options were considered at the beginning but we 

eventually worked on two options that was thought would 

provide a complete solution of creating a Speech-to-Text 

application in Tamil that uses the conceptual framework of 

“what you speak is what you get”. While it was deemed 

the option to develop an application using the Dictionary 

Model would be the best fit for this project, both options 

have been described in sections 2.5 and 2.6, allowing for 

the information to be used for any enhancement to the so-

lution at later date. 

2.4 Application Programming Interfaces 

An Application Programming Interface (API) is a set of 

subroutine definitions, protocols, and tools for building 

application software. In general terms, it is a set of clearly 

defined methods of communication between various soft-

ware components. Many API’s are built with the intention 

to allow 3rd party developers to build interesting applica-

tions and designed to expand the reach of an organisation 

(Clarke, 2004).    

 
Fig 6. Types of voice systems (Matarneh et al, 2017) 

All speech recognition engines/ API’s initially work in the 

same way as the user’s voice is passed through the micro-

phone input to reach the recognition system. There are a 

number of options for Automatic Speech Recognition API’s 

available that can be divided into closed source code and 

open source code (fig.6).  

 

Closed source code means there is no physical access to the 

code, a user will be unable to manipulate and modify it. 

Two of the biggest companies building voice-powered ap-

plications are Google and Microsoft; however these API’s 

code is inaccessible (Samudravijaya and Barol, 2013).     

 

CMU Sphinx is one of the most famous systems and is 

completely open source. Sphinx enables developers to 

download and use their code freely (Lange and Suender-

mann, 2014) it includes speech recognisers and acoustic 

model trainers (Matarneh et al, 2017).  

 

There are many benefits of using API’s when building ap-

plications, especially if the API meets the specifc needs of 

an application, then avoiding the reinvention of the pro-

verbial wheel is a standard piece of wisdom in software 

development circles (Atwood, 2008). If it is not a good fit 

for a proposed application but the API is open source and 
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open code then users will be able to access and manipulate 

the code to fit with an application. Additionally, there are 

also disadvantages to API’s that need to be considered. An-

yone could have written the code and if it is closed source 

you will have no way of knowing what it actually does and 

you will not have the option or the ability to improve on it.  

 

2.4.1 Google Speech API 

Google Speech Recognition API is a technology used 

widely in different research fields for different language. It 

allows the user to voice search and its technology is inte-

grated into many smartphones and computers. Originally 

it only supported a short request of a maximum 40 words 

and has only recently improved its speech recognition by 

using a new technology, deep learning neural networks 

(Kepuska, 2017).  

 

Part of Googles improvement is a major new feature in the 

Speech-to-text API that now allows developers to select be-

tween different machine learning models (Lardinois, 

2018). The speech API now supports over 100 languages, 

including ancient languages such as Georgian (first spoken 

in 430AD), as well as Swahili, Gujarati and Tamil in a bid 

to make the internet more inclusive (Techseen Bureau, 

2017).  

 

Google acquired several deep learning companies over the 

years such as, DeepMind, DNNresearch and JetPac and us-

ing these deep learning neural networks Google achieve an 

8 percent error rate in 2015, a reduction of more than 23 

percent from 2013 (Beat and Novet, 2016).  

 

2.4.2 CMU Sphinx 

In 1986 Sphinx was launched and became one of the most 

successful open source systems developed for research 

purposes using HMM (Juang & Rabiner, 2005). Developed 

at Carnegie Mellon University (CMU) it currently has one 

of the largest vocabularies and speaker independent recog-

nition codebase.  This speaker independent speech recog-

niser and uses HMM and n-gram statistical language 

model, which is able to recognise continuous speech with 

a big vocabulary (Matarneh et al, 2017).  

 

Since its initial release, Sphinx has gone through a number 

of different modifications. In the past, the decoding strat-

egy of the Sphinx systems tended to be deeply entangled 

with the rest of the system. As a result of these constraints, 

the systems were difficult to modify for experiments in 

other areas (Walker et al, 2004).  

 

However, the newest version, Sphinx-4, released in 2010, 

works with various kinds of language specifications such 

as grammars, statistical language models or blends of both 

(Twiefel, Baumann, Heinrich & Wermter, 2014). This 

means a major benefit of the Sphinx system is that re-

searchers are given more flexibility in the way they incor-

porate acoustic models allowing constraints to be imposed 

on the input from the user (Ashwell & Elam, 2017), making 

it a great way for identifying particular phonetic sounds 

for set phrases.  

 

Sphinx has now developed into a toolkit that can be used 

to develop powerful speech recognition applications and 

includes several parts (Belenko & Balakshin, 2017): 

1. PocketSphinx is small fast program, processing 

sound, acoustic models, grammars and dictionar-

ies. 

2. The library Sphinxbase is necessary for Pock-

etSphinx work. 

3. Sphinx4 is the recognition library. 

4. Sphinxtrain which is for acoustic models train-

ing. 

2.4.3 Microsoft Speech API 

Microsoft’s Speech API has been around since 1993, devel-

oped by three of the four people responsible for the CMU 

Sphinx-II speech recognition system (Kepuska & Bohouta, 

2017). Its system is very similar to Google Speech API but 

uses a server application programming interface (SAPI) for 

its data. It includes a set of effective methods and its data 

is well integrated into the .NET framework (Kamarudin et 

al, 2013).   

 

Microsoft has continued to develop the powerful speech 

API and has released a series of increasingly powerful 

speech platforms (Lacoma, 2019), focussing on increasing 

the emphasis on speech recognition systems and improved 

Speech API by using a context dependent deep neural net-

work hidden Markov model (Manaswi, 2018).  

 

2.5 The Hidden Markov Model 

The first method considered was the Hidden Markov 

Model. The basic need was identifying if it would meet the 

system requirements in terms of providing a solution that 

not only points to an indigenous method to develop a soft-

ware application but also, the issue of language mainte-

nance, code switching and code mixing (Shulman 2016, 

Schiffman 2002) by the native Tamil speakers both in the 

native region and in the diaspora. Ramachandran (2018) 

recommends an indigenous approach to design, develop 

and evaluate the user acceptance of speech to text in lan-

guage based technology such as speech to text.    

 

A hidden Markov model (HMM) is a statistical Markov 

model in which the system being modelled is assumed to 

be a Markov process with hidden states (Trivedi, 2014). A 

HMM can be presented as the simplest dynamic Bayesian 
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network (Wantanabe, 2011). HMM can be seen as a black 

box, where the sequence of output symbols generated over 

time is observable, but the sequence of states visited is hid-

den from view (Juang & Rabiner, 2005). 

  

Fig 7. Trivedi, 2014 

Figure 7 shows a simple HMM with two states and two 

output symbols, A and B. When applied to speech recogni-

tion, the states are interpreted as acoustic models, indicat-

ing what sounds are likely to be heard during their corre-

sponding segments of speech; while the transitions pro-

vide temporal constraints, indicating how the states may 

follow each other in sequence (Trebelskis, 1995).  

 

There are three basic algorithms associated with Hidden 

Markov Models; firstly the Forward algorithm which is 

useful for isolated word recognition. The number of possi-

ble paths increases with the length if a sequence so the goal 

of the forward algorithm is to compute the joint probabil-

ity, taking advantage of the conditional independence 

rules of the HMM to perform calculations recursively and 

avoid incurring exponential computation time (Rabiner, 

1989).  

 

The second algorithm is the Viterbi algorithm which is a 

dynamic programming algorithm useful for isolated word 

recognition. In speech-to-text, the acoustic signal is treated 

as the observed sequence of events, and a string of text is 

considered to be the hidden cause of the acoustic signal 

(Anguera et al, 2010). The Viterbi algorithm finds the most 

likely string of text given the acoustic signal. 

The final algorithm is the Forward-Backward algorithm 

which is an interference algorithm that is useful for train-

ing a HMM (Rabiner, 1989). This algorithm involves three 

steps: 

1. Computing forward probabilities 

2. Computing backward probabilities 

3. Computing smoothed values. 

It computes the posterior marginal of all hidden state var-

iables and makes use of the principle of dynamic program-

ming to efficiently compute the values that are requires to 

obtain the distributions in two passes. The first pass goes 

forward in time while the second goes backwards also 

known as the forward message pass and the backward 

message pass (Juang & Rabiner, 2005). 

 

2.5.1 Feasibility of HMM for Tamil talk 

The Hidden Markov Model provides a simple and effec-

tive framework for modelling time-varying spectral vector 

sequences. As a result, almost all large vocabulary contin-

uous speech recognition systems are based on HMMs 

(Gale & Young, 2007). Since speech has a temporal struc-

ture and can be encoded as a sequence of spectral vectors 

spanning the audio frequency range, the Hidden Markov 

Model provides a natural framework for speech recogni-

tion. 

 

According to Trivedi (2014), there are many limitations of 

the Hidden Markov Model which include: 

 Constant observation of frames 

 The Markov assumption  

 Lack of formal methods for choosing a model to-

pology  

 Large amounts of training data required  

 Weak duration modelling  

 Restricted output PDFs 

 The assumption of conditional independence  

However, the main concern when implementing the HMM 

technique with a speech-to-text application for the Tamil 

language, is computational efficiency (Srinivasen et al, 

2009). Although it is possible to alleviate this problem us-

ing the forward-backward procedure this would not suit 

the main system requirement as it works on estimating and 

predicting the next sequence rather than using the “what 

you speak is what you get” framework.   

 

2.6 The Dictionary-Based Approach 

The second available option was the Dictionary-based ap-

proach. This section investigates and discusses it based on 

the project. 

    

2.6.1  Description 

Human day-to-day speech is referred to as spontaneous 

speech; it is not scripted and therefore adds a variety of 

phenomena to a speech recognition task with false starts, 

human and non-human noises, new words and alternative 

pronunciations.  All of this has to be tackled when creating 

a system for spontaneous speech recognition (Sloboda and 

Waibel, 1996). Rather than looking for the “correct” pro-

nunciation of a word the system should automatically ex-

pand and adapt the phonetic dictionary and choose a word 

according to its frequency. 

 

A dictionary-based approach is a basic approach for a 

speech-to-text system (Pornpanomchai et al, 2012). The 

pronunciation and sounds are looked up in a sound wave 

dictionary, these dictionaries are usual modified by hand 

or by applying phonological rules to a given dictionary 
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(Sloboda and Waibel, 1996).  

 

Sloboda and Waibel (1996) proposed this Dictionary Learn-

ing Algorithm for using both a speech and phoneme rec-

ogniser: 

1. Collect all occurrences of each word/tuple in the 

database and run the phoneme recognizer on 

them using the smoothed phoneme LM 

2. Compute statistics of the resulting phonetic tran-

scriptions of all words/tuples  

3. Sort the resulting pronunciation candidates using 

a confidence measure and define a threshold for 

rejecting statistically irrelevant variants 

4. Reject variants that are homophones to already 

existing dictionary entries 

5. Reject variants which only differ in confusable 

phonemes 

6. Add the resulting variants to the dictionary  

7. Test with the modified dictionary on the cross 

validation set (optional)  

8. Retrain the speech recogniser, allowing the use of 

multiple pronunciations during training. 

9. As an optional step corrective phoneme training 

can be performed  

10. Test with the resulting recognizer and the modi-

fied dictionary on the cross validation set 

11. Create a new smoothed language model for the 

phoneme recogniser, incorporating all new vari-

ants.  

12. Optional second pass 

There are disadvantages to the Dictionary Approach espe-

cially when entries are added by hand as this usually fo-

cuses on single occurrences of a word and it can introduce 

a number of errors into the system (Pornpanomchai et al, 

2012).  When modifying words in a dictionary by hand it 

is important to be aware that experts tend to use the “cor-

rect" phonetic transcription of a word which is not neces-

sarily the most frequent or even the most likely transcrip-

tion for a given task. The actual pronunciations may also 

be very different for the pronunciation deemed as “cor-

rect”, and in spontaneous speech there are a lot of alterna-

tive pronunciations and they are not easy to predict (Diehl 

et al, 2014). 

 

2.6.2 Feasibility 

The phonetic dictionary is one of the main knowledge-

sources for speech recognition but it is still regarded as be-

ing less important at acoustic or language modelling. As 

we have seen in speech recognition research the emphasis 

is often on the correct pronunciation of a word as it can be 

found in a lexicon, but this correct pronunciation does not 

have to be the main feature and does not provide the best 

recognition accuracy. 

 

The Dictionary-Based method proposes a solution to re-

duce the system complexity, but this method will fail if a 

word looked up cannot be found in the systems dictionary. 

However for this application this method should provide 

the user with the accuracy of their speech and not the “cor-

rect” spelling of the word as specified in the requirements. 

3 METHOD 

Selecting the most appropriate development methodology 
is not easy.  For this project there were two considerations 
that were priorty, the type and complexity of application 
that was being developed, stakeholders, timescale and the 
experience of the development team.   

3.1  Requirements and design 

This section identifies the requirements expected to be met 
to produce a successful product for the end client. The re-
quirements must be clear, complete and understandable to 
the stakeholders so that all parties are aware of what the 
system should be doing and any constraints to the software 
development process (Elgabry, 2016).  

 

The functional requirements for the application were cap-

tured during a meeting with the sponsor (Raj Ramachan-

dran).  The method of project management chosen by the 

team was agile, so the approach to the development was 

iterative.  The application itself was quite simple in design, 

meaning there are very functions.   

 
 It should be a web application that is able to run on a 

PC, smartphone or a tablet. 

 The application must be able to print Tamil orthogra-

phy to represent the spoken Tamil word.  

 The application must be able to interpret and under-

stand sound waves produced by the speaker in order 

to pick up the original word or sound. 

 The application must be able to interpret and under-

stand real words and ignore words with errors or mis-

pronunciation. 

 As the application uses a microphone, it must under-

stand what to ignore and what to accept, meaning if 

there is 2+ people speaking or there is background 

noise, it must focus on just the user. 

 

The above are the functional requirements that entail the 

capabilities, appearance and interactions this system has 

with the users also known as the target audience for this 

project (Rumbaugh, 1999). They were measured during the 

testing and verification stage which is detailed further on 

in the paper. 

 
The following are the non-functional requirements for the 
application: 
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 The application must be able to recognize the spoken 

Tamil word to the written Tamil word in real time 
 The application must to be available for use by several 

users simultaneously  

 As the application is web based, users should be able to 

access the application on any internet browser on any 

device, whether it be Linux, Windows, iOS or Android. 

 The application should achieve a high accuracy rate for 

translation from speech to text 
 The application will provide the user with clear options 

of how to use the features  

 The application shall have a simple design that only 

displays the necessary features 

 The system must conform to IEEE standards 
 
The design process started with each member researching 
applications already available. This research was discussed 
during initial meetings with the full group and the 
sponser. A high-level idea of the layout was put together. 
From this a selection of mockups were created using pho-
toshop, and other design software, and an initial back-end 
prototype was developed calling on Google’s speech 
recognition software. 
 
Further web design mockups were created and then com-
piled to create a high-fidelity prototype which was demon-
strated to the sponser where feedback was obtained and 
designs further modified.  
 
This helped us steer in the right direction as to how visu-
ally the application should look and this was consistently 
implemented throughout the design and development 
stages. This technique proved to be the beneficial as it re-
lied on the perspective of many people. 
 
To visualise the application a series of use cases/user sto-
ries were created, to map out the user journey and infor-
mation flow through the application. 
 

 

3.2  Implementation 

The tools used for initial implementation on this applica-
tion were CMU Sphinx Python-based libraries, SQL Data-

base and Javascript for the front end. These tools were cho-
sen be the structure as they are able to interlink with one 
another to create a functioning application.  
 
CMU Sphinx and Pocket Sphinx are the best source for this 
application as it was designed to support such a project. 

4 ARCHITECTURE OF TAMIL TALK  

The following section dels with the  the application from 
both the back end and client front end. 
 

4.1 System Architecture 

Originally the system needed to be in a format that was 

shareable with others and to provide this it was decided 

the software will be created in a mobile application format 

sharable on the Android Play Store or iOS app store. Later 

on it was requested the application be web-based so to 

keep in line with these requests, the following technologies 

were decided to be used: 

 Python 

 Ionic Hybrid web application framework 

 CMU Sphinx PocketSphinx API 

 Apache Server 

 MySQL 

 MVC Design Pattern 

 
Fig 8. TamilTalk Architecture 

 

To summarize figure 8, the initial design of the web-based 

application had a MVC design with an Ionic based front 

end that communicates with a back-end written in Python, 

while using the PocketSphinx API to convert the sound 

into text. 

 

4.2 HTML, CSS & Javascript 

Due to unforeseen circumstances the original design 
model was not able to be fully developed. To ensure that a 
working software was developed for testing another ap-
proach had to be adapted. Time constraints placed an ur-
gency on the development process, with this in mind a 
simple API implementation was used for the application. 
The Google Web Speech API was the choice of developers 

Figure 2 Use Case for the Application 
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as it allowed for an effienct build of a working web appli-
cation. This API provides a prebuilt dictionary of Tamil 
syllables, words, and orthography unique to the four major 
regions where the language is spoken (India, Sri Lanka, 
Mayalsia, Singapore). 

 
The main functionality was written in JavaScript, so it al-
lowed easy implantation into a web browser. The graph-
ical user interface was transferred over from the orginal 
design as it was built using simple HTML and CSS. Several 
constraints would arise while using the Web Speech API to 
provide the back-end functionality. The Web Speech API’s 
sever side language is not open source, so ensuring the cor-
rect process of conversion from speech to text became a dif-
ficult task. Additionally, this API would require all poten-
tial users to have an internet connection as well as use the 
latest version of Google Chrome, as it is the only web 
browser that works with this API.  

5 TESTING & VERIFICATION  

Testing was carried out to help define whether the re-
quirements were achieved and this was implemented in 
the final stages of the development iteration.  
 
Design protocol testing is imperative in software devel-
opment as it will help entail how achievable the require-
ments are. The non-functional requirements were re-
quired to be successful and to demonstrate the quality 
level of the project.  
 
This verification method was conducted by individuals 
of the team that were not associated with the develop-
ment of the 'coding aspect' of the software to achieve an 
unbiased result. Other forms of verification were to 
monitor the risks associated with the development of 
the software on a continual basis to measure the success 
of the application; more risks entailed a higher failure 
rate. 
 
An important verification method already undertaken 
was from our sponser, whom of which provided feed-
back on initial design storyboards and saw the benefits 
of any initial ideas presented. The feedback was added 
into the actual design of the application therefor show-
ing the potential that it has and how it can be taken 
much further in the future. 
 

5.1 System Testing 

In the testing phase the application was subjected to a sin-
gle round of black-box testing. In other words, the user 
testing the application had no prior knowledge or explana-
tion of the application, only a user manual to aid in navi-
gation.   
 
The testing itself was performed on a MacBook Pro in a 
classroom at the University of the West of England. The 
user was given a set of instructions for tasks to be accom-

plished while researchers observed and recorded the out-
comes.  
 
The outcomes of these tasks were measured on a suc-
cess/failure scale. Four separate test cases were completed 
during the testing phase with varying tasks for both the 
application and the user to complete successfully which al-
lowed for testing of the interface design usability and the 
application functionality at the same time.  

 

5.2 Results 

The user was able to successfully navigate the application 
to accomplish the primary task of speaking into the micro-
phone and the application converting that to Tamil orthog-
raphy. Usability was high throughout the majority of the 
application with a few features, such as the copy and paste 
button, providing the user with problems.  
 
Specific to application performance the test cases provided 
mixed results. In Test case one, voice-input data, the appli-
cation was successful in 100% (4 of 4) of tasks tested and 
66.67% (4 of 6) of total tasks. Two tasks in test case one were 
unable to be completed due to testing environment. Test 
case two showed the application successfully completing 
66.67% (2 of 3) of the tasks tested and 50% (2 of 4) of the 
total tasks. One task of test case two was unable to be tested 
due to lack of access to API server-side functionality. In test 
case three the application successfully completed 100% (2 
of 2) of the tasks tested and 50% (2 of 4) of the total tasks. 
Again, the two untested tasked were due to lack of access 
to server-side API access. Finally, in test case four the ap-
plication successfully completed 33% (1 of 3) of tasks tested 
and 25% (1 of 4) of the total tasks. One task was not able to 
be tested due to testing environment. In total, the applica-
tion successfully completed 75% (9 of 12) of tasks tested 
and 47.9% (9 of 19) of the total tasks in the test cases.  

6 DISCUSSION 

This section looks at the the implications of the results and 
further development of the application. The results of the 
testing of this application provide mixed feedback. The 
main functionality of this application was developed suc-
cessfully using available industry standard tools. The user 
was able to speak into the application and receive accurate 
feedback in Tamil orthography. One of the main require-
ments of this application was not met, though. When the 
user would pronounce words or syllables incorrectly, the 
application would not provide the intended feedback. This 
application, like many other applications, would predict 
what it anticipated the user meant to say instead of pro-
vided feedback of exactly what they said, even if pro-
nounced incorrectly. Several reasons led to these results 
such as using a closed source API, development abilities, 
and development time due to circumstances that arose 
during the process. 
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7 CONCLUSION 

This paper has attempted to implement speech to text as 

conceptualized by Ramachandran (2018) and deal with a 

complex contemporary probem in the field of speech to 

text and its user acceptance in the Tamil context. In order 

to provide the best outcomes in future development of 

Tamil speech to text applicatons we believe that a phonetic 

dictionary would provide the best results for Tamil speak-

ers. Developing a unique back-end, ideally with the use of 

open-source API or no API, would ideally allow for the ap-

plication to achieve the concept of “what you say is what 

you get”. Time constraints, along with development 

knowledge kept this research from meeting all require-

ments, but it was shown that provding an application for 

“minority languages” like Tamil is more readily available 

than ever.  

 

This project was challenging, a better understanding of the 

language would be advised in order to fully create a pho-

netic dictionary for the  outcome to be achieved. Users 

would discover realise  errors in their pronunciation or-

ganically with the use of such an application as words 

would not be “corrected” for incorrect pronunciation.  

 

Further work 
Future research on the production of this type of applica-
tion may consider implementing a Dynamic Time Warping 
(DTW) Algorithm to aid in accurate syllable matching with 
the database.  The DTW algorithm measures the similari-
ties in two sequences, which could vary in speed or dis-
tance, and is based on dynamic programming (Yadav et al. 
2018). DTW would allow for developers to resolve issues 
with different rate of speed and different accents in a user’s 
speech.  By matching the input speech against the time axis 
of other syllables in the database, the DTW algorithm 
could provide the accuracy of actual syllables spoken, in-
tentionally or unintentionally, that this software requires.  
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