
EasyChair Preprint

№ 1440

Tamil talk: What you speak is what you get!

Naomi Weston, David Mann, Raj Ramachandran and Kim Frederic

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 1, 2019

Tamil Talk: A Speech to Text Application for Native Tamil Speckers

 1

Tamil Talk: What you speak is what you get!
Abstract- Tamil is one of the longest surviving classical languages in the world. Speech to text in Tamil would provide
huge benefit to a lot of native Tamil speakers throughout the world. There are many speech recognition and speech to
text systems available for a wide variety of languages but many minority languages, such as Tamil are overlooked. In
this paper, we propose to develop a system for Tamil speech to text that will be consitent with the pronunciation of the
user and conforms wih the syntax of the language.

Index Terms— Speech to text, application, Agile, Tamil Language, Tamil Orthography, Speech Recognition, ASR

——————————  ——————————

1 INTRODUCTION

peech is the ability to express thoughts and feelings by
articulating sounds. It is a key component of communi-

cation for humans. Each language uses phonetic composti-
tions of a limited set of vowels and consonant sounds that
form words. Speech recognition is the interdisciplinary
subfield of computational linguistics that develops meth-
odoligies and technologies that enables the recognition
and translation of spoken language into text (Rabiner et al,
2004).

Tamil is a syllabic language with almost one to one corre-
spondence to the sound and orthography (Keane,2004).
The work os Shulman (2016), point to unique syllables of
Tamil often mispronounced especially the syllable 'zha' by
the native speakers for various reasons as also identified
and raised by Ramachandran (2018) in the context of not
just predicting the user acceptance of speech to text but
also to be able to use speech to text in Tamil due to the na-
ture of the language. There are very few studies on recog-
nition of 'zha' primarily by Srinivasan et.al (2009, 2010,
2013). It Is argued that David (2010) views on language
variation do not apply in this context due to the syllabic
nature of the language. Some of the participant comments
from Ramachandran (2018) informed the design and de-
velopment of Tamil talk:

"Language and spelling cannot be changed"
"You have to pronounce the word correctly"
"People must change their pronunciation"

The first successful speech recognition machine was re-
leased by three Bell Labs researchers in 1952 and it was
called Audrey. This machine was able to recognize spoken
digits with 90% accuracy; however, it only recognized the
inventor’s voice (Boyd, 2018). The technology then devel-
oped into understanding English words about 10 years
later. Raj Redy was the first person to research on contin-
uous speech recognition as a graduate student in the late
1960s, as systems prior to this, required users to pause after
ever word (Carnegie Mellon, 2010).

Speech recognition technology has grown in sophistication
and accessibility leading to the ability to convert speech
into text for hundreds of languages and dialects. This in-

cludes languages like Tamil which uses a script that is dif-
ferent to Roman letters and uses completely different
structure. Nowadays, almost everyone has a smartphone
which is more than capable of recognizing spoken lan-
guage using the most basic of hardware. The research con-
ducted in this paper points to different design possibilities
and details of developing a speech to text application. An
application was built to convert spoken Tamil to text and
display what has been spoken onto the screen of a given
device. Example, a smartphone or a laptop.

1.1 Overview

The structure of the paper is as follows:
 The first section deals with the research carried out into

the Tamil language and investigates any speech to text
applications that are currently available.

 The second section describes the method used to de-
sign, develop , implement and test the application de-
veloped.

 The third section documents the testing carried out on
the developed application.

 The final section provides the discussion and conclu-
sion for the project and suggested work that could be
conducted in the future.

1.2 Aims

The aim of this research is to implement a speech to text
application in Tamil based on the conceptual framework of
Ramachandran (2018) ‘what you speak is what you get’.

The aim of application itself is designed to work as a teach-
ing tool for native and non-native Tamil speakers to con-
firm correct pronunciation of syllbles and words.

2 LITERATURE REVIEW

Speech to text is the conversion of spoken words into text.
ASR applications are very widely available and help assist
millions of people every day, however, many of these ap-
plications have language-based limitations by only sup-
porting a handful of languages. Developing an application
that supports “minority languages” would provide great
technological benefit and help develop more inclusive and
accessible technology (Fu et al, 2018). Pandharipande

S

2

(2002) defines minority langaues as a language spoken by
less than 50% of the given region, state, or community.This
research views the definition of minority language as de-
fined by Pandharipane (2002) outside of the context and
region where Tamils are in majority. For example in the In-
dian state of Tamil Nadu and Puducherry.

2.1 Tamil

Tamil is a Dravidian language spoken by eighty million
people in South Asia and across fifty-five diaspora coun-
tries but predominantly by the Tamil people of Tamilnadu
(Steever, 1998). It is one of the longest surviving classical
languages in the world and recorded Tamil literature has
been documented for over 2000 years (Zvelebill, 1992).
The Tamil script consists of 12 vowels (Uyir Ezhuthukkal),

18 consonants (Mei Ezhuthukkal) and one special charac-
ter, the Aytha Ezhuthu (see fig.1). The vowels and conso-
nants combine to form 216 compound characters (Uyir Mei
Ezhuthukkal), giving a total of 247 haracters (Lo, 2012).
Unlike other South Asian scripts, 3.1such as Gujarati, Tamil
does not have script to represent voiceless aspirated (such
as “kh”), voiced (“g”) and voiced aspirated stops (“gh”).

2.2 Speech to Text in Tamil

There are many existing speech-to-text software and appli-
cations that support the Tamil language. The most com-
monly used system is Google Translate (McGuire, 2018);
which could potentially be used to translate from one lan-
guage to another, such as French to English, but could also
be used for speech to text. Unfortunately, there are short-
comings with the existing application. The existing system
does not incorporate the concept of ‘what you speak is
what you get’. The concept as seen in Ramachandran
(2018) is based on the structure of the language as opposed
to an application that accommodates language and pro-
nunciation variation of the users.

This kind of predictive speech-to-text will give the users a
sense of pronouncing the words correctly, where in reality

the words are pronounced differently. This makes users
believe they speak correctly and will teach them the lan-
guage incorrectly which is a significant issue (Devarajan,
2009).

2.3 Design considerations for Tamil talk

In a standard speech recognition system (fig.2) the raw

speech is typically sampled at a high frequency (16KHz –

8KHz) this produces a sequence of amplitude values over

time. This raw speech data is then transformed and com-

pressed to enable simplified processing (Deng et al, 2007).

Many signal analysis techniques are available which can

extract useful features and compress the data by a factor of

ten, such as Fourier analysis, Perceptual Linear Prediction,

and Lineal Predictive Coding.

Fig 2. Trivedi (2014)

The speech-to-text transformation is one of the most diffi-

cult tasks in computer science because it consists of many

difficult problems (Pornpanomchai et al, 2012) but it is an

important technology to develop and to develop well.

Speech recognition has many potential applications in-

cluding command and control, dictation, transcription of

recorded speech, searching audio documents, and interac-

tive spoken dialogues (Gale and Young, 2007). At the core

of all speech recognition systems consists of a set of statis-

tical models representing the various sounds of the lan-

guage to be recognised (Baum and Eagon, 1967).

The task of speech recognition is to find the best matching

word-sequence (Ŵ) given the data of an utterance (O). O

is a sequence of input vectors generated from the raw

speech data. According to Bayes’ Theorem the task can be

formulated as seen below (fig.3).

Fig 3. Blanken, de Vires, Blok and Feng, 2007

To decode the sequence of words spoken you have calcu-

late the next probability (fig.4) where W is the decoded se-

quence and O is the observed sequence or incoming fea-

ture vector (Blanken et al, 2007).

Fig 1 Basic Tamil script (Lo, 2012)

Tamil Talk: A Speech to Text Application for Native Tamil Speckers 3

Fig 4. Blanken, de Vires, Blok and Feng, 2007

This splits the task into two components P(O|W), also

known as the acoustic model and P(W),which is also

known as the language model. In most speech recognition

systems the acoustic model is represented by the HMM or

the Hidden Markov Model (Kreyssig, 2018). Each HMM is

a finite state machine with n states whereby each state, be-

sides the first and last, has specific output probabilities and

each arc between states is associated with a transition prob-

ability (Gales and Young, 2007). Previously the output

probabilities were modelled by multivariate Gaussian

Mixture Model or GMM (Stuttle, 2003). Given restraints in

computational power the GMM is restricted to have a di-

agonal co-variance matrix and hence require independ-

ence between the input dimensions.

Artificial neural networks (ANNs) on the other hand, do

not need this independence requirement, which is why

they are more currently used for acoustic modelling and

give increased performance to speech recognition, particu-

larly Convolutional Neural Networks and Recurrent Neu-

ral Networks (Duran and Battle, 2018). There are several

possible ways to exploit ANNs in automatic speech recog-

nition systems, such as the Hidden Markov Model-Artifi-

cial Neural Network hybrid system which takes the ad-

vantage of ANN’s strong representation learning power

and HMM’s sequential modelling ability.

There is also research into using what is called Connection-

ist Temporal Classification (fig.5) which is very similar to

the standard HMM-ANN approach however a single-state

HMM is used, usually with three times lower output

frame-rate and after each single-state HMM a “blank” state

is allowed (Graves et al, 2006). Further, this model does not

need alignment of the training data, which is an advantage,

but only starts to show benefits starting with very large

quantities of data (Yu and Deng, 2014).

Fig 5. Framewise and CTC networks classifying a speech signal (Graves et

al, 2006)

All these options were considered at the beginning but we

eventually worked on two options that was thought would

provide a complete solution of creating a Speech-to-Text

application in Tamil that uses the conceptual framework of

“what you speak is what you get”. While it was deemed

the option to develop an application using the Dictionary

Model would be the best fit for this project, both options

have been described in sections 2.5 and 2.6, allowing for

the information to be used for any enhancement to the so-

lution at later date.

2.4 Application Programming Interfaces

An Application Programming Interface (API) is a set of

subroutine definitions, protocols, and tools for building

application software. In general terms, it is a set of clearly

defined methods of communication between various soft-

ware components. Many API’s are built with the intention

to allow 3rd party developers to build interesting applica-

tions and designed to expand the reach of an organisation

(Clarke, 2004).

Fig 6. Types of voice systems (Matarneh et al, 2017)

All speech recognition engines/ API’s initially work in the

same way as the user’s voice is passed through the micro-

phone input to reach the recognition system. There are a

number of options for Automatic Speech Recognition API’s

available that can be divided into closed source code and

open source code (fig.6).

Closed source code means there is no physical access to the

code, a user will be unable to manipulate and modify it.

Two of the biggest companies building voice-powered ap-

plications are Google and Microsoft; however these API’s

code is inaccessible (Samudravijaya and Barol, 2013).

CMU Sphinx is one of the most famous systems and is

completely open source. Sphinx enables developers to

download and use their code freely (Lange and Suender-

mann, 2014) it includes speech recognisers and acoustic

model trainers (Matarneh et al, 2017).

There are many benefits of using API’s when building ap-

plications, especially if the API meets the specifc needs of

an application, then avoiding the reinvention of the pro-

verbial wheel is a standard piece of wisdom in software

development circles (Atwood, 2008). If it is not a good fit

for a proposed application but the API is open source and

4

open code then users will be able to access and manipulate

the code to fit with an application. Additionally, there are

also disadvantages to API’s that need to be considered. An-

yone could have written the code and if it is closed source

you will have no way of knowing what it actually does and

you will not have the option or the ability to improve on it.

2.4.1 Google Speech API

Google Speech Recognition API is a technology used

widely in different research fields for different language. It

allows the user to voice search and its technology is inte-

grated into many smartphones and computers. Originally

it only supported a short request of a maximum 40 words

and has only recently improved its speech recognition by

using a new technology, deep learning neural networks

(Kepuska, 2017).

Part of Googles improvement is a major new feature in the

Speech-to-text API that now allows developers to select be-

tween different machine learning models (Lardinois,

2018). The speech API now supports over 100 languages,

including ancient languages such as Georgian (first spoken

in 430AD), as well as Swahili, Gujarati and Tamil in a bid

to make the internet more inclusive (Techseen Bureau,

2017).

Google acquired several deep learning companies over the

years such as, DeepMind, DNNresearch and JetPac and us-

ing these deep learning neural networks Google achieve an

8 percent error rate in 2015, a reduction of more than 23

percent from 2013 (Beat and Novet, 2016).

2.4.2 CMU Sphinx

In 1986 Sphinx was launched and became one of the most

successful open source systems developed for research

purposes using HMM (Juang & Rabiner, 2005). Developed

at Carnegie Mellon University (CMU) it currently has one

of the largest vocabularies and speaker independent recog-

nition codebase. This speaker independent speech recog-

niser and uses HMM and n-gram statistical language

model, which is able to recognise continuous speech with

a big vocabulary (Matarneh et al, 2017).

Since its initial release, Sphinx has gone through a number

of different modifications. In the past, the decoding strat-

egy of the Sphinx systems tended to be deeply entangled

with the rest of the system. As a result of these constraints,

the systems were difficult to modify for experiments in

other areas (Walker et al, 2004).

However, the newest version, Sphinx-4, released in 2010,

works with various kinds of language specifications such

as grammars, statistical language models or blends of both

(Twiefel, Baumann, Heinrich & Wermter, 2014). This

means a major benefit of the Sphinx system is that re-

searchers are given more flexibility in the way they incor-

porate acoustic models allowing constraints to be imposed

on the input from the user (Ashwell & Elam, 2017), making

it a great way for identifying particular phonetic sounds

for set phrases.

Sphinx has now developed into a toolkit that can be used

to develop powerful speech recognition applications and

includes several parts (Belenko & Balakshin, 2017):

1. PocketSphinx is small fast program, processing

sound, acoustic models, grammars and dictionar-

ies.

2. The library Sphinxbase is necessary for Pock-

etSphinx work.

3. Sphinx4 is the recognition library.

4. Sphinxtrain which is for acoustic models train-

ing.

2.4.3 Microsoft Speech API

Microsoft’s Speech API has been around since 1993, devel-

oped by three of the four people responsible for the CMU

Sphinx-II speech recognition system (Kepuska & Bohouta,

2017). Its system is very similar to Google Speech API but

uses a server application programming interface (SAPI) for

its data. It includes a set of effective methods and its data

is well integrated into the .NET framework (Kamarudin et

al, 2013).

Microsoft has continued to develop the powerful speech

API and has released a series of increasingly powerful

speech platforms (Lacoma, 2019), focussing on increasing

the emphasis on speech recognition systems and improved

Speech API by using a context dependent deep neural net-

work hidden Markov model (Manaswi, 2018).

2.5 The Hidden Markov Model

The first method considered was the Hidden Markov

Model. The basic need was identifying if it would meet the

system requirements in terms of providing a solution that

not only points to an indigenous method to develop a soft-

ware application but also, the issue of language mainte-

nance, code switching and code mixing (Shulman 2016,

Schiffman 2002) by the native Tamil speakers both in the

native region and in the diaspora. Ramachandran (2018)

recommends an indigenous approach to design, develop

and evaluate the user acceptance of speech to text in lan-

guage based technology such as speech to text.

A hidden Markov model (HMM) is a statistical Markov

model in which the system being modelled is assumed to

be a Markov process with hidden states (Trivedi, 2014). A

HMM can be presented as the simplest dynamic Bayesian

Tamil Talk: A Speech to Text Application for Native Tamil Speckers 5

network (Wantanabe, 2011). HMM can be seen as a black

box, where the sequence of output symbols generated over

time is observable, but the sequence of states visited is hid-

den from view (Juang & Rabiner, 2005).

Fig 7. Trivedi, 2014

Figure 7 shows a simple HMM with two states and two

output symbols, A and B. When applied to speech recogni-

tion, the states are interpreted as acoustic models, indicat-

ing what sounds are likely to be heard during their corre-

sponding segments of speech; while the transitions pro-

vide temporal constraints, indicating how the states may

follow each other in sequence (Trebelskis, 1995).

There are three basic algorithms associated with Hidden

Markov Models; firstly the Forward algorithm which is

useful for isolated word recognition. The number of possi-

ble paths increases with the length if a sequence so the goal

of the forward algorithm is to compute the joint probabil-

ity, taking advantage of the conditional independence

rules of the HMM to perform calculations recursively and

avoid incurring exponential computation time (Rabiner,

1989).

The second algorithm is the Viterbi algorithm which is a

dynamic programming algorithm useful for isolated word

recognition. In speech-to-text, the acoustic signal is treated

as the observed sequence of events, and a string of text is

considered to be the hidden cause of the acoustic signal

(Anguera et al, 2010). The Viterbi algorithm finds the most

likely string of text given the acoustic signal.

The final algorithm is the Forward-Backward algorithm

which is an interference algorithm that is useful for train-

ing a HMM (Rabiner, 1989). This algorithm involves three

steps:

1. Computing forward probabilities

2. Computing backward probabilities

3. Computing smoothed values.

It computes the posterior marginal of all hidden state var-

iables and makes use of the principle of dynamic program-

ming to efficiently compute the values that are requires to

obtain the distributions in two passes. The first pass goes

forward in time while the second goes backwards also

known as the forward message pass and the backward

message pass (Juang & Rabiner, 2005).

2.5.1 Feasibility of HMM for Tamil talk

The Hidden Markov Model provides a simple and effec-

tive framework for modelling time-varying spectral vector

sequences. As a result, almost all large vocabulary contin-

uous speech recognition systems are based on HMMs

(Gale & Young, 2007). Since speech has a temporal struc-

ture and can be encoded as a sequence of spectral vectors

spanning the audio frequency range, the Hidden Markov

Model provides a natural framework for speech recogni-

tion.

According to Trivedi (2014), there are many limitations of

the Hidden Markov Model which include:

 Constant observation of frames

 The Markov assumption

 Lack of formal methods for choosing a model to-

pology

 Large amounts of training data required

 Weak duration modelling

 Restricted output PDFs

 The assumption of conditional independence

However, the main concern when implementing the HMM

technique with a speech-to-text application for the Tamil

language, is computational efficiency (Srinivasen et al,

2009). Although it is possible to alleviate this problem us-

ing the forward-backward procedure this would not suit

the main system requirement as it works on estimating and

predicting the next sequence rather than using the “what

you speak is what you get” framework.

2.6 The Dictionary-Based Approach

The second available option was the Dictionary-based ap-

proach. This section investigates and discusses it based on

the project.

2.6.1 Description

Human day-to-day speech is referred to as spontaneous

speech; it is not scripted and therefore adds a variety of

phenomena to a speech recognition task with false starts,

human and non-human noises, new words and alternative

pronunciations. All of this has to be tackled when creating

a system for spontaneous speech recognition (Sloboda and

Waibel, 1996). Rather than looking for the “correct” pro-

nunciation of a word the system should automatically ex-

pand and adapt the phonetic dictionary and choose a word

according to its frequency.

A dictionary-based approach is a basic approach for a

speech-to-text system (Pornpanomchai et al, 2012). The

pronunciation and sounds are looked up in a sound wave

dictionary, these dictionaries are usual modified by hand

or by applying phonological rules to a given dictionary

6

(Sloboda and Waibel, 1996).

Sloboda and Waibel (1996) proposed this Dictionary Learn-

ing Algorithm for using both a speech and phoneme rec-

ogniser:

1. Collect all occurrences of each word/tuple in the

database and run the phoneme recognizer on

them using the smoothed phoneme LM

2. Compute statistics of the resulting phonetic tran-

scriptions of all words/tuples

3. Sort the resulting pronunciation candidates using

a confidence measure and define a threshold for

rejecting statistically irrelevant variants

4. Reject variants that are homophones to already

existing dictionary entries

5. Reject variants which only differ in confusable

phonemes

6. Add the resulting variants to the dictionary

7. Test with the modified dictionary on the cross

validation set (optional)

8. Retrain the speech recogniser, allowing the use of

multiple pronunciations during training.

9. As an optional step corrective phoneme training

can be performed

10. Test with the resulting recognizer and the modi-

fied dictionary on the cross validation set

11. Create a new smoothed language model for the

phoneme recogniser, incorporating all new vari-

ants.

12. Optional second pass

There are disadvantages to the Dictionary Approach espe-

cially when entries are added by hand as this usually fo-

cuses on single occurrences of a word and it can introduce

a number of errors into the system (Pornpanomchai et al,

2012). When modifying words in a dictionary by hand it

is important to be aware that experts tend to use the “cor-

rect" phonetic transcription of a word which is not neces-

sarily the most frequent or even the most likely transcrip-

tion for a given task. The actual pronunciations may also

be very different for the pronunciation deemed as “cor-

rect”, and in spontaneous speech there are a lot of alterna-

tive pronunciations and they are not easy to predict (Diehl

et al, 2014).

2.6.2 Feasibility

The phonetic dictionary is one of the main knowledge-

sources for speech recognition but it is still regarded as be-

ing less important at acoustic or language modelling. As

we have seen in speech recognition research the emphasis

is often on the correct pronunciation of a word as it can be

found in a lexicon, but this correct pronunciation does not

have to be the main feature and does not provide the best

recognition accuracy.

The Dictionary-Based method proposes a solution to re-

duce the system complexity, but this method will fail if a

word looked up cannot be found in the systems dictionary.

However for this application this method should provide

the user with the accuracy of their speech and not the “cor-

rect” spelling of the word as specified in the requirements.

3 METHOD

Selecting the most appropriate development methodology
is not easy. For this project there were two considerations
that were priorty, the type and complexity of application
that was being developed, stakeholders, timescale and the
experience of the development team.

3.1 Requirements and design

This section identifies the requirements expected to be met
to produce a successful product for the end client. The re-
quirements must be clear, complete and understandable to
the stakeholders so that all parties are aware of what the
system should be doing and any constraints to the software
development process (Elgabry, 2016).

The functional requirements for the application were cap-

tured during a meeting with the sponsor (Raj Ramachan-

dran). The method of project management chosen by the

team was agile, so the approach to the development was

iterative. The application itself was quite simple in design,

meaning there are very functions.

 It should be a web application that is able to run on a

PC, smartphone or a tablet.

 The application must be able to print Tamil orthogra-

phy to represent the spoken Tamil word.

 The application must be able to interpret and under-

stand sound waves produced by the speaker in order

to pick up the original word or sound.

 The application must be able to interpret and under-

stand real words and ignore words with errors or mis-

pronunciation.

 As the application uses a microphone, it must under-

stand what to ignore and what to accept, meaning if

there is 2+ people speaking or there is background

noise, it must focus on just the user.

The above are the functional requirements that entail the

capabilities, appearance and interactions this system has

with the users also known as the target audience for this

project (Rumbaugh, 1999). They were measured during the

testing and verification stage which is detailed further on

in the paper.

The following are the non-functional requirements for the
application:

Tamil Talk: A Speech to Text Application for Native Tamil Speckers 7

 The application must be able to recognize the spoken

Tamil word to the written Tamil word in real time
 The application must to be available for use by several

users simultaneously

 As the application is web based, users should be able to

access the application on any internet browser on any

device, whether it be Linux, Windows, iOS or Android.

 The application should achieve a high accuracy rate for

translation from speech to text
 The application will provide the user with clear options

of how to use the features

 The application shall have a simple design that only

displays the necessary features

 The system must conform to IEEE standards

The design process started with each member researching
applications already available. This research was discussed
during initial meetings with the full group and the
sponser. A high-level idea of the layout was put together.
From this a selection of mockups were created using pho-
toshop, and other design software, and an initial back-end
prototype was developed calling on Google’s speech
recognition software.

Further web design mockups were created and then com-
piled to create a high-fidelity prototype which was demon-
strated to the sponser where feedback was obtained and
designs further modified.

This helped us steer in the right direction as to how visu-
ally the application should look and this was consistently
implemented throughout the design and development
stages. This technique proved to be the beneficial as it re-
lied on the perspective of many people.

To visualise the application a series of use cases/user sto-
ries were created, to map out the user journey and infor-
mation flow through the application.

3.2 Implementation

The tools used for initial implementation on this applica-
tion were CMU Sphinx Python-based libraries, SQL Data-

base and Javascript for the front end. These tools were cho-
sen be the structure as they are able to interlink with one
another to create a functioning application.

CMU Sphinx and Pocket Sphinx are the best source for this
application as it was designed to support such a project.

4 ARCHITECTURE OF TAMIL TALK

The following section dels with the the application from
both the back end and client front end.

4.1 System Architecture

Originally the system needed to be in a format that was

shareable with others and to provide this it was decided

the software will be created in a mobile application format

sharable on the Android Play Store or iOS app store. Later

on it was requested the application be web-based so to

keep in line with these requests, the following technologies

were decided to be used:

 Python

 Ionic Hybrid web application framework

 CMU Sphinx PocketSphinx API

 Apache Server

 MySQL

 MVC Design Pattern

Fig 8. TamilTalk Architecture

To summarize figure 8, the initial design of the web-based

application had a MVC design with an Ionic based front

end that communicates with a back-end written in Python,

while using the PocketSphinx API to convert the sound

into text.

4.2 HTML, CSS & Javascript

Due to unforeseen circumstances the original design
model was not able to be fully developed. To ensure that a
working software was developed for testing another ap-
proach had to be adapted. Time constraints placed an ur-
gency on the development process, with this in mind a
simple API implementation was used for the application.
The Google Web Speech API was the choice of developers

Figure 2 Use Case for the Application

8

as it allowed for an effienct build of a working web appli-
cation. This API provides a prebuilt dictionary of Tamil
syllables, words, and orthography unique to the four major
regions where the language is spoken (India, Sri Lanka,
Mayalsia, Singapore).

The main functionality was written in JavaScript, so it al-
lowed easy implantation into a web browser. The graph-
ical user interface was transferred over from the orginal
design as it was built using simple HTML and CSS. Several
constraints would arise while using the Web Speech API to
provide the back-end functionality. The Web Speech API’s
sever side language is not open source, so ensuring the cor-
rect process of conversion from speech to text became a dif-
ficult task. Additionally, this API would require all poten-
tial users to have an internet connection as well as use the
latest version of Google Chrome, as it is the only web
browser that works with this API.

5 TESTING & VERIFICATION

Testing was carried out to help define whether the re-
quirements were achieved and this was implemented in
the final stages of the development iteration.

Design protocol testing is imperative in software devel-
opment as it will help entail how achievable the require-
ments are. The non-functional requirements were re-
quired to be successful and to demonstrate the quality
level of the project.

This verification method was conducted by individuals
of the team that were not associated with the develop-
ment of the 'coding aspect' of the software to achieve an
unbiased result. Other forms of verification were to
monitor the risks associated with the development of
the software on a continual basis to measure the success
of the application; more risks entailed a higher failure
rate.

An important verification method already undertaken
was from our sponser, whom of which provided feed-
back on initial design storyboards and saw the benefits
of any initial ideas presented. The feedback was added
into the actual design of the application therefor show-
ing the potential that it has and how it can be taken
much further in the future.

5.1 System Testing

In the testing phase the application was subjected to a sin-
gle round of black-box testing. In other words, the user
testing the application had no prior knowledge or explana-
tion of the application, only a user manual to aid in navi-
gation.

The testing itself was performed on a MacBook Pro in a
classroom at the University of the West of England. The
user was given a set of instructions for tasks to be accom-

plished while researchers observed and recorded the out-
comes.

The outcomes of these tasks were measured on a suc-
cess/failure scale. Four separate test cases were completed
during the testing phase with varying tasks for both the
application and the user to complete successfully which al-
lowed for testing of the interface design usability and the
application functionality at the same time.

5.2 Results

The user was able to successfully navigate the application
to accomplish the primary task of speaking into the micro-
phone and the application converting that to Tamil orthog-
raphy. Usability was high throughout the majority of the
application with a few features, such as the copy and paste
button, providing the user with problems.

Specific to application performance the test cases provided
mixed results. In Test case one, voice-input data, the appli-
cation was successful in 100% (4 of 4) of tasks tested and
66.67% (4 of 6) of total tasks. Two tasks in test case one were
unable to be completed due to testing environment. Test
case two showed the application successfully completing
66.67% (2 of 3) of the tasks tested and 50% (2 of 4) of the
total tasks. One task of test case two was unable to be tested
due to lack of access to API server-side functionality. In test
case three the application successfully completed 100% (2
of 2) of the tasks tested and 50% (2 of 4) of the total tasks.
Again, the two untested tasked were due to lack of access
to server-side API access. Finally, in test case four the ap-
plication successfully completed 33% (1 of 3) of tasks tested
and 25% (1 of 4) of the total tasks. One task was not able to
be tested due to testing environment. In total, the applica-
tion successfully completed 75% (9 of 12) of tasks tested
and 47.9% (9 of 19) of the total tasks in the test cases.

6 DISCUSSION

This section looks at the the implications of the results and
further development of the application. The results of the
testing of this application provide mixed feedback. The
main functionality of this application was developed suc-
cessfully using available industry standard tools. The user
was able to speak into the application and receive accurate
feedback in Tamil orthography. One of the main require-
ments of this application was not met, though. When the
user would pronounce words or syllables incorrectly, the
application would not provide the intended feedback. This
application, like many other applications, would predict
what it anticipated the user meant to say instead of pro-
vided feedback of exactly what they said, even if pro-
nounced incorrectly. Several reasons led to these results
such as using a closed source API, development abilities,
and development time due to circumstances that arose
during the process.

Tamil Talk: A Speech to Text Application for Native Tamil Speckers 9

7 CONCLUSION

This paper has attempted to implement speech to text as

conceptualized by Ramachandran (2018) and deal with a

complex contemporary probem in the field of speech to

text and its user acceptance in the Tamil context. In order

to provide the best outcomes in future development of

Tamil speech to text applicatons we believe that a phonetic

dictionary would provide the best results for Tamil speak-

ers. Developing a unique back-end, ideally with the use of

open-source API or no API, would ideally allow for the ap-

plication to achieve the concept of “what you say is what

you get”. Time constraints, along with development

knowledge kept this research from meeting all require-

ments, but it was shown that provding an application for

“minority languages” like Tamil is more readily available

than ever.

This project was challenging, a better understanding of the

language would be advised in order to fully create a pho-

netic dictionary for the outcome to be achieved. Users

would discover realise errors in their pronunciation or-

ganically with the use of such an application as words

would not be “corrected” for incorrect pronunciation.

Further work
Future research on the production of this type of applica-
tion may consider implementing a Dynamic Time Warping
(DTW) Algorithm to aid in accurate syllable matching with
the database. The DTW algorithm measures the similari-
ties in two sequences, which could vary in speed or dis-
tance, and is based on dynamic programming (Yadav et al.
2018). DTW would allow for developers to resolve issues
with different rate of speed and different accents in a user’s
speech. By matching the input speech against the time axis
of other syllables in the database, the DTW algorithm
could provide the accuracy of actual syllables spoken, in-
tentionally or unintentionally, that this software requires.

REFERENCES

Anguera, X., Bozonnet, S., Evans, N., Fredouille, C., Friedland, G.,

& Vinyals, O. (2010). "Speaker Diarization: A Review of Recent Re-

search”. IEEE TASLP. (Available at: http://www1.icsi.berke-

ley.edu/~vinyals/Files/taslp2011a.pdf)

Ashwell, T. & Elam, J. (2017). “How accurately can Google Web

Speech API recognize and transcribe Japanese L2 English learners’

oral production?”. The JALT CALL Journal, Vol. 13, No.1 pp 59 – 76

Atwood, J. (2009). “Don’t Reinvent the Wheel, Unless you Plan on

Learning more about Wheels”. Coding Horror. (Available at:

https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-you-

plan-on-learning-more-about-wheels/)

Beat, V. & Novet, J. (2016). “Google says its speech recognition

technology now has only an 8% word error rate”. Venture beat. (Avail-

able at: http://venturebeat.com/2015/05/28/)

Belenko, M.V. & Balakshin, P.V. (2017). “Comparative Analysis of

Speech Recognition Systems with Open Code”. Mezhdunarodnyiy

Nauchno-Issledovatelskiy Zhurnal,)pp 13-18.

Blanken, H., de Vries, A., Blok, H. & Feng, L. (2007). “Multimedia

Retrieval (Data-Centric Systems and Applications)”. Springer Science

& Business Media pp203 – 205

Boyd, C. (2018, January 10). The Past, Present, and Future of Speech

Recognition Technology. Retrieved from The Startup:

https://medium.com/swlh/the-past-present-and-future-of-speech-

recognition-technology-cf13c179aaf

Clarke, S. (2004). “Measuring API Usability”. Dr. Dobb’s: The

World of Software Development. (Available at:

http://www.drdobbs.com/windows/measuring-api-usabil-

ity/184405654)

"CMU-Software Engineering-Faculty-Raj Reddy". Carnegie

Mellon. Retrieved 18 August 2011.

CMUSphinx - https://cmusphinx.github.io/wiki/about/

Deng Y. , Li X. , Kwan C.,Raj B.,Stern R. (2007). ''Continuous Fea-

ture Adaptation for Non-Native Speech Recognition'', International

Journal of Computer, Information Science and Engineering ,Vol:1

No:6

Devarajan, S. (2009, February 21). Relationship between Japanese

and Dravidian (Tamil). Retrieved from http://japanese-dravid-

ian.blogspot.com/2009/01/relationship-between-japanese-and.html

Duran, N. & Battle, S. (2018). “Probabilistic Word Association for

Dialogue Act Classification with Recurrent Neural Networks”. Bo-

racchi, G., Iliadis, L., Jayne, C. and Likas, A., eds. (2018) Engineering

Applications of Neural Networks. Springer, pp. 229-239. ISBN

9783319651729

Fu T., Gao S., Wu X. (2018) Improving Minority Language

Speech Recognition Based on Distinctive Features. In: Peng Y., Yu

K., Lu J., Jiang X. (eds) Intelligence Science and Big Data Engineer-

ing. IScIDE 2018. Lecture Notes in Computer Science, vol 11266.

Springer, Cham

Gales, M., Young, S. (2007). “The Application of Hidden Markov

Models in Speech Recognition”. Foundation and Trends in Signal Pro-

cessing. P195-304.

Graves, A., Fernandez, S., Gomez. & Schmidhuber, J. (2006). “Con-

nectionist Temporal Classification: Labelling Unsegmented Sequence

Data with Recurrent Neural Networks”. Istituto Dalle Molle di Studi

sull’Intelligenza Artificiale (IDSIA), Galleria 2, 6928 Manno-Lugano,

Switzerland 2Technische Universit¨at M¨unchen (TUM), Boltz-

mannstr. 3, 85748 Garching, Munich, Germany

Husin, M., Stewart, D., Ming, J. & Smith, G. (2011). “Creating a

Spontaneous Conversational Speech Corpus”. Advance Publication,

http://www1.icsi.berkeley.edu/~vinyals/Files/taslp2011a.pdf
http://www1.icsi.berkeley.edu/~vinyals/Files/taslp2011a.pdf
https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-you-plan-on-learning-more-about-wheels/
https://blog.codinghorror.com/dont-reinvent-the-wheel-unless-you-plan-on-learning-more-about-wheels/

10

Data Science Journal, 24 December 2011

Crystal, D. (2010). A little book of language. UNSW Press.

Juang, B.H., & Rabiner, L.R. (2005). “Automatic speech recognition

– A brief history of the technology development”. Elsevier Encyclo-

paedia of Language and Linguistics (2nd ed., pp. 806–819).

Kamarudin, M. R., Yusof, M. A. F. M., & Jaya, H. T. (2013). “Low

cost smart home automation via Microsoft speech recognition”. Inter-

national Journal of Engineering & Computer Science, pp 6-11.

Keane, E. (2004). Tamil. Journal of the International Phonetic Association,

34(1), 111-116.

Kepuska, V. & Bohouta, G. (2017). “Comparing Speech Recogni-

tion Systems (Microsoft API, Google API and CMU Sphinx)”. Int.

Journal of Engineering Research and Application ISSN : 2248-9622,

Vol. 7, Issue 3, (Part -2) pp.20-24

Kikel, C. (2018). “What Does Google Speech Recognition API

Mean for the Industry”. Total Voice Tech (Available at:

https://www.totalvoicetech.com/what-does-google-speech-recogni-

tion-api-mean-for-the-industry/)

Kreyssig, F. (2018). “Deep Learning for User Simulation in a Dia-

logue System”. University of Cambridge. (Available at:

http://mi.eng.cam.ac.uk/~flk24/doc/Thesis-MEng.pdf)

Lacoma, T. (2019). “How to set up speech-to-text in Windows 10”.

Digital Trends (Available at: https://www.digitaltrends.com/compu-

ting/how-to-set-up-speech-to-text-in-windows-10/)

Lange, P. & Suendermann, D. (2014). “Tuning Sphinx to Outper-

form Google’s Speech Recognition API”. The Baden-Wuerttemberg

Ministry of Science and Arts as part of the research project. (Available

at: http://suendermann.com/su/pdf/essv2014.pdf)

Lardinois, F.(2018). “Google 1launches an improved speech-to-

text service for developers”. Tech Crunch (Available at:

https://techcrunch.com/2018/04/09/google-launches-an-improved-

speech-to-text-service-for-developers/)

Lo, L. (2012). “Tamil”. Ancient Scripts (Available at:

http://www.ancientscripts.com/tamil.html)

Manaswi,. N. (2018). “Deep Learning with Applications Using Py-

thon”. Springer Science + Business Medi, New York, Apres Media pp

135 – 144

Matarneh, R., Maksymova, S., Lyashenko, S., & Belova, N. (2017)

“Speech Recognition Systems: A Comparative Review”. IOSR Journal

of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-

8727, Volume 19, Issue 5, Ver. IV pp71-79

McGuire, N. (2018). “How Accurate is Google Translate?”. Argo

Translation (Available at: https://www.argotrans.com/blog/accurate-

google-translate-2018/)

Pandharipande, R. (2002) “Minority Matters: Issues in Minority

Languages in India”. International Journal on Mulitcutltural Socieitis

(IJMS). Vol 4, No. 2, 2002., p 213-234.

Patel, C. & Kopparapu, S. (2015). “A Multi-criteria Text Selection

Approach for Building a Speech Corpus”. International Conference

on Text, Speech, and Dialogue TSD 2015: Text, Speech, and Dialogue

pp 15-22

Pornpanomchai, C., Ngamwongsakollert, P., Tangpitaksame, P. &

Wonvattanakij, C., (2012). "Thai-Speech-to-Text Transformation Using

Dictionary-Based Technique". Singapore, IACSIT Press, pp. 65-69.

Proffitt, B. (2013). “What APIs are and Why They’re Important”.

Readwrite (Available at: https://readwrite.com/2013/09/19/api-de-

fined)

Rabiner, L. (1989) "A Tutorial on Hidden Markov Models and Se-

lected Applications in Speech Recognition". Proceedings of the IEEE,

77 (2), pp 257–286

Ramachandran, R., 2018. Predicting user acceptance of Tamil speech to

text by native Tamil Brahmans (Doctoral dissertation, Sheffield Hallam

University).

Samudravijaya, K. & Barol, M. (2003). “Comparison of Public Do-

main Software Tools for Speech Recognition.” ISCA Archive. (Availa-

ble at: https://www.isca-speech.org/ar-

chive_open/wslp_03/wslp_125.pdf)

Sanjay, G. V. et al., (2018). "Dictionay Application With Speech

Recognition and Speech Synthesis". International Journal of Advances

Research in Computer Science, 9(1), pp. 27-29.

Shulman, D. (2016). Tamil. Harvard University Press.

Sloboda, T. & Waibel, A. (1996). "Dictionary Learning For Sponta-

neous Speech Recognition". International Conference on Spoken Lan-

guage Processing.

Speech Recognition (Available at: https://devel-

oper.mozilla.org/en-US/docs/Web/API/SpeechRecognition)

Srinivasan, A., Srinivasa, K., Kannan, K., & Narashimhan, D.

(2009). "Speech Recognition of the letter "zha" in Tamil Language us-

ing HMM". International Journal of Engineering Science and Technol-

ogy Vol.1(2), pp 67-72

Srinivasan, A., Rao, K.S., Kannan, K. & Narasimhan, D. 2010, "Speech

Recognition of the letter 'zha' in Tamil Language using HMM",

Srinivasan, A. 2013, "Real time speaker recognition of letter 'zha' in

Tamil language", IEEE, , pp. 1..

Steever, S. (1998), "The Dravidian Languages", London: Routledge,

pp. 1–39,

Stuttle, M. (2003). “A Gaussian Mixture Model Spectral Represen-

tation for Speech Recognition.” Cambridge University Engineering

https://www.argotrans.com/blog/accurate-google-translate-2018/
https://www.argotrans.com/blog/accurate-google-translate-2018/

Tamil Talk: A Speech to Text Application for Native Tamil Speckers 11

Department. (Available at: http://mi.eng.cam.ac.uk/~mjfg/the-

sis_mns25.pdf)

Sultana, S., Akhand, M. & Rahman, M. (2012). “Bangla Speech-to-

Text Conversion using SAPI”. International Conference on Computer

and Communication Engineering, Kuala Lumpur, Malaysia pp 385 –

390

Techseen (2017). “Google Cloud Speech API now supports 30 more

languages”. (Available at: https://techseen.com/2017/08/14/google-

cloud-speech-api-update/)

Thangarajan, R., Natarajan, A.M. & Selvam, M. (2009) “Syllable

modeling in continuous speech recognition for Tamil language”. In-

ternational Journal of Speech Technology. (Available at:

https://doi.org/10.1007/s10772-009-9058-0)

Thompson, I. (2015, September 29). Tamil. Retrieved from

aboutworldlanguages.com: http://aboutworldlanguages.com/tamil

Trebelskis, J. (1995). ''Speech Recognition using Neural Networks''.

CMU-CS-95-142, School of Computer Science, Carnegie Mellon Uni-

versity Pittsburgh, Pennsylvania 15213-3890.

Trivedi, P. (2014). “Introduction to Various Algorithms of Speech

Recognition: Hidden Markov Model, Dynamic Time Warping and Ar-

tificial Neural Networks”. International Journal of Engineering Devel-

opment and Research. Volume 2, Issue 4.

Twiefel, J., Baumann, T., Heinrich, S., & Wermter, S. (2014). “Im-

proving domain independent cloud-based speech recognition with

domain-dependent phonetic post-processing”. In Proceedings of the

28th aaai Conference on Artificial Intelligence (aaai-14) pp. 1–7

 Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E.,

Wolf, P, & Woelfel, J. (2004). “Sphinx-4: A flexible open source frame-

work for speech recognition”. Smli, (tr-2004- 139), 1–9. (Available at:

http://egouvea.users.sourceforge.net/paper/smli_tr-2004- 139.pdf)

Watanabe, S. (2011). “Bayesian Approaches in Speech Recogni-

tion”. APSIPA NTT Communication Science Laboratories, NTT Cor-

poration, Kyoto, Japan

Web Speech API (Available at: https://developer.mozilla.org/en-

US/docs/Web/API/Web_Speech_API)

Writing your own Voice Recognition (Available at:

https://www.codeproject.com/Articles/1184834/Writing-Your-Own-

Voice-Recognition-Application)

Yu D., Deng L. (2015) “Deep Neural Network-Hidden Markov

Model Hybrid Systems”. Automatic Speech Recognition. Signals and

Communication Technology. Springer, London pp. 99-116

Zvelebil, K. (1992), “Companion studies to the history of Tamil litera-

ture”. Leiden: Brill, ISBN 978-90-04-09365-2

