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Abstract—In 2016,Petit et al. first studied the implementation
of the index calculus method on elliptic curves in prime finite
fields, and in 2018, Momonari and Kudo et al. improved
algorithm of Petit et al. This paper analyzes the research results
of Petit, Momonari and Kudo, and points out the existing
problems of the algorithm. Therefore, with the help of sum
polynomial function and index calculus, a pseudo-index calculus
algorithm for elliptic curves discrete logarithm problem over
prime finite fields is proposed, and its correctness is analyzed and
verified. It is pointed out that there is no subexponential time
method for solving discrete logarithms on elliptic curves in the
finite fields of prime numbers, or at least in the present research
background, there is no method for solving discrete logarithms in
subexponential time.
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I. INTRODUCTION
In public key cryptosystems, the elliptic curve discrete

logarithm problem (ECDLP) is one of the most difficult
mathematical problems to solve [1].The index calculus (IC)
method solves the integer decomposition and discrete
logarithm problem On finite fields in subexponential time or
even polynomial time [2-8], and has been favored because it is
not restricted by the group structure. However, on
cryptosystems based on elliptic curve prime finite fields, even
with smaller key spaces (except for super singular, distorted
and anomalous curves) [9, 10], they have not been subjected to
great security attacks, although scholars have proposed many
similar attacks on finite fields, such as baby-step giant-step
algorithm algorithms, Pohlig-Hellman evolution class
algorithms, Pollard-Á probabilistic class algorithms, and IC
probability class algorithms [10], but with little success.

In 2004, Semaev [11] introduced the summation
polynomial S associated with elliptic curves and gave a method
to collect ECDLP relations by constructing a system of S
equations. Based on this method, scholars have achieved great
success in finite domains, especially binary domains [12-17].In
2016, Petit [1] et al. for the first time extended the IC method
on binary curves to elliptic curves in prime finite domains, i.e.,
the IC method was used to solve the problem of discrete
logarithms of elliptic curves on base-p prime domains.In 2016.
Galbraith [18] et al. reviewed the progress of elliptic curve
discrete logarithm solving.In 2018, Amadori [19] et al.

proposed a new IC variant for solving any real example of
ECDLP, and in the same year, Kudo [20] et al. improved the
work of Amadori et al. However, neither Petit's nor Amadori et
al.'s work gave concrete examples and the algorithms could not
be implemented efficiently. To this end, we analyze the
limitations of the IC method for attacking elliptic curve
cryptosystems over prime finite fields, show that the IC
method cannot pose a threat to elliptic curve cryptosystems
over prime finite fields, and verify the validity of the
conclusions with examples.

The rest of the paper is organized as follows. Section 2
describes the concepts of elliptic curve cryptosystems. Section
3 presents the work of Petit and Amadori et al. Section 4
analyzes the limitations of the IC method to attack elliptic
curve cryptosystems over prime finite fields. Section 5,
proposes a pseudo-IC method for attacking elliptic curve
discrete logarithms over prime finite fields, and verifies the
correctness of the method with concrete examples. Section 6
summarizes our results and gives an outlook on the possible
paths of attacking elliptic curve cryptosystems using the
pseudo-IC method over prime finite fields.

II. RELATED CONCEPTS AND PROPERTIES

A. Elliptic Curve over a Prime Finite Fields

Let 3p be a large prime number, pF represents a prime

finite fields, and the elliptic curve E is an equation of the
form BAxxy  32 , where pFBA , and

0)274(16 23  BA , and the points   pp FFyx ,
is a solution of the equation BAxxy  32 . On )( pFE
represents the set of points on the elliptic curve E that satisfy
the solution of the equation BAxxy  32 , including the
point O at infinity. The "+" operation on the curve E is defined
as follows:

     yxyxOOyx ,,,  (1)

    Oyxyx  -,, (2)



If 0y ,Let
y
Ax

2
3 2 

 , then    yxyx ,2, 33 

Where

  yxxyxx  33
2

3 ,2  (3)

If 21 xx  ,Let
12

12

xx
yy




 ,

then      221133 ,,, yxyxyx 

Where

  131321
2

3 ,- yxxyxxx   (4)

Thus,   ,pFE represents an Abelian group with the unit

O at infinity. Suppose  pFEN # is the order of an elliptic
curve E,by the Hasse theorem known

pNp 2|1|  , tpN  1 , t is elliptic curve E

trace, pt 2||  . When tp | , the elliptic curve E is called a
hypersingular curve. When 1t , the elliptic curve E is called
a deformed elliptic curve or an abnormal elliptic curve. When

2t , the elliptic curve E is also unsafe[10].

Assuming that  pFEQP , ,  PkPQ ,that

is,Q is generated by P , and solving k is called solving the
discrete logarithm of an elliptic curve E.

The points on the elliptic curve E have symmetry, that is,
both the points on the elliptic curve E and its inverses are on
the elliptic curve E, and the points and their inverses are
symmetric with the x axis. Whether the point addition
operation or the multiplication operation on the elliptic curve E,
the result is a point, that is, we can only see the value of the
horizontal and vertical coordinates of the point, and can not see
the relationship between the operation method before the point
and the point from the coordinate value of the point. Also, as in
finite fields, elements can not be decomposed into products of
prime powers. Therefore, for elliptic curves, the multiples of
any point and generator cannot be obtained by decomposition,
but only by forward operations (point addition or
multiplication).

B. Semae Sum Polynomial

The sum polynomial rS associated with the elliptic curve
E is defined as[20] :

  21212 , xxxxS  .
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For 31  rj , xRes represents a result about the
variable x .

For any 3r , and the sum polynomial rS is symmetric,

and the degree of each variable ix is 22 r .Furthermore, the

sum polynomial rS are absolutely irreducible.

The essence of the sum polynomial rS is to construct (or
select) R-order points through the transverse values of points
on the elliptic curve E. The assumption

 pFEyxP  ),( 111 ,  pFEyxP  ),( 222 , to

 prrr FEyxP  ),( , then OPPP r  21 . When

2r , the sum polynomial 2S consists of the abscissa of any
element and its inverse, 21 xx  ;When 3r , the sum
polynomial 3S consists of the sum of any two elements and
the horizontal coordinate of the inverse of their sum. Construct
sum polynomial rS by analogy. Obviously, it is correct to
construct sum polynomial functions in terms of order.

III. PETIT ANDMOMONARI , KUDO ET AL.'S STUDY

A. Petit et al. 's Approach

Let  rPPPM ,,, 21  , which is called the factor basis,
obviously  pFEM  .The IC algorithm on elliptic curves is
divided into three stages.In the first stage, parameters satisfying
the condition of OPeQbPa jijii   are collected and
saved. In the second stage, linear algebraic operations are
performed on the relation found in the first stage, that is,
solving the linear equation, and a relation of the form

ObQaP  is derived, from which the discrete logarithm

 N
b
ak mod can be easily derived.

They define the sum polynomial functions rS such as
equation (5) or equation (6).
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On equation (5) or equation (6),the working finite fields is
nqF , where n is the embedding degree of the finite fields qF .
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xCvxxL , nqj FC  ,

Vv .V is the vector space of a point on the horizontal
coordinate of an elliptic curve E. See Algorithm 1 for IC
implementation of the elliptic curves over finite fields of prime
numbers.

Algorithm 1.IC algorithm for elliptic curves over finite
fields of prime numbers

Input : QPpE ,,,

Output: k
1.Fix r.

2.Find a suitable mapping L and its
decomposition .

3.Define a factor base
 0)(|)(),(  xLFEyxM p .

4.The relationship between calculation degree L+∆ is as
follows:

a. Randomly select pFba , and calculate

bQaPyx ),( .

b. Construct and solve the system
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(If L is a relational map, put their denominators on the left-
hand side to get a polynomial system)

c.For any solution found (modular symmetry, i.e.,
permutation of 1,ix ), this relationship is saved if

MyxP iii  ),( exists such that  OPi .

5. Using linear algebra to solve discrete logarithm, output k.

B. Momonari, Kudo et al. 's Approach
The research of Momonari, Kudo et al. is based on the

research of Petit et al., and only optimizes the construction of
the sum polynomial function rS . The idea and structure of the

algorithm are the same as that of algorithm 1. Let's look at their
optimized and polynomial function rS .

First construct a function   ][)()( xFvxxf p ,

pFV  , Vx . Secondly, the sum polynomial rS is defined,
and the specific definition is shown in equations (7) and (8).
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Where 211 xxt  , 212 xxt  , ||Vt  .

They analyze and optimize the sum polynomial function

rS . But they do not give how to construct the sum polynomial
function when the number of variables is greater than 3

IV. ALGORITHM ANALYSIS

A. Algorithm 1 Analysis
From the implementation steps of algorithm 1, the set
 rPPPM ,,, 21  is known, but the set M on the finite

fields needs to be constructed, that is, r+d relations need to be
selected, so as to find The value of the discrete logarithm of the
first r prime numbers in M. In addition, there are a large
number of smooth numbers on the finite fields (that is, all the
prime factors of the decomposition product of these numbers
are in M), this feature is the premise of IC algorithm
implementation, and it has not been found on the finite fields
of elliptic curve prime numbers with similar characteristics,
therefore, algorithm 1 is clearly not a real application of the IC
method to solve discrete logarithms on elliptic curves E.
Furthermore, if M is known, it is not easy to randomly select
two integers Zba ii , to satisfy the relationship of the

equation OPeQbPa jijii   .If we can easily find a

relationship such as OPeQbPa jijii   , then
algorithm 1 is meaningless. Because if we obtain the relation



OPeQbPa jijii   , then

 Nbaek ii
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





  , that is, k can be solved

directly without solving a system of linear equations.

In addition, the reference [1] limited domain for nqF ,

 mnn /' . Assuming that if 1n , 1m , then 1'n ,

1j , in algorithm 1 4.b), j is 2, 3,...,n', suggesting that the
conditions of the algorithm 1 is not correct. If allowed to

1j ,then 0)( 1,11,01,1  q
iii xCxCxL , )( 1,12, ii xLx  ,

now watch m = 3,

0)( 1,111,101,11  qxCxCxL ,

0)( 1,211,201,21  qxCxCxL ,

0)( 1,311,301,31  qxCxCxL ,

thus 02,32,22,1  xxx ,

so   0,,, 1312114 xxxxS ，，， , 1,2x and 1,3x do not exist in

the calculation before L(x), which means that 1,2x and 1,3x are
unknown, and x cannot be determined. If reference [1] reverses
the variable sign of the polynomial rS , i.e.,

  0,,, 3121114 xxxxS ，，， , then 31，x is not included in the
preceding calculation, so there is no way to determine x. If

1, jix signs are also reversed, then 03,22,21,2  xxx , the
conclusion is also incorrect.

Based on the above analysis, we believe that the algorithm
in reference [1] is not an effective algorithm, and the
experiment cannot effectively verify the theoretical design.

B. Analysis of Momonari, Kudo et al. 's Improvement
Methods
Momonari, Kudo et al. did not give a specific algorithm,

but improved on Semaev's sum polynomial functions. In terms
of type (8), the conclusion is correct, because the assumption
  2

21, pFtt  is a solution of type (8), for the arbitrary point

  2, pF ,  1t , 2t ,

0),()()( 21   ttgff  ,
0),()()( 21   ttgff  , 0)()(   ff , namely

the 0),,(),,( 21
'
33  zttSzS  . But they don't tell us

how the number of variables greater than 3 will be constructed.

Since they are the optimization of algorithm 1, we analyzed
the inefficiency of algorithm 1 in Section 3.1, so it is not
known whether the improved algorithm of Momonari and
Kudo has improved the operation efficiency.

C. Pseudo-IC Method
We propose an IC method to mimic the discrete

logarithmic solution of elliptic curves over a prime finite fields
by assisting the idea of sum function proposed by Semaev, and
we call it the pseudo-IC method because there is no notion of
smooth boundaries and smooth numbers. The implementation
method borrows the idea of the IC method and converts the
method of solving the discrete logarithm of the prime factors of
the smooth boundary by using a system of linear equations into
a multiplicative construction, not only because of the high
efficiency of multiplication, but also because it is not possible
to solve the discrete logarithm of each prime factor of the
smooth boundary by a system of linear equations. In addition,
for a point to be solved, a multiplicative alternative to
decomposition is used, i.e., whether or not the factor of the
decomposition is in the base table is converted to whether or
not the multiplicative factor is in the base table.

Since the prime factor multiple points on the elliptic curve
cannot be obtained by multiplication, the base table selection is
the same as that of classical IC, that is, the multiple points of
the initial r prime factors (including generator P) are selected.
Assuming the discrete logarithm of the initial r prime factor
multiple points is known, then the composition of the set M is
 )(,,,, 2121 rr PPPPPP   , apparently

OPPPPPP rr  ))(( 2121  ,
including ),( 111 yxPP  , ),(2 222 yxPP  ,...,

),( rrr yxrPP  . Let − M be the set of symmetric
elements of M, then }{)( OMMU  .Let N is
a prime number close to N. If UQ ,and suppose

PkQ i ,then )(mod1 Nkk i
  ,else

s , sPR  ,and find next prime number close to  ,until
PkQ i or MQR   or OQR   ,corresponding,

there are
)(mod1 Nkk i

  ,or ))(mod-(1 Nskk i
  ,or

)(mod1 Nsk   .

Now, the value of r follows the method of discrete
logarithms over a finite fields, i.e., take

 }lnexp{ pr  [21]. From the above construction of M,it

is clear that 0),,,( 21 rr xxxS  . See Algorithm 2 for the
specific implementation of the above described process.

Algorithm 2.IC algorithms for elliptic curves over prime
finite fields

Input : QPpE ,,,

Output: k

1.Let   ORpr  ,log2 .

2.Construct the setM

a. 2i



b.Calculate iPRRiP , ,save i , iP , PiN )( 

c. 1 ii , if i is prime, go to b, else loop at step c
3. Find k

a.Select  , is a prime number from 2 to N

b.if UQ then )(mod1 Nkk i
  ,goto 4

c. s , sPR 

d.repeat finding next prime number close to  ,until
PkQ i or MQR  or OQR   or

 


r

i iiPkQ
1



e.If PkQ i then )(mod1 Nkk i
 

f.If MQR  then ))(mod-(1 Nskk i
 

g.If OQR   then )(mod1 Nsk  

h.If  


r

i iiPkQ
1

 then   NPkk r

i ii mod
1

1  
 

4. output k

V. PSEUDO-IC METHOD ANALYSIS

A. Case Verification
Algorithm 2 presented in Section IV.C is now verified.

Choose a prime number from 2 to 1N and do a
multiplication of point Q. Compare the result with the value in
U,otherwise slelct next a prime number. If the point is in U, the
algorithm is solved correctly according to the algorithm and
outputs the discrete logarithmic value, otherwise it fails.

Example 1. Suppose the elliptic curve 1: 32  xxyE
definition over prime finite fields 23F , results show N=28,
take point P=(0, 1) for the generator of elliptic curve E, the
other 27 points as follows:2P=(2,19),3P=(3,13),4P=(13,16),5
P=(18,3),6P=(7,11),7P=(11,13),8P=(5,19),9P=(19,18),10P=(1
2,4),11P=(1,16),12P=(17,20),13P=(9,16),14P=(4,0),15P=(9,7),
16P=(17,3),17P=(1,7),18P=(12,19),19P=(19,5),20P=(5,4),21P
=(11,20),22P=(7,12),23P=(18,20),24P=(13,7),25P=(3,10),26P
=(6, 4),27P=(0,22),28P=O.

Because   323log2 r , so M={P,2P,3P,5P,18P},
U={P,2P,3P,5P,18P,25P,26P,O}.

Now calculate the discrete logarithm of Q=4P. select
23 .Since UPPQR  89223 .Next select
19l , UPPQ  207619 ,

OPPRR  2819 .So
4))(mod19(23 1   Nk . After 2 searches, the discrete

logarithm of Q is obtained.

Let's calculate the discrete logarithm of Q=11P. select
23 .Since UPPQR  25323 .So

11)(mod23 1   Nk . After 1 searches, the discrete
logarithm of Q is obtained.

Example 2. Suppose that the elliptic
curve 837373: 32  xxyE is defined on the prime finite

fields 1019F , we can see that N=1019, and take the point
P=(293, 914) as the generator of the elliptic curve E, now solve
Q=(794, 329).

Since   41019log2 r ,M={P,2P,3P,5P,7P,1002P},
− M={17P,1012P,1014P,1016P,1017P},U={P,2P,3P,5P,7P,
17P,1002P,1012P,1014P,1016P,1017P,O}.

Multiply Q by randomly selecting a number from the prime
numbers 2 to 1018, and find that 613Q=1012P belongs to U.
Now we know the discrete logarithm of Q is 123.Because

  PPNQ 123)(mod613*1012 1   . If you look at the
primes from 2 to 1018, it takes 112 times to find the discrete
logarithm of Q, which means that it is very difficult to find the
discrete logarithm of a point exactly. Of course, as a
probability solution, it works.

Step d of algorithm 2 can also be used as

 


r

i iiPkQ
1

 (where  ii kUP , ), if the equation is full,

then   NPkm r

i ii mod
1

1  
  , but this kind of search

process is also very difficult. For
example, PPPP 61520055Q5 321  (Of course, there
are many other forms of combination, as long as the value of
the sum polynomial can reach P615 ), then

  1231019mod6155 1  m . But it is not easy to
combine several elements from the set U to double the
operation exactly P615 , because P615 is unknown.

B. Algorithm 2 Analysis
Algorithm 2 is correct in terms of the construction and

examples of sum polynomial functions. However, the
efficiency of Algorithm 2 is extremely low, because arbitrarily
choosing an integer to multiply a point, the probability that the
result falls into U is only   ppNr /}lnexp{2/2  , and
when p , the probability is very small, so Algorithm 2 is
extremely inefficient. Because a point of the factor base on the
elliptic curve needs to store three values, which are the
multiplicity of the point, the horizontal coordinate, and the
vertical coordinate, it needs O(6r) space complexity for the
factor base U . If the multiplicative point search for prime
numbers according to Algorithm 2 is successful, the complexity
of the search in the worst case is )ln/( ppO , in which case

the probability is pp ln/ln . In the best case, the discrete



logarithm is obtained only once, but such a case can be ignored.
Therefore, under the condition of prime finite fields, there
exists no method of subexponential discrete logarithm solution
on elliptic curves, or at least in the present research context, no
method of subexponential discrete logarithm solution has been
found.

VI. SUM POLYNOMIAL IN II.B CORRECTNESS ANALYSIS
Using the data in Example 1 to verify, it is found that the

expression of sum polynomial 3S is not correct in II.B.Such as

OPPP  2332 ,wherer 18,3,2 321  xxx ,but

053 S .This shows that the expression for the sum

polynomial 3S is incorrect.

According to the derivation process in literature [11],
034  xx . Because 3x and 4x are the horizontal

coordinates of two symmetric points on elliptic
curves.However, Semaev constructs the expression of sum
polynomial 3S by taking 3x and 4x as the relationship
between the roots and coefficients of the quadratic equation
with one variable, and it is obvious that the expression of 3S
may not satisfy the points on the elliptic curve.

VII. CLOSING REMARKS

Since 1985,Miller and Koblitz independently proposed that
elliptic curves can be applied in public-key
cryptosystems,scholars have carried out a lot of research on the
problem of discrete logarithmic solution on elliptic
curves.They have achieved greater success on finite fields with
small features,but it is more difficult on prime finite
fields,especially when the order of elliptic curves contains
large prime factors.In 2016. Petit et al. tried to realize the
operation of IC method on finite fields by using algebraic
methods.Our analysis concludes that the algorithm did not
achieve the expected results, and their experimental results are
yet to be further confirmed due to the flaws in their theoretical
design.In addition, the expression of sum polynomial fails to
satisfy the points on elliptic curves. Our proposed algorithm
only imitates the implementation of the IC method on finite
fields, but the algorithm is not subexponential time. Therefore,
we believe that it is impossible to obtain the effect of solving
discrete logarithms on finite fields using the IC method as far
as the existing research is concerned.
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