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Abstract. Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell
types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance
of constituent cell types. However, existing deconvolution methods are conditioned on the assumption
that the whole study population is served by a single reference panel, which ignores person-to-person
heterogeneity. Here we present imply, a novel algorithm to deconvolute cell type proportions using
personalized reference panels. imply can borrow information across repeatedly measured samples for
each subject and obtain precise cell type proportion estimations. Simulation studies demonstrate re-
duced bias in cell type abundance estimation compared with existing methods. Real data analyses on
large longitudinal consortia show more realistic deconvolution results that align with biological facts.
Our results suggest that disparities in cell type proportions are associated with several disease phe-
notypes in type 1 diabetes and Parkinson’s disease. Our proposed tool imply is available through the
R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/.

Keywords: Deconvolution · Bulk RNA-seq · Personalized reference · Admixed samples · Cell-type-
specific.
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1 Background

Tissues are complex samples composed of different cell types, and real bulk transcriptomic data are often
weighted sums of multiple signals over several different cell types [18]. In large-scale and population-level clin-
ical studies, like Parkinson’s Disease Biomarkers Program (PDBP) and The Cancer Genome Atlas (TCGA),
transcriptomic samples are often collected from complex tissues. For admixed tissue samples, differentially
expressed transcriptional profiles from different phenotypical groups can be caused by either cell-type com-
position disparities or underlying cell-type-specific gene expression heterogeneity. Studies have shown that
cell type proportions are confounders with other phenotypical covariates like age, sex, or clinical outcomes for
bulk transcriptomic data analysis [5, 6]. As a result, ignoring cell-type-specific compositions in gene expres-
sion analysis would cause inflated false positive rates of identifying relevant genetic features. An accurate cell
type proportion deconvolution is thus vital, especially for cell types with low abundance and weak biological
signals where the real biological differences could be shadowed by technical noises [28, 6, 39].

Recently, several statistical methods have been proposed to deconvolute cell type abundance from bulk
transcriptome data. These methods utilize the statistical framework of linear least squares regression [52, 58,
12], quadratic programming [24], support vector regression [43, 11], and non-negative matrix factorization
[20, 46]. These methods share the same goal of quantifying the unknown abundances of various cell types and
can be broadly summarized into two categories: Reference-Based (RB) and Reference-Free (RF). The RB
deconvolution relies on a cell-type-specific gene expression signature reference panel composed of the pre-
selected features known to differentiate cell types, while the RF deconvolution estimates cell type proportions
in the absence of a reference panel. In general, RB approaches have better performance compared with RF
approaches [5]; however, the accuracy of cell type abundance inference is dependent on the quality of signature
matrices [5]. RF deconvolution, in contrast, offers flexibility where reference panels are hard to obtain.

RB deconvolutions require a reference panel as the input. CIBERSORT [43], which is a state-of-art
RB deconvolution approach [5, 6], provides a verified signature panel LM22. It is specifically for leukocyte
deconvolution and includes 547 marker genes for 22 hematopoietic cell types. xCell [4] combines the gene set
enrichment with deconvolution techniques and introduces curated gene signatures representing 64 distinct cell
types. However, it is a very strong assumption to use a single reference panel across the whole population and
ignore person-to-person heterogeneity. It also deviates from the biological fact that the gene expression profile
could vary, even for one purified cell type, depending on environmental influences, age, sex, subject’s health
status, and treatment paradigms [27, 14, 17, 26, 1, 22, 9, 51, 40]. Mismatched reference signatures can impact
deconvolution results [50, 21]. The problem is even exacerbated when handling longitudinal data, when intra-
subject samples share information and inter-subject heterogeneities are relatively strong. Recent research
shows that models incorporating personalized effects can accurately retrieve cell type reference panels on the
individual-basis [16]. However, to date, no method is available to take advantage of personalized references
panel to precisely deconvolute cell type proportions, especially when longitudinal samples are available.

Here we develop a new deconvolution algorithm imply (improving cell-type deconvolution using per-
sonalized reference) as depicted in Figure 1. imply can utilize personalized reference panels to precisely
deconvolute cell type proportions using longitudinal data. It borrows information across the repeatedly mea-
sured transcriptome samples within each subject, to recover personalized reference panels. The personalized
references are further adopted to improve cell type deconvolution. The rationale of our approach is straight-
forward: the personalized reference panel is more accurate compared with the population-level signature and
using a personalized reference panel can consequently lead to a more precise cell-type deconvolution.

We conducted extensive in silico simulations and real data analyses to test the performance of imply.
Simulation results showed that imply reduced bias in deconvolution and increased the correlation between
the estimated and ground-truth cell type abundance. Real data analyses on two large longitudinal consortia,
The Environmental Determinants of Diabetes in the Young (TEDDY) and Parkinson’s Disease Biomarkers
Program (PDBP), showed more realistic results that align with low-throughput experiments. The results
suggested that disparities in cell type proportions of certain cell types are associated with type 1 diabetes
and Parkinson’s disease. Our method imply has been implemented and integrated into the Bioconductor
package ISLET and is available at https://bioconductor.org/packages/ISLET/.
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Fig. 1. Overview of imply ’s personalized deconvolution. The top-left shows two inputs: repetitively measured tran-
scriptome data and a signature matrix containing cell-type-specific marker genes. Stage I, depicted in the middle
left, adopts support vector regression to derive a preliminary cell type abundance, as shown in the bottom-left.
Next, for Stage II, as shown in the bottom-center, linear mixed effect models are utilized to reconstruct personalized
references, which are shown in the bottom-right. In Stage III, as illustrated in the middle-right, by employing
non-negative least square and personalized references generated from the previous step, repeatedly across all subjects,
imply enables personalized deconvolution to produce cell type proportion estimates, shown on the top-right.

2 Methods

Overview of imply To outline briefly, the primary objective of imply is to improve the accuracy of cell
abundance estimations through the integration of subject- and cell-type specific reference panels, termed
personalized references. The algorithm is structured into three stages. In Stage I, the initial cell proportion
estimates will be obtained. The core component of imply lies in Stage II, where a personalized reference
panel is retrived for each subject. These personalized references will replace the population-level signature
matrix, facilitating a personalized deconvolution process repeatedly across all subjects in Stage III.

Notation introduction Let G(g = 1, 2, 3, . . . G) denotes the total number of features (e.g., genes), and
N(n = 1, 2, 3, . . . N) as the total number of subjects. For each subject n, there are tn(i = 1, 2, . . . tn) repeated

measurements. The total number of samples across N subjects is thus T =
∑N
n=1 tn. The bulk transcriptome

dataset can be represented as a matrix Y , of dimension G × T . We denote K(k = 1, 2, . . .K) as the total
number of purified cell types. Initially, we would have a population-level signature matrix E of dimension
J ×K(J < G), where J indicates the total number of discriminative signature genes for the first-round cell
type deconvolution in Stage I. This signature matrix can be derived from pure cell line data or aggregated
from annotated single-cell RNA-seq (scRNA-seq) data [55, 25, 15].

2.1 Stage I: Initial cell type proportion estimation

With the observed admixed data Y and the initial reference panel E, as illustrated in the top-left of Figure
1, the first-round RB coarse deconvolution is conducted using a ν-Support Vector Regression algorithm (ν-
SVR) [48] based on a linearity assumption [29, 49]. This strategy was already proven to be a successful choice
in deconvolution algorithms such as CIBERSORT [43]. Support vectors are regulated by ε-tubes integrated



4 Meng et al.

into the objective function (specified below). The deconvolution is modeled by a regression problem: y·ni =
f(θE,ni·) = EθE,ni· + b, where b ∈ RJ capture random bias, and we can minimize the following objective
function [43]:

argmin
1

2
‖θE,ni·‖2 + C

J∑
j=1

(ξj + ξ∗j ), ξj , ξ
∗
j > 0

The solved θ̂E,ni· = [θ̂E,ni1, θ̂E,ni2, . . . θ̂E,niK ]′ is the first-round sample-specific cell type abundance es-
timation. The constraints of the objective function and parameters of ε, C, ξj , and ξ∗j are detailed in the

supplementary material section 1.1. Then negative coefficients (θ̂E,ni·) are set to 0, and the remaining coeffi-
cients are normalized to sum-to-one, which is the general practice in proportion deconvolution [43]. Repeating

this process for all samples, we obtain the deconvoluted cell composition matrix Θ̂E with dimension T ×K.
It’s worth to note that this first-step deconvolution of cell type proportions provides a valid foundation for
downstream steps.

Θ̂E =



θ̂E,111 θ̂E,112 . . . θ̂E,11K
θ̂E,121 θ̂E,122 . . . θ̂E,12K

...
. . .

θ̂E,1t11 θ̂E,1t12 . . . θ̂E,1t1K
...

. . .

θ̂E,N11 θ̂E,N12 . . . θ̂E,N1K

θ̂E,N21 θ̂E,N22 . . . θ̂E,N2K

...
. . .

θ̂E,NtN1 θ̂E,NtN2 . . . θ̂E,NtNK


2.2 Stage II: Personalized reference panel recovery

The second step aims to retrieve a subject- and cell-type-specific reference panel. Using the cell-type-specific
and sample-specific proportions θ̂E,nik from Stage I, we can set up the linear mixed-effect regression for each
gene g: yg·· = Xβg +Aug + εg, where εg ∼ N(0, σ2

0I) are the residuals and yg·· is the vector of observed
expression data for a specific gene g for all T samples. X and A are the design matrices (each with dimension
T × 2K and T × NK) for the fixed-effect βg and the random-effect ug (details of X and A are specified
in supplementary material section 1.2). The initial cell type abundance information is further reorganized

into vectors ank = (θ̂E,n1k, θ̂E,n2k, . . . θ̂E,ntnk)′. The fixed-effect βg = (m1,m2, . . .mK , β1, β2, . . . βK)′ has two
components: (m1,m2, . . .mK) are the baseline average cell-type-specific gene expression in the control group,
and (β1, β2, . . . βK) are the ‘difference’ between the case group and the control group at cell type level. Note
that our modeling allows for the incorporation of subject-level covariates such as disease status, zn = 1/0
for disease or normal. The random-effect ug = (u11, u21, . . . uN1, u12, u22, . . . uN2, . . . , u1K , u2K , . . . uNK)′

captures the subject-level and cell-type-specific gene expression deviation from the group-level average. β̂g
and ûg can be solved by penalized least square algorithm with restricted maximum likelihood [8]. The subject-

and cell-type-specific reference panel (denoted as Rn with dimension G ×K) is obtained by combining β̂g
and ûg (fixed effect + random effect), with respect to each corresponding cell type and subject condition.

Elements in Rn could be computed as: rgnk = m̂k,g + znβ̂k,g + ûn,k,g.

2.3 Stage III: Personalized deconvolution

With the subject-specific reference panel Rn and the original bulk mixture transcriptome data, as shown
in the bottom-right of Figure 1, we use non-negative least square [32, 31] to deconvolute the cell type
abundance ΘI,n. ΘI,n is of dimension K × tn for each subject respectively and the I in the subscript stands
for the imply -estimated cell type abundance. To be specific, we optimize the following objective function in
non-negative least square:

argmin‖Rn ⊗ Itnvec(Θ′I,n)− vec(Y ′·n·)‖2
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Fig. 2. imply improves cell type deconvolution accuracy. (A) Scatterplot showing imply estimated gene expression
reference panel versus the true reference panel. (B) Superimposed scatterplot of the imply -estimated cell type pro-
portion over the CIBERSORT-estimates (the current state-of-art method). imply shows better concordance with the
ground truth. (C)-(F) Boxplots displaying evaluation metrics and each point representing one simulation iteration:
ABD, rABD, CD, and ∆ρC,E. Five additional modeling frameworks are benchmarked. The red dashed line (value of
0) represents no improvement in proportion estimation. For (C) and (D), lower values indicate better deconvolution
accuracy. For (E) and (F), higher the better.

under the constraint ΘI,n ≥ 0. Y ·n· is the mixture data for subject n with dimension G× tn. This is a joint
optimization across all the samples per subject simultaneously instead of sample-wise optimization, using
the subject-specific Rn and quadratic programming. Overall, instead of using the population-level signature
matrix E, the adoption of personalized Rn’s, for more genes, would benefit cell type abundance inferences.

2.4 Simulations

Pure cell-type-specific expression profiles The simulation scheme is adapted from a benchmark study
[39] based on true cell line RNA-seq datasets [35]. The variance-covariance matrices and mean vectors

of cell-type-specific gene expression means (Σ̂m, µ̄m) and biological dispersion (Σ̂φ, µ̄φ) are estimated
by PROPER [56]. We use Multivariate Normal Distribution (MVN) to simulate expression mean (M ∼
MVN(µ̄m, Σ̂m)) and dispersion (Φ ∼ MVN(µ̄φ, Σ̂φ)). The effect size of differential expression is defined
as Log-Fold-Change (LFC) denoted as ∆. The true cell-type-specific gene expression matrix P is derived from
Gamma Distribution: P case/ctrl ∼ Γ ( 1

exp(Φ) , exp(M case/ctrl)×exp(Φ)), whereM ctrl = M ,M case = M+∆.

Subject-to-subject variations (SSV) are added to P case/ctrl to obtain subject-specific underlying gene
expression matrices P n. SSV ranges from 0-5%, up to 20%-50%. P n is shared across three simulated samples
per subject.

Cell type proportions and observed read counts To generate the cell type proportions, we use Dirichlet
Distribution to estimate α parameters from multiple well-labeled single cell RNA-seq studies and then
simulate cell type proportions: θT,ni· ∼ Dirichlet(αctrl/case). θT,ni· are reorganized into cell composition

matrix, ΘT . The sample-specific underlying gene expression panel is computed as λni = P n × θ
′

T,ni·, and
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follows a Gamma Distribution as well [41]. λni is further assessed by the Poisson Distribution to generate
observed RNA-seq counts data across the entire genome: yni ∼ Pois(λni).

Overall, the Gamma Distribution models biological variations, the Dirichlet Distribution regulates cell
proportion, and Poisson Distribution mimics technical noise in the sequencing experiments.

2.5 Evaluation Metrics

We denote imply ’s deconvolution values as Θ̂I , the existing method’s deconvolution results as Θ̂E , and the
ground truth as Θ. The central goal is to assess how much improvement in cell proportion estimation imply
could achieve. The following evaluation metrics are adopted for benchmarking:

Absolute bias differences (ABD) and relative absolute bias differences (rABD):

ABD :=
∑
|Θ̂I −Θ| −

∑
|Θ̂E −Θ|; rABD := [Avg(

|Θ̂I −Θ|
Θ

)−Avg(
|Θ̂E −Θ|

Θ
)]× 100%

For both ABD and rABD, if they are smaller than zero, it means imply successfully reduces the estimation
bias. A smaller value further indicates better performance.

Correlation differences (CD):

CD := corr(Θ̂I ,Θ)− corr(Θ̂E ,Θ)

CD>0 indicates imply increases the correlation between the estimation and the ground truth. A larger value
indicates favorable performance.

Lin’s concordance correlation coefficient (Lin’s CCC) and its variations: Lin’s CCC has been
extensively used to evaluate the concordance between estimated measurements and gold standards [30]:

ρC(Θ, Θ̂) = 1− E[(Θ − Θ̂)2]

EI [(Θ − Θ̂)2]
,

where EI indicates the expectation under the assumption that Θ and Θ̂ are independent. Lin’s CCC is
bounded between 1 (perfect agreement) and -1 (disagreement). The concordance improves as ρC(Θ, Θ̂)
approaches 1. We adopt a Euclidean distance-based variation of Lin’s CCC, by substituting the expected

squared difference to Euclidean distance, defined as ρC,E(Θ, Θ̂) = 1 − E[
∑K

k=1(Θ
(k)−Θ̂(k)

)2]

EI [
∑K

k=1(Θ
(k)−Θ̂(k)

)2]
. Aitchison [2]

distance-based Concordance Correlation Coefficient (CCC) is shown in supplementary section 1.3 and 3.6.
These metrics are more statistically rigorous for compositional outcomes that are subject to the positiveness
and unit-sum constraints [13]. If imply yields increased concordance and improved precision, we expect
positive values in the differences of CCC, respectively defined as:

∆ρC = ρC(Θ, Θ̂I)− ρC(Θ, Θ̂E); ∆ρC,E = ρC,E(Θ, Θ̂I)− ρC,E(Θ, Θ̂E)

3 RESULTS

We first evaluate imply ’s deconvolution accuracy using synthetic data. imply is the only method that re-
estimates cell type proportions using personalized reference panels from longitudinal bulk data; therefore, a
direct comparison with existing methods is not directly available. Nevertheless, we designed the benchmark to
be inclusive of comparable methods. TCA [47], designed for csDE genes detection, integrates a cell proportion
re-estimation feature. TCA takes a maximum-likelihood (ML) approach to derive model parameters, and
proportions are subsequently updated. Since TCA requires preliminary cell proportions for re-estimation,
we employ non-negative least squares and ν-SVR to acquire the initial inputs and label them as TCA-n
and TCA-s. ISLET [16] is the first method to retrieve individual-specific reference estimation in repeated
samples based on the Expectation-Maximization (EM) algorithm. ISLET can be an alternative approach to
our mixed-effect model to solve personalized reference panels. Here, we consider ISLET-s and ISLET-n to
denote ISLET variants, with the final personalized deconvolution is conducted by SVR or non-negative least
squares. We also introduce a variant of imply, denoted as imply-s, where where Stage III is achieved by
SVR. We comprehensively benchmark our proposed methods, imply and its variant imply-s, against other
algorithms: TCA-n, TCA-s, ISLET-n, and ISLET-s.
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3.1 imply increases precision in cell-type deconvolution

In the baseline scenario, we have 100 subjects per group, SSV up to 5%, and an effect size of 0.5. Figure
2A shows the imply -estimated reference panels versus the ground truth. We observe good accuracy in
personalized reference panel recovery, especially among high-expression genes. This demonstrates the fidelity
of Stage II and lays a foundation for Stage III. Next, we evaluate if imply ’s cell type deconvolution from Stage
III could reduce bias. Figure 2B shows the scatterplot of the estimated cell type proportions versus the true
proportions. Our result is overlaid on top of the result from CIBERSORT. imply yields higher precision in
deconvolution as its estimates aggregate closer to the diagonal line. In Figure 2C-F, the bias reductions are
quantitatively assessed and compared by ABD, rABD, CD, and ∆ρC,E. Each point in a boxplot represents
an iteration. The zero line represents the existing deconvolution method, such as CIBERSORT, which did
not consider personalized reference panels. For ABD and rABD, lower values indicate greater increases in
deconvolution accuracy; while for CD and ∆ρC,E, higher values indicate improved concordance with the
ground truth. Notably, imply consistently demonstrates the most substantial reduction in deconvolution
bias and highest improvement in concordance with the truth. In contrast, TCA performs poorly, especially
when the initial proportion inputs are estimated through non-negative least squares (TCA-n). Even when
the initial proportion input is derived from CIBERSORT, the bias reduction achieved by TCA (TCA-s)
is not as significant as that achieved by imply. Furthermore, we notice that personalized reference panels
estimated by ISLET also yield benefits for personalized deconvolution, illustrated by ISLET-s and ISLET-n.
However, the improvements are not as pronounced as those achieved by imply. We also explore the methods’
performance under various simulation scenarios. Table 1 shows averaged ABDs across iterations, with each
standard error. Bold fonts highlight the algorithm with the most bias reduction for each scenario. imply
and imply-s consistently demonstrate exceptional performance in reducing deconvolution bias across all
scenarios.

Table 1. Benchmarking imply across various simulation scenarios. The table shows Absolute Bias Difference (ABD)
at various subject-specific variations (SSV), effect sizes (LFC), and sample sizes (N). ABD values are shown, along
with their standard error in parentheses. A lower value indicates better deconvolution estimation improvement. The
bold font indicates the best method in each scenario.

SSV LFC N imply imply-s TCA-s TCA-n ISLET-s ISLET-n

0%∼5%

0.5
25 -3.95 (1.92) -3.51 (1.56) -2.21 (1.96) -0.33 (0.85) 1.21 (20.15) 1.03 (20.25)
50 -8.97 (3.86) -7.97 (3.44) -6.6 (4.92) -0.8 (2.2) 5.76 (52.49) 7.75 (57.2)
100 -17.08 (6.66) -15.38 (5.11) -13.1 (9.43) -1.88 (3.97) 25.71 (148.83) 15.11 (116.56)

1
25 -3.39 (2.98) -3.17 (2.43) -0.89 (2.57) -0.29 (0.64) 14.95 (40.81) 14.51 (36.8)
50 -8.59 (4.88) -7.63 (4.78) -1.64 (4.03) -1.11 (1.92) 45.7 (84.85) 35.33 (70.75)
100 -16.49 (10.45) -16.54 (11.56) -4.17 (10.17) -2.29 (3.78) 22.55 (121.26) 19.26 (115.44)

1.25
25 -4.9 (3.11) -4.28 (3.48) -1.38 (2.75) -0.35 (0.8) 4.55 (22.45) 2.22 (18.2)
50 -9.39 (5.56) -9.09 (8.35) -4.47 (8.67) -0.96 (1.79) 31.72 (80.43) 24.19 (73.19)
100 -21.73 (13.28) -21.91 (20.18) -9.56 (16.92) -2.13 (3.36) 52.94 (144.77) 30.96 (102.83)

5%∼10%

0.5
25 -3.53 (1.36) -3.28 (1.18) -1.88 (2.47) -0.33 (1.52) 8.84 (37.92) 6.4 (31.77)
50 -7.6 (3.36) -6.79 (2.69) -4.53 (5.13) -0.51 (3.99) 2.88 (47.91) -0.95 (29.74)
100 -15.64 (5.85) -15.42 (8.12) -8.06 (11.59) -1.9 (7.37) 7.15 (117.46) 5.51 (107.12)

1
25 -4.03 (2.45) -3.75 (2.39) -0.22 (1.42) 0.06 (1.02) 15.35 (41.93) 16.46 (45.14)
50 -7.93 (4.29) -8.01 (7.12) -0.45 (5.5) -0.19 (2.94) 29.12 (79.78) 21.14 (68.21)
100 -15.86 (10.45) -13.97 (9.44) -1.4 (11.86) -0.35 (3.87) 57.17 (176.1) 58.45 (172.78)

1.25
25 -4.21 (2.68) -6.55 (9.34) -0.65 (2.52) -0.08 (0.61) 0.99 (23.14) 1.49 (13.97)
50 -9.85 (6.61) -8.83 (7.24) -1.81 (6.96) 0.05 (2.35) 36.08 (83.23) 24.17 (63.91)
100 -20.3 (12.05) -22.76 (24.38) -6.36 (18.9) -1.44 (4.28) 28.14 (137.05) 21.45 (125.49)

10%∼20%

0.5
25 -3.27 (1.64) -2.83 (1.34) -0.1 (4.84) 0.65 (3.79) 13.74 (41.37) 13.22 (40.18)
50 -6.48 (2.86) -6.14 (2.27) 1.63 (15.12) 2.07 (10.22) 2.26 (38.29) 2.66 (40.29)
100 -13.98 (5.5) -12.73 (5.14) 1.32 (31.49) 9.86 (29.37) 7.05 (94.67) 7.02 (103.21)

1
25 -2.6 (3.46) -3.49 (4.91) 0.75 (3.1) 2.01 (4.04) 28.61 (44.79) 27.28 (45.55)
50 -7.75 (4) -7.43 (3.35) 1.86 (7.61) 5.18 (11.03) 19.09 (64.13) 17.76 (64.18)
100 -14.52 (8.4) -14.8 (8.49) 6.67 (19.22) 11.3 (26.41) 46.52 (124.95) 51.84 (140)

1.25
25 -4.77 (1.99) -4.22 (1.59) 0.41 (3.07) 1.98 (3.19) 12.72 (35.35) 6.78 (23.43)
50 -9.49 (4.57) -8.68 (4.45) 0.17 (6.14) 4.08 (7.69) 27.71 (73.1) 30.77 (84.76)
100 -19.13 (10.37) -16.49 (12.37) 0.89 (18.5) 8.69 (18.58) -8.27 (16.34) -9.42 (13.32)
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Fig. 3. Cell-type resolution improvements in proportions estimated by imply. (A) Boxplots showing ABD and ∆ρC,
for cell types 1 to 6. (B) Heatmap showing the deconvolution improvement using the rABD metric, aggregated by
cell types (top row) and sample sizes (right column), for various effect sizes (bottom row).

3.2 Benchmarking at cell-type resolution
We next investigate the deconvolution accuracy at cellular level. Figure 3A shows ABD and ∆ρC of 30
replicates for each cell type when SSV, sample size, and effect size are set to 0-5%, 75, and 0.5. We can
see a discernible reduction in bias when personalized reference panels are adopted. imply and imply-s
consistently stand out, yielding a significant enhancement in concordance compared to others. The heatmap
in Figure 3B shows the average rABD at various combinations of sample sizes and effect sizes, separated by
cell types. At large effect sizes, improvements in accuracies facilitated by imply are notably more profound.
However, rABD is insensitive to sample sizes. There is a connection between bias reduction and cell type
abundances as shown in supplementary section 3: deconvolution accuracies for more abundant cells are highly
sensitive to LFC changes. In contrast, for minor cell types, the small contribution amplifies deconvolution
difficulties, as sequencing noise can overshadow biological variations.

3.3 Influential factors in deconvolution accuracy
We further zoom in to study how sample size, effect size, and SSV would affect personalized deconvolution.
In Figure 4A, ABD and ∆ρC,E for imply, together with ISLET-n and TCA-s, are presented across LFC
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ranging from 0 (null) to 1.5. imply consistently exhibits the lowest ABD in all scenarios and the highest
∆ρC,E in most settings. These results indicate the advantage of adopting personalized reference panels. In
addition, imply is the most stable (i.e., smallest variation) as the effect size increases. Figure 4B shows the
same metrics across various sample sizes. As expected, ABD decreases as the sample size increases. imply
consistently maintains the highest ∆ρC,E across various sample sizes. In Figure 4C, we further investigate

the ∆ρC,E alteration percentages, which are defined as ∆ρC,E% =
∆ρC,E

ρC,E(ΘE ,Θ) × 100%, at different levels of

SSV. We observe a robust pattern across different effect sizes, samples sizes, and SSVs, and conclude that
imply and imply-s consistently provide the most outstanding concordance improvement.
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Fig. 4. Effect size, sample size, and SSV affect deconvolution accuracy. (A) Boxplots of ABD (upper panel) and
∆ρC,E (lower panel) across three methods: imply, ISLET-n, TCA-s, under different effect sizes (LFC). (B) Similar to
(A) but across various sample sizes per group. (C) Heatmap showing the relative ∆ρC,E across various combinations
of sample sizes, effect sizes, and SSV. The color bars on the left and the top indicate the LFC and SSV, respectively.
The number on the right indicates the sample size per group.

3.4 Application of imply to longitudinal transcriptomic datasets

We applied imply to two consortia longitudinal transcriptomic datasets: Parkinson’s Disease Biomarker
Program (PDBP) and The Environmental Determinants of Diabetes in the Young (TEDDY). The PDBP
consortium has the longitudinal RNA-seq dataset extracted from the whole blood. De-identified participants
with at least three observations over time were retained. A total of 399 PD patients and 173 controls, with
2599 longitudinal samples over 2 years, were included. Clinical data includes information about patients’
medical history, symptoms, disease status, total Montreal Cognitive Assessment (MoCA) scores, and MDS
UPDRS part III motor scores. The TEDDY cohort is a multi-center pediatric study of Type 1 Diabetes
(T1D). TEDDY cohort screened and enrolled participants with susceptibility of T1D based on the Human
Leukocyte Antigen (HLA) genotypes from six clinical centers in four countries. A total of 8,676 high-risk
infants were enrolled from birth and followed every 3 months for blood sample collection and islet autoan-
tibody (IAbs) measurement up to 4 years of age. Details of sample collection, RNA sequencing procedures,
and quality control in TEDDY are described in [57].

Figure 5 shows the deconvolution analysis results for PDBP and TEDDY. For PDBP, the mean pro-
portions across all visit times of six cell types are shown for cases and controls in Figure 5A. Here, B cell
contributes the most among all six cell types, while NK cell contributes the least. We notice a higher CD8
cell proportions in the PD group than in the control group, while CD4 cell proportions in the PD groups
are lower. Figure 5B displays the heatmap of Pearson correlations among the six cell types. B cells, mono-
cytes, and CD4 all show negative pairwise correlations. Figure 5C shows boxplots of CD8 cell proportions
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Fig. 5. Phenotype-associated cell type disparities from PDBP (Parkinson’s Disease Biomarker Program) and TEDDY
(The Environmental Determinants of Diabetes in the Young) consortia. (A): Cell type proportions for all subjects,
separated by PD status in PDBP dataset. The bar represents the mean cell type proportions across all visit times,
for each subject. (B): Pearson correlations between six cell type proportions among all individuals. (C): Distribution
comparisons of CD8 proportions between PD and controls, at each visit time. (D): Deconvoluted CD4 proportions
along with study participants’ visit time. PD (pink) and controls (blue) are illustrated by both individual background
lines (thin) and foreground lines (thick). (E): Same as in (D) but for CD8 proportions. (F): Grand comparison of
CD8 proportions between PD and controls, using CIBERSORT and imply . Results from imply show a larger effect
size, more significant test statistics, and increased discriminative capacity. (G): Cell type proportions for all subjects,
separated by pancreatic islet autoantibodies (IA) status, in TEDDY dataset. The bar represents the mean cell type
proportions across all visit times, for each subject. (H): NK proportions along infant’s age (in days) at sample
collection, for female and male subjects. Average fitted lines (solid) overlay individual-specific lines (dashed). (I):
Same as in (H) but separated by IA case and control status.

comparing case and control, at each time point. The median value of CD8 proportion in case is higher than
that in control group at each time point. The CD4 and CD8 cell type proportions, broken down by the
participant’s visit time of each subject, are shown in Figure 5D and 5E, respectively. For CD4, the mean
proportions in case are lower than those in control for each visit time. For CD8, the mean proportions among
cases are higher than those among controls, for each visit time. These findings are well-aligned with previous
studies where the PD patients showed elevated CD8 proportions and reduced CD4 proportions than controls
[54, 7, 19]. We also benchmarked imply with CIBERSORT as shown in Figure 5F. Using CIBERSORT,
the p-value of the Wilcoxon Rank Sum test is 0.0111 and the median difference is −0.007 for CD8 pro-
portions between cases and controls. It incorrectly suggests that the CD8 proportion of cases is lower than
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controls. In contrast, imply yields a p-value less than 10−16 and the median difference is 0.58, which shows
the correct effect size direction. It also increases differential power between cases and controls, as shown in
the ROC plot. Associations between the various cell type proportions and clinical outcomes, including total
UPSIT score, total scores of MoCA, Cerebrospinal fluid (CSF), and MDS UPDRS part III motor scores, are
detailed in supplementary section 4.1. For the T1D study of TEDDY, the disease status of interest is the
onset of pancreatic islet autoantibodies (IA). The longitudinal analysis of re-quantified cellular composition
identifies NK cell abundance as higher in males than females (p < 0.0001), as illustrated in Figure 5H.
Previous research in TEDDY reported a higher risk of IA being associated with viral infection during the
first 6 months of life [53]. The sex difference in NK cell fraction in Figure 5H could be a consequence of
early-life vaccination or viral infection [10], since infants are exposed to exogenous antigens and have a high
susceptibility to infections. In this analysis, we use longitudinal samples of IA cases and controls collected
at the age of 9-21 months, and compare deconvoluted cell fractions between groups by imply . Figure 5I
shows that the NK cell proportions are significantly lower (p < 0.0001) in the participants who developed IA
at a young age compared to controls, while this trend is not observed in the initial cell abundance estimated
by CIBERSORT (p = 0.77, supplementary section 4.2). The relative higher NK cell abundance in males (vs.
females) and controls (vs. cases) among TEDDY participants is consistent with the previous finding that
males have a lower risk of autoimmunity than females [38].

Furthermore, we perform a downstream csDE genes analysis on IA status based on imply -deconvoluted
cell type fraction, using ISLET [16] with FDR< 0.1. The cell type proportions improved by imply enabled
the detection of DE genes in CD4 T cells and identified more NK-cell-specific DE genes (n > 300) compared
to a previous csDE genes testing result (n = 30) based on the proportions deconvoluted by AutoGeneS [3].
The IA-csDE genes based on the improved cell fractions include the markers for multiple T cell receptors
(e.g., TRBV, TRDV, TRGV, TRJV) and the genes regulating immune responses such as CAMP and CRK.
The CAMP gene expression was found to be associated with serum levels of vitamin D in the studies of
innate immunity [37, 23, 45], while the TEDDY cohort also reported a strong linkage between vitamin D
and the risk of IA [33]. Protein CRK is involved in NK cells inhibitory receptor signaling and modulates
the signaling of activating receptors, which may function as a two-way molecular switch to control NK
cell-mediated cytotoxicity [42, 36].

4 Discussion

The computational deconvolution of admixed bulk tissue samples is drawing substantial interest as large
consortia are becoming increasingly available. We are among the first to consider personalized reference
panels in deconvolution. imply optimizes the usages of shared information in longitudinal samples from
each subject and jointly quantifies the cell abundances across multiple samples per subject. We show the
advantage of using personalized reference panels by in silico simulation studies and the analytical results of
two large-scale longitudinal consortia. imply can produce more accurate and realistic results. Alternative
machine learning approaches, such as EM and non-negative matrix factorization algorithms, could also
extract personalized reference panels and have been implemented in ISLET [16] and CIBERSORTx [44].
Nevertheless, they lack the conciseness and computational efficiency exhibited by the proposed linear mixed-
effects modeling framework.

A limitation of imply is the requirement of an initial signature matrix as the input in Stage I, which
could affect the initial cell type abundance estimation as the input for downstream. An alternative approach
is to initialize cell fractions by external multi-subject reference cell count data, such as single-cell profiling
and labeling, flow cytometry, or imaging. For some genes, the random effect variance estimation may shrink
towards zero, likely due to the adoption of penalized MLE. For such scenarios, the cell-type-specific hetero-
geneity between individuals would not be fully recovered. Furthermore, the intra-individual heterogeneity
was not considered in reference panel recovery. This is because our present work was motivated by the bulk
transcriptome of longitudinal blood samples, many of which were collected from healthy controls. In those
scenarios, the underlying pure gene expression panel for each subject is relatively stable over time. Our
previous work [16] suggests that the intra-individual cell-type-specific heterogeneity, when assessing using
longitudinal PBMC scRNA-seq data, is trivial when compared with inter-individual variation. Hence, our
future work will include the curation of longitudinal scRNA-seq data from distinct tissue types or disease
populations and the incorporation of potential variations between time points at cell type resolution.
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