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Abstract. Social networks in present-day industrial environments en-
compass a wide range of personal information that has significant re-
search and application potential. One notable challenge in the domain
of opinion dynamics of social networks is achieving convergence of opin-
ions to a limited small number of clusters. In this context, designing the
communication topology of the social network in a distributed manner
is a particularly difficult. To address this problem, this paper proposes a
novel perception model for agents. The proposed model, which is based
on bidirectional recurrent neural networks, can adaptively reweight the
influence of perceived neighbors in the convergence process of opinion dy-
namics. Additionally, effective differential reward functions are designed
to optimize three objectives: convergence degree, connectivity, and cost
of convergence. Lastly, a multi-agent exploration and exploitation algo-
rithm based on policy gradient is designed to optimize the model. Based
on the reward values in inter-agent interaction process, the agents can
adaptively learn the neighbor reweighting strategy with multi-objective
trade-off abilities. Extensive simulations demonstrate that the proposed
method can effectively reconcile conflicting opinions among agents and
accelerate convergence.

Keywords: Social network · Opinion dynamics · Reweighting percep-
tion · Reinforcement learning.
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1 Introduction

Recently, social network group decision-making (SNGDM) has attracted increas-
ing attention as a valuable tool for understanding and explaining human ac-
tions [9, 14]. SNGDM frameworks have excellent research and application poten-
tial in many fields, such as supplier selection [1], public opinion management [31,
11], political elections [3, 34], markets [16, 2] and transportation [12]. To select
the best alternative from a set of potential candidates, SNGDM involves a set
of individuals, known as agents, who can express their opinions and communi-
cate with their neighbors. Opinions and beliefs are crucial factors that influence
our behavior, thereby defining our individuality and driving our actions [13, 23,
10, 8]. Opinion evolution, also known as opinion dynamics, represents the pro-
cess of modification of an agent’s opinions by merging them with those of other
agents, resulting in the formation of a stable structure. This process may involve
consensus, polarization, or fragmentation [10].

A notable challenge in SNGDM is the achievement of a general and unani-
mous agreement among all agents [22, 5]. With the rapid development of wireless
communication networks and Internet-based technologies, we can now exchange
opinions with a large number of people in real-time. The large-scale consensus
reaching Process (LSCRP) in agents’ opinions in SNGDM takes into account the
opinions of agents throughout a social network [10]. The network represents the
interaction rule between agents and plays a critical role in opinion dynamics [15,
19]. A growing body of literature has recognized the importance of network topol-
ogy in the fusion rules of opinion dynamics in the LSCRP. Lu et al. [17] allowed
agents to express their trust values and relationship strengths with other agents
to better reflect the actual social network and improve the efficiency of LSCRP.
Chao et al. [6] constructed a two-layer network topology to address incomplete
social relationships among agents on a large-scale. This framework could recon-
cile conflicting preferences and accelerate LSCRP at a minimal cost. Additional
work on LSCRP can be found in [30, 22]. Notably, the existing methods typically
consider the peer-to-peer network topology, in which each agent communicates
directly with all other perceived neighbors with the equal weight to update its
own state.

Although consensus reaching processes have been widely studied and LSCRP
investigations have achieved promising results, research on LSCRP within the
context of SNGDM is still in its nascent stages [9]. The requirement of a high
consensus level and presence of incomplete social relationships may render com-
munication and opinion evolution among agents complex and challenging, espe-
cially in a large-scale scenario [6]. However, existing LSCRP methods consider
only one-hop-based connections, in which agents interact with similar agents
based on specific contexts, and ignore the more efficient interaction patterns
that can facilitate consensus. These problems can be addressed by introducing
multi-agent reinforcement learning (MARL), which has emerged as a powerful
technology for accomplishing dynamic tasks online [32]. For example, Zhang et
al. [33] used mean-field theory to decompose the joint action from the individual
perspective in cooperative settings. Moreover, Sun et al. [21] solved the real-time
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Volt-Var control problem by using the multi-agent deep deterministic policy gra-
dient method in a cooperative setting. However, the integration of MARL with
LSCRP frameworks remains largely unexplored.

Considering these aspects, this study is focused on promoting consensus
among a large group of people (i.e., in a multi-agent system) in a social network.
We allow the agents to adaptively and discriminatively select the influence of lo-
cally perceived neighbors, thereby reconciling conflicting opinions and fostering
unanimous consensus among agents at a higher rate. The main contributions of
this study can be summarized as follows:

– We propose a novel agent perception model based on bidirectional long short-
term Memory (LSTM), which adaptively reweights the influence of perceived
local neighbors.

– We devise three types of differential reward functions within social networks
to facilitate reinforcement learning.

– We design a multi-agent exploration and exploitation algorithm based on
policy gradient to effectively train the agent perception model.

2 Model Formulation

This section describes the proposed model and reward functions. Section 2.1
introduces the decision-making model that adaptively adjusts the weights of
neighboring states. Section 2.2 outlines the three goal-oriented differential reward
functions designed to facilitate the learning process of agents.

2.1 Model Settings

The number of neighbors perceived by each agent is uncertain during the evolu-
tion of opinions, and each local neighbor needs to be evaluated in the decision-
making process. Therefore, we use a recurrent neural network (RNN), which
is a suitable model for time-series analysis, to address the problem of uncer-
tain local perception input and uncertain decision length. Given that the agents
must consider the overall context information of all perceived neighbors to make
judgments, the perceived neighbors are encoded by extending the conventional
bidirectional RNN.

As shown in Fig. 1, we encode the perceived neighbors based on the bidi-
rectional LSTM [29] model, which is a widely used variant of RNN. The input
to the proposed model is the set of state values si(k) = {xj(k) : j ∈ Ni(k)} of
all perceived neighbors of agent i and their corresponding index j : j ∈ Ni(k)
at time k. After passing through the bidirectional LSTM network, the output
is the action ai(k) for the opinion value of each neighbor, which represents the
reweighting probability of each neighbor. Thus, the output layer of the LSTM
model contains the SoftMax activation function, which ensures that the sum of
the reweighting probabilities is 1. Therefore, the dimension of action ai(k) is
consistent with that of the input state set, i.e.,[Ni(k), 1]. Additionally, to endow
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Fig. 1: Adaptively reweighting model based on LSTM

the agents with exploration abilities to improve the robustness of the learning
process, we add the noise p × N to the output layer weight of the final ac-
tion, where N follows the standard normal distribution, and p is a temperature
parameter that controls the scale of noise N .

The output action ai(k) ∼ πθi of the model represents the aggregation of
the influence weight πj

θi
∈ (0, 1) of each neighbor. The weights of the non-

neighbors of agent i are set as zero. To obtain the new communication topology
matrix L(k) after processing through the proposed model, we aggregate the
weights of the neighbors and non-neighbors of agent i in the order of agent
index. Specifically, L(k) = [lij(k)], where each element lij(k) denotes the new
communication topology relationship within the network, as defined in Eq. (1).

lij =

{
πj
θi
, j ∈ Ni(k)

0, j /∈ Ni(k)
(1)

2.2 Reward Settings

The design of the reward function significantly affects the learning process of
agents [20]. Furthermore, the reward function must be formulated considering
the balance between the index coefficient and learnability. Therefore, we design
the folllowing differential reward function for the social network:

ri (k) = αG1 (X (k + 1)) + βG2 (X (k + 1)) + γG3 (2)

where G1(·), G2(·) and G3 represent the three objectives, with α, β, and γ repre-
senting their temperature coefficients respectively.
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G 1 (·) enhances the capability of the agents in enhancing the consensus de-
gree of the system. The convergence degree is quantified considering the standard
deviation of opinion values in the multi-agent system:

G1 = g1 (X (k + 1))− g1 (X−i (k + 1)) (3)

g1 (X (k + 1)) =
std (X (k + 1))

n
(4)

where n = |V | represents the number of agents in the system, X−i(k + 1) rep-
resents the state after the exclusion of agent i’s state from the global state, and
std(·) represents the standard deviation operation. The range of g1 depends on
the initial range of the system state and is typically

[
0, |Omax−Omin|

n

)
, where

Omax and Omin represent the maximum and minimum values of the system
state, respectively. In the Hegselmann-Krause model, (HK) [4], Omax is typi-
cally less than 10. A g1 value closer to 0 corresponds to superior convergence
performance of the system. The range of G1 is [− |Omax−Omin|

n , |Omax−Omin|
n ], and

a value closer to − |Omax−Omin|
n indicates a lower divergence degree of agent i

with respect to the complete system.
G 2 (·) enables agents to improve the connectivity density of the system.

The network topology represents the communication pattern underlying opinion
dynamics and plays a key role in convergence theory [18]. Therefore, we quantify
the connectivity by the density of the network topology:

G2 = g2 (X (k + 1))− g2 (X−i (k + 1)) (5)

g2 (X (k + 1)) =

∑
i∈V |Ni (k + 1) |

n2
(6)

where X−i(k+1) has the same meaning as that in Eq. (3), and
∑

i∈V |Ni (k + 1) |
represents the number of connections of the system at time k. Thus, the range of
g2 is [0, 1], and a value is closer to 1 indicates a higher degree of connectivity in
the system. The range of G2 is [0, 1), and a value closer to 1 indicates a greater
influence of agent i on the density of the system distribution.

G 3 enables agents to reduce the number of steps required to achieve a con-
sensus. Therefore, we intuitively introduce the penalty for each convergence step:

G3 = −0.01 (7)

G3 accumulates with the number of steps. During a round of evolution, G3

takes a value in [0,−0.01× k], where k represents the number of steps required
to achieve stability. A cumulative value of G3 closer to 0 indicates that fewer
steps are required to achieve stability.

3 Algorithm

The policy gradient-based reinforcement learning algorithm parameterizes the
agent strategy and then directly optimizes it by maximizing the expected cu-
mulative return [25]. This method can effectively enable iterative optimization
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Algorithm 1: Policy-gradient-based exploration and exploitation algo-
rithm

Input: maximum training episode M , maximum time step T , learning batch
size B

Output: the parameter θ of each agent’s adaptively reweighting policy
network

1 Initialize the policy parameter θ, the experience replay-buffer pool D, and the
weights α, β, γ of differential reward function;

2 for e=1 to |M | do
3 Reset and initialize the environment to obtain the global initial state X(k)

of the system;
4 Receive the temperature p to control the noise;
5 for k=1 to |T | do
6 Each agent perceives local neighbors’ state si(k) according to Eq. (8);
7 Each agent reweights neighbors based on ai(k), and obtains Li(k) ad

described in Sec. 2.1;
8 Each agent receives an instant differential reward according to Eq. (2);
9 The environment with states X(k) evolves to X(k + 1) according to

selected neighbors for all agents and Eq. (10);
10 Store the experience samples (si(k), ai(k), ri(k)) of all agents in the

experience replay-buffer pool D;
11 if done then
12 Break;
13 end
14 end
15 Randomly and uniformly select trajectory samples of agents with batch

size B from the experience pool D;
16 Calculate the gradient ∇θU (θ) via Eqs. (14) and (15);
17 Update policy parameters θ via Eq. (17);
18 end
19 return θ

during agent exploration and address the challenges associated with the contin-
uous action space. Based on the modeling and analysis of the state, action, and
reward functions, as discussed in the previous sections, this section describes the
process flow of exploration and exploitation, outlined in Algorithm 1.

For ease of reference in the following derivations, we use τi to denote the
continuous state-action pairs (si(0), ai(0), · · · , si(H), ai(H)) of agent i, gener-
ated through its interactions with the environment, where H denotes the length
of the sequence. The proposed algorithm follows the distributed testing and
centralized training framework and consists of two parts, i.e., the multi-agent
exploration stage and strategy exploitation and updating stage. These stages
are explained in the following sections.

Multi-agent exploration stage (lines 3-13 in Algorithm 1). In the process
of exploration, each agent obtains the state value si(k) of its neighbors within
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its perception range, as indicated in Eq. (8).

Ni(k) = {j ∈ V : |xi(k)− xj(k)| < 1} (8)

Then, each agent calculates the weight of its neighbors based on the proposed
model, as shown in Fig. 1. We obtain a new communication topology matrix
L(k) using Eq. (1). The opinions of all agents evolve synchronously as

xi(k + 1) =
∑

j∈Ni(k)

xj(k)× lij(k) (9)

Each agent Vi ∈ V in the system maintains an opinion xi(k), represented by
a real number, for a given issue. Let X(k) = [x1(k), x2(k), · · · , xn(k)]

T be the
opinion profile of all agents at time k. In this case, the model (9) can be rewritten
in the following matrix form:

X(k + 1) = L(k)X(k) (10)

To ensure that the agents can automatically and adaptively select the exploration
method according to episode, the noisy weight parameter p is decreased as the
number of episodes increases.

Subsequently, to learn the policy parameters in the multi-agent exploita-
tion stage, each agent stores the local perception state si(k), local action ai(k)
and immediate reward ri(k) at each time step in the experience buffer pool in
chronological order based on the longest time span of exploration. At the end of
each episode, the sequences of agents are selected for learning through uniform
random sampling. If the system reaches a state of consistency, i.e, if all agents
converge to a cluster, the parameter done = true indicates early termination of
the current round of exploration (lines 11− 13).

Strategy exploitation and updating stage (lines 15-17 in Algorithm 1).
At the end of each episode, the experience sequences of agents are selected for
learning through uniform random sampling. To facilitate the following deriva-
tion, we use τi to denote the continuous state-action pairs (si(0), ai(0), · · · , si(H), ai(H))
of agent i, where H denotes the length of the sequence. For updating the policy
parameters, agents constantly explore and exploit their policies to maximize the
expected cumulative return in the future:

U (θ) = Eπθi

[∑
k

(ri (k) |si (k) , ai (k))

]
≈

∑
τi

P (τi|θi)Ri (τi) (11)

Ri (τi) =

H∑
k=0

ri (k) (12)
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We use the gradient descent method to find the gradient ∇θU(θ) of objection
function U(θ):

∇θU (θ) = ∇θ

∑
τi

P (τi|θi)Ri (τi)

=
∑
τi

P (τi|θi)
∇θP (τi|θi)
P (τi|θi)

Ri (τi)

=
∑
τi

P (τi|θi)∇θ logP (τi|θi)Ri (τi)

(13)

According to Eq. (13), the gradient of U(θ) contains P (τi|θi) and∇θ logP (τi|θi)Ri (τi).
Because P (τi|θi) represents the probability of occurrence of trajectory τi, the
gradient can be equivalent to the expectation of ∇θ logP (τi|θi)Ri (τi). There-
fore, we estimate the gradient through average approximation based on the ex-
perience of the sampled trajectories:

∇θU (θ) =
∑
τi

P (τi|θi)∇θ logP (τi|θi)Ri (τi)

≈ 1

m

m∑
i=1

∇θ logP (τi|θi)Ri (τi)

(14)

Furthermore, the gradient calculated using Eq. (14) can be intuitively un-
derstood as follows: The algorithm increases and decreases the probability of
occurrence of trajectories with high and low reward, respectively. Then, we solve
the only uncertainty ∇θ logP (τi|θi) in Eq. (14):

∇θ logP (τi|θi)

= ∇θ log

[
H∏

k=0

P (si (k + 1) |si (k) , ai (k))×
πθi (ai (k) |si (k))

]

= ∇θ

[∑H
k=0 logP (si (k + 1) |si (k) , ai (k))+∑H

k=0 log πθi (ai (k) |si (k))

]

= ∇θ

[
H∑

k=0

log πθi (ai (k) |si (k))

]

=

H∑
k=0

∇θ log πθi (ai (k) |si (k))

(15)

In Eq. (15), P (si (k + 1) |si (k) , ai (k)) represents the system dynamics. Be-
cause the dynamics do not include the policy parameter θ, it can be deleted.
Subsequently, we obtain the final policy gradient as:

∇θU (θ) ≈ 1

m

m∑
i=1

H∑
k=0

∇θ log πθi (ai (k) |si (k))ri (k) (16)
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Table 1: Parameter settings in simulations
Param. Explanation Value
M Maximum number of episodes 150
T Maximum time step 20
B Batch size 300
ζ Learning rate 2e-3
n Number of agents 20 to 100
ω Density of agents 5 or 10
rc Perception range of agents 1
α, β, γ Temperature coefficients of rewards -1,1,1
interval Initial state range [0, 4] or [0, 10]
th Convergence threshold 1e-2
sdim Input dimension of state in LSTM 2
adim Output dimension of action in LSTM 1
hdim Hidden dimension in LSTM 36
hlays Number of hidden layers in LSTM 2

Table 2: Ablation study
Exp.
ID G1 G2 G3

Number of
clusters

Convergence
step

A1 ✓ % % 4.2 ± 0.39 11.5 ± 0.49

A2 ✓ % ✓ 4.3 ± 0.45 9.0 ± 2.36

A3 % ✓ % 4.4 ± 0.48 11.2 ± 2.82

A4 % ✓ ✓ 4.1 ± 0.51 9.9 ± 2.31

A5 ✓ ✓ % 3.7 ± 0.45 9.6 ± 1.2
A6 ✓ ✓ ✓ 3.7 ± 0.78 8.4 ± 1.35

Lastly, the agent’s policy parameters are updated through the steepest de-
scent method with the learning rate ζ:

θ ← θ + ζ∇θU (θ) (17)

4 Experiment

We develop a simulation environment for opinion dynamics using Python 3.7.0
and model the agent policy-gradient network with an LSTM architecture using
PyTorch 1.2.0. Table 1 lists the parameters used in the experiment. To com-
prehensively analyze the superiority and effectiveness of our method, we use the
‘convergence step’ and ‘number of cluster’ as the evaluation metrics. The conver-
gence step refers to the number of steps required for the system to reach a state
in which the distance between any agent and its neighbors is less than the thresh-
old th’. The achievement of system stability with fewer convergence steps and
a smaller number of clusters corresponds to a superior performance [26–28] The
experimental results, demonstrate that the integration of MARL with LSCRP
can help reconcile conflicting opinions and promote unanimous consensus among
all agents.

4.1 Ablation Study

First, we verify the effectiveness of the proposed model using the differential
reward function and compare the model performance under different reward
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combinations, as presented in Table 2. The settings involve a system opinion
range of [0, 10] with n = 100 and ω = 10/rc. All experiments are conducted 10,
and the mean and standard deviation are reported.

– A1 vs. A3 vs. A5: Compared with the scenarios in which only G1 (A1) or
G2 (A3) is considered, the incorporation of both G1 and G2 (A5) leads to
a 13.9% reduction in the average number of steps required for the system
to reach stability and a 15.3% decrease in the average number of clusters at
stability. Thus, using a combination of rewards G1 and G2 can help decrease
the number of clusters and steps required to achieve system stability.

– A1 vs. A2, and A3 vs. A4: The convergence steps of A2 and A4 are
21.4% and 11.6% lower than those of A1 and A3, respectively. This finding
indicates that considering reward G3 allows agents to learn to reduce the
number of steps required for system stability with an insignificant change in
the number of clusters.

– A5 vs. A6: By comprehensively considering rewards G1, G2 and G3, A6
achieves a 12.5% reduction in convergence step compared with A5. This
finding indicates that incorporating reward G3 in addition to G1 and G2 can
further decrease the number of steps required to stabilize the system.

4.2 Comparative Analyses

We access the effectiveness of the model in terms of the convergence step and
number of clusters when the system achieves stability. The number of conver-
gence clusters indicates the enhancement of consistency of the model, and the
convergence step indicates the number of steps required by the model to achieve
stability. We compare the proposed method with the HK, common-neighbor rule
(CNR) [24], group-pressure (GP) methods [7]. Because the objective is to en-
hance consistency, we aim to ensure convergence to fewer clusters in fewer steps.
The relevant parameters in the CNR and GP models are uniformly set as β = 0,
m = 1 and pi = λ = 0.5.

Existing LSCRP methods consider only one-hop-based connections, in which
agents interact with similar agents, and ignore the efficient interaction patterns
that can facilitate consensus. We illustrate the evolution process of the three
baselines and our method with an initial range of [0, 10] and n = 100. The
following observations are made:

– HK evolves by obtaining the average value of neighbors, which makes it
difficult to control the numbers of steps and clusters when the system is
stable (Fig. 2a).

– CNR selects local and long-range neighbors according to the confidence
bounds and a common-neighbor rule, respectively. Therefore, CNR requires
a large amount time to reach a consensus (Fig. 2b).

– GP takes group pressure into consideration, leading to the formation of in-
ner opinions within the agents’ bounded confidence. However, the ambient
pressure reduces communication between agents, resulting in more clusters
(Fig. 2c).
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(a) HK (b) CNR

(c) GP (d) ours

Fig. 2: Results of the proposed and baseline methods

Table 3: Statistics of comparison simulations
ID Init.

range n ω Method Cluster
number

Convergence
step

M1 [0, 4] 20 5
rc

HK 2 5
CNR 1 5
GP 1 5
ours 1 5

M2 [0, 4] 40 10
rc

HK 1 9
CNR 1 4
GP 1 4.80 ± 0.75
ours 1 4.45 ± 0.50

M3 [0, 10] 50 5
rc

HK 5 11
CNR 3.33 ± 0.94 19.8 ± 0.60
GP 3.90 ± 0.70 14.90 ± 6.32
ours 3.45 ± 0.50 10.72 ± 1.81

M4 [0, 10] 100 10
rc

HK 5 14
CNR 8.20 ± 2.40 20.00 ± 0.00
GP 4.50 ± 0.50 18.00 ± 3.55
ours 2.70 ± 0.45 9.10 ± 1.51

– The proposed method enable agents to adaptively learn the neighbor reweight-
ing strategy with multi-objective trade-off ability. The agents required only
a few steps to reach a consensus with a small number of clusters (Fig. 2d).

Table 3 summarizes the statistical results of the comprehensive comparisons.
The experiments are conducted 10 times after 100 training runs, and the mean
and standard deviation of the metrics are reported.
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– Horizontal analysis: We analyze the performance of different algorithms
under the same density. The proposed algorithm requires the fewest number
of steps to achieve stability. With the improvement of the range (M2, M4),
the advantage of our algorithm in terms of the number of steps is amplified.

– Longitudinal analysis: Under the same range, as the density increases,
the numbers of steps and clusters associated with our algorithm decreases
or remain stable. In high-range situations (M3, M4), the numbers of steps
and clusters associated with the baselines increase as the density increases,
whereas those of our algorithm steadily decrease.

Notably, in high situations (M4), the proposed method achieves an average
reduction of 51% and 46.3% in the number of clusters and convergence step,
respectively, compared with the baselines. These demonstrates the potential of
the proposed method in resolving disagreements among agents and accelerating
the consensus-building process.

5 Conclusions

With the objective of enhancing the consensus of opinion dynamics in the field
of social networks, an intelligent perception model based on MARL is developed.
For the convergence process, we first design an adaptive reweighting model based
on bidirectional LSTM to capture the perception capability. Then, we formulate
the corresponding differential reward function based on three types of goals
in the opinion dynamics scenario. Finally, through the multi-agent exploration
and strategy exploitation algorithm based on the policy gradient, the agents are
allowed to adaptively learn an efficient neighbor reweighting strategy with multi-
objective trade-off during their interaction. The experimental results verify that
the proposed method can enable agents to adaptively reweight the influence
of neighbors while exhibiting multi-objective trade-off abilities and effectively
reconcile opinions with large differences in the social network system. Thus,
the number of clusters at stability is reduced, and the convergence process is
accelerated.

In future work, we will focus on the consistency enhancement method with
attention mechanisms and privacy protection in social networks and verify the
effectiveness and generalization ability of the proposed approach in real opinion
dynamics scenarios.
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