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Abstract

Let O be a set of lines through the origin. Given two
disjoint sets of n red and n blue points in the plane,
we study the problem of maintaining the subset of
blue points contained in the O-convex hull of the red
point set while we rotate O around the origin. We de-
scribe efficient algorithms to solve the problem when
O contains two lines. We consider the case where we
simultaneously rotate both lines, and the case where
one line is rotated while the second one is kept fixed.

1 Introduction

Restricted-orientation convexity [4, 5] is a non-
traditional notion of convexity that studies geometric
objects whose intersections with lines parallel to one
from a given set O are connected. Since this notion
of convexity was defined in the early eighties, several
results of topological and combinatorial flavors can
be found in the literature, as well as computational
problems that are usually adaptations of well-known
problems related to standard convexity [1, 4, 7, 9].

Despite all these results there are still fundamental
questions to be answered. In this paper we explore the
fundamental problem that, for illustrative purposes,
we describe next in the context of standard convexity.
Let R and B be two disjoint sets of n red and n blue
points in the plane. We want to compute the subset
of blue points contained in the convex hull of the red
point set. We may then ask, for example, which is the
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set whose convex hull contains the largest (or small-
est) subset of the other color, or ask for a particular
condition, such as full containment. This problem can
be trivially solved in O(n log n) time. See Figure 1.

Figure 1: The set of blue points and the red convex
hull. The cases of full containment (left), partial con-
tainment (center), and no containment (right).

Unlike the standard convex hull of a finite point set,
the O-convex hull (the restricted orientation version
of the standard convex hull) is orientation-dependent :
O-convex hulls of the same point set at different ori-
entations of the lines in O are non-congruent to each
other. We thus translate the inclusion problem above
to restricted orientations as the problem of comput-
ing the subset of blue points contained in the red O-
convex hull, and maintaining this set of points while
we change the orientations of the lines in O.

We restrict the problem to a set O of two lines
passing through the origin. We first consider the case
where the lines are orthogonal to each other and both
are simultaneously rotated by an angle that goes from
0 to π/2. In this setting the O-convex hull is known
as the rectilinear convex hull [8]. We then consider
the case where one line is kept fixed while the second
one is rotated by an angle β that goes from 0 to π.
In this setting the O-convex hull is known as the Oβ-
convex hull [1]. In both cases we solve the problem in
optimal O(n log n) time and O(n) space.

2 The rectilinear convex hull

In this section we assume that O is formed by two
orthogonal lines. A quadrant is a translation of one
of the four open regions that result from subtracting
the lines of O from the plane. Given a point set P , a
region in the plane is P -free if it contains no points of
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P . The rectilinear convex hull of P is defined as the
set of points

RH(P ) = R2 \
⋃
q∈Q

q,

where Q denotes the set of all P -free quadrants of the
plane. Let RHθ(P ) denote the rectilinear convex hull
of P computed after simultaneously rotating the lines
in O around the origin by an angle of θ in the counter-
clockwise direction. A P -free wedge with apex on a
point p ∈ P is maximal, if it is not contained in any
other P -free wedge with apex on p. We refer to the
aperture angle of a wedge as the size of the wedge.

Consider the disjoint point sets R and B. We adapt
the definition of Θ-maximality from Avis et al. [2] to
bichromatic point sets as follows.

Definition 1 A blue point b is an unoriented π/2-
maximal with respect to R if there is an R-free max-
imal wedge with apex on b and size at least π/2.

By a straightforward adaptation of the results from
Avis et al. [2] we obtain the following Lemma.

Lemma 2 There is an algorithm to compute the set
of all blue unoriented π/2-maximals with respect to
R in O(n log n) time and O(n) space.

The algorithm mentioned in Lemma 2 receives as
input the sets R and B, and reports all the blue un-
oriented π/2-maximals with respect to R. For each
such maximal blue point b, the output also contains
the (at most three) R-free maximal wedges with apex
on b. Consider a blue point b that is an unoriented
π/2-maximal with respect to R. Let w be one of the
R-free maximal wedges with apex on b and size at
least π/2, and w0 be the wedge resulting from trans-
lating w so its apex lies on the origin. The maximal
arc of b induced by w is the circular arc that results
from the intersection between w0 and S1 (the unit
circle centered at the origin).

The origin splits the lines in O into four rays. We
say that two rays are consecutive to each other if they
are consecutive in their circular order around the ori-
gin. The following characterization is based on obser-
vations from Hurtado et al. [6].

Lemma 3 For a given value of θ, a point b ∈ B is
contained in RHθ(R) if, and only if, no maximal arc
of b with respect to R is intersected by two consecutive
rays defined by the lines in O. See Figure 2.

2.1 The algorithm

Let Bθ denote the subset of blue points contained in
RHθ(R). Our characterization naturally leads to an
algorithm to maintain Bθ while θ is increased from

p q

p
q

Figure 2: On the right, two blue points and RHθ(R).
On the left, the lines of O and the blue maximal arcs.
Instead of drawing S1, the maximal arcs of each blue
point are drawn separately on concentric circles for
the sake of clarity. Note that no consecutive rays in-
tersect a maximal arc of p, and two pairs of consecu-
tive rays intersect a maximal arc of q.

0 to π/2. We first compute all the R-free maximal
wedges with apex on a blue point and size at least
π/2. By Lemma 2 this can be done in O(n log n) time
and O(n) space. We then translate each wedge into
a blue maximal arc with respect to R. There are at
most three wedges per point of B and thus, each blue
point has at most three maximal arcs. From the set of
blue R-free maximal wedges we can therefore compute
the set of O(n) blue maximal arcs in O(n) time. We
store the set of all maximal arcs into a sorted circular
list L in O(n log n) time.

We now sweep S1 by counter-clockwise rotating O
from 0 to π/2, while using L to predict the next value
of θ where a ray passes over an endpoint of a maximal
arc (an intersection event). We update Bθ at each
intersection event according to the conditions from
Lemma 3. These conditions are checked for a blue
point bi using an auxiliary variable ni, that stores
the number of consecutive pairs of rays intersecting
a maximal arc of bi. Consider an intersection event
given by an endpoint of a maximal arc of a blue point
bi at an angle θ. The event is processed as follows: If a
pair of consecutive rays start intersecting the maximal
arc, then increase ni by one. If a pair of consecutive
rays stop intersecting the maximal arc, then decrease
ni by one. Leave ni unchanged if neither of the above
situations take place. Add bi to Bθ if ni = 0. Remove
bi from Bθ if ni = 1.

Since we have O(n) intersection events and we pro-
cess each event in O(1) time, the sweeping process
takes O(n) time. We obtain the following result.

Theorem 4 The subset of blue points contained in
RHθ(R) can be maintained while θ is increased from
0 to π/2 in O(n log n) time and O(n) space.

3 The Oβ-convex hull

For simplicity and without loss of generality, assume
that one of the lines in O is the x-axis and the slope of
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the second one is equal to tan(β). We denote this set
of lines with Oβ . An Oβ-quadrant is a translation of
one of the four open regions that result from subtract-
ing the lines of Oβ from the plane. The Oβ-convex
hull of P is the set of points

OβH(P ) = R2 \
⋃
q∈Qβ

q,

where Qβ is the set of all P -free Oβ-quadrants of the
plane. Based on the results from Alegŕıa et al. [1], the
characterization from Section 2 can be easily trans-
lated to Oβ-convexity.

Definition 5 For a given value of β, a blue point b
is a β-maximal with respect to R if there is an R-free
Oβ-quadrant with apex on b.

Every blue point b is the apex of at most two R-free
maximal wedges containing an horizontal ray. These
wedges define at most four angles as shown in Fig-
ure 3. The point b is a β-maximal with respect to R
if at least one of β1, . . . , β4 is greater than β.

β1

β2

β3

β4

Figure 3: A blue point is the apex of two R-free max-
imal wedges that contain an horizontal ray.

We now rephrase Lemma 3 to β-convexity. The
definition of the maximal arc of a blue point with
respect to R is exactly the same, but considering only
maximal wedges that contain an horizontal ray.

Lemma 6 For a given value of β, a point b ∈ B is
contained in OβH(R) if, and only if, no maximal arc
of b with respect to R is intersected by two consecutive
rays. See Figure 4.

p

q

β

q

p

Figure 4: Inclusion of blue points in OβH(R).

3.1 The algorithm

Let Bβ denote the subset of blue points contained
in OβH(R). The algorithm to maintain Bβ while β
is increased from 0 to π is essentially the same we
described in Section 2. By Lemma 6 an intersec-
tion event is processed exactly in the same way. The
evident adaptation is the computation of the set of
maximal arcs. To compute the set of R-free maximal
wedges that contain an horizontal ray we use a sweep-
line algorithm on the set R∪B: Scan the set from top
to bottom. When visiting a red point, use an on-line
algorithm to construct the standard convex hull of the
red visited points, one point at a time. When visiting
a blue point b, compute the R-free wedges with apex
on b bounded by an horizontal line through b and the
tangents from b to the red convex hull. Repeat by
scanning the points from bottom to top. See again
Figure 3. This algorithm takes O(n log n) time and
O(n) space.

Theorem 7 The subset of blue points contained in
OβH(R) can be maintained while β is increased from
0 to π in O(n log n) time and O(n) space.

4 The lower bound

We show next that computing the subset of blue
points contained in RHθ(R) for a fixed value of θ
requires Ω(n log n) time in the algebraic computation
tree model. This result implies that the algorithm
from Section 2 is time optimal. The proof can also be
adapted to the Oβ-convex hull problem for the case
where β = π/2.

Theorem 8 Computing the subset of B contained in
RHθ(R) for a fixed value of θ requires Ω(n log n) time
in the algebraic computation tree model.

Proof. By reduction from the Integer Set Disjoint-
ness (ISD) problem, which has a lower bound of
Ω(n log n) time in the algebraic computation tree
model [3]. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn}
be two sets of integers input to the ISD problem.
Let m � min{x1, . . . , xn, y1, . . . , yn} and M �
max{x1, . . . , xn, y1, . . . , yn}. In O(n) time we trans-
form X and Y into the input to our problem by pro-
ducing the set of 2(n+ 1) red points

R = {rNW

i = (xi − α, xi + α) | 1 ≤ i ≤ n} ∪
{rSE

i = (xi + α, xi − α) | 1 ≤ i ≤ n} ∪
{rm = (m+ 1,m+ 1), rM = (M + 1,M + 1)},

and the set of 2(n+ 1) blue points

B = {bNE

i = (yi + β, yi + β) | 1 ≤ i ≤ n} ∪
{bSWi = (yi − β, yi − β) | 1 ≤ i ≤ n} ∪
{bm = (m− 1,m− 1), bM = (M − 1,M − 1)}
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on the line with slope one, where 0 < β < α < 1/2.
We use the values α = 1/3 and β = 1/6 for our proof
and, without loss of generality, we assume that θ = 0.
The construction is illustrated in Figure 5.

xi

yj xs ybyaxrm M

rNW
i

rSE
i

bNE
j

bSW
j

1/3

1/3

1/6

1/6

Figure 5: Transforming the sets of integers X and Y
into the sets of points R and B. RH0(R) is formed by
n+2 disconnected components, two of which are single
points. All the red points are vertices of RH0(R).

If X ∩ Y 6= ∅, then there are at least two integers
xi ∈ X and yj ∈ Y such that xi = yj . In this case the
points bNE

i and bSWi are contained in RH0(R). On the
other hand, if X and Y are disjoint then every pair of
integers xi ∈ X and yj ∈ Y is such that xi 6= yj . In
this case no blue point is contained in RH0(R). We
thus have that X ∩ Y = ∅ if, and only if, the subset
of points of B contained in RH0(R) is empty.

We have therefore reduced in linear time the ISD
problem on X and Y to computing the subset of points
of B contained in RH0(R). �

5 Concluding remarks

There are two aspects of our algorithms that are im-
portant to note. First of all, the sets R and B are
not required to be balanced. If R and B contain nr
and nb points respectively, the complexity of our algo-
rithms is O((nr+nb) log(nr+nb)) time and O(nr+nb)
space. Second, the particular case where no blue point
is contained in the red O-convex hull implies the exis-
tence of anO-convex hull that separates the red points
from the blue points. Therefore, our algorithms can
be used to report, if any, all the angular intervals of
separability in O(n log n) time and O(n) space. It is
not hard to show that even deciding the existence of
a separability interval has a bound of Ω(n log n) time,
so the algorithms are time-optimal.

An interesting generalization of the rectilinear con-
vex hull is to consider a set of k lines, 2 ≤ k ≤ n,
with arbitrary slopes. Let r1, . . . , r2k be the rays
formed by the lines in O labeled in circular order.
Let αi be the size of the wedge bounded by ri+1

and ri+k, where subindices are taken modulo 2k, and
Θ = min{α1, . . . , α2k}. If Θ ≥ π/2, the O-convex
hull is defined in terms of wedges with size at least
π/2. We can thus adapt the characterization from
Section 2, and solve the problem when the lines in
O are simultaneously rotated around the origin also
in optimal O(n log n) time and O(n) space. When
Θ < π/2, by the results from Avis et al. [2] the time
complexity is increased by a factor of 1/Θ.
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